
PHYSICS 110A : CLASSICAL MECHANICS
HW 4 SOLUTIONS

(2) Taylor 7.14

For the yo-yo the kinetic energy will have a rotational and translational motion:

T =
1
2
mv2 +

1
2
Iω2.

Now in our coordinate system v = ẋ and ω = φ̇. We also know the moment of inertia for a
solid disk is I = 1

2mR
2. Finally since the rope does not slip as the yo-yo falls we can say

v = ωR (remember this equation?), or for us ẋ = φ̇R. Altogether we have:

T =
1
2
mẋ2 +

1
2

(
1
2
mR2

)(
ẋ

R

)2

=
3
4
mẋ2.

Our potential energy is:
U = −mgx.

So out Lagrangian is:

L =
3
4
mẋ2 +mgx.

using the Euler-Lagrange equation we find:

ẍ =
2
3
g.

(3) Taylor 7.27

Here the kinetic energy is (please see figure 1):

T =
1
2

4mẋ2 +
1
2
m(−ẋ+ ẏ)2 + +

1
2

3m(−ẋ+−ẏ)2 = 4mẋ2 + 2mẏ2 + 2mẋẏ.

And our potential will be:

U = −4mgx−mg(l1 − x+ y)− 3mg(l1 − x+ l2 − y) = mg2y.

Where we dropped any constants. So our Lagrangian is:

L = 4mẋ2 + 2mẏ2 + 2mẋẏ −mg2y.

After we Euler-Lagrange it we have:

4ẍ = −ÿ.
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Figure 1: Figure for 7.27.

And:
2ÿ + ẍ = −g.

You can solve these coupled equations to get:

ẍ =
g

7
.

(4) Taylor 7.33

We find the kinetic energy for the bar of soap (useful for making money to sustain your
fight club). There is both a rotational and translational term (please see figure 2).

T =
1
2
mẋ2 +

1
2
mx2ω2.
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Where x is the distance from the soap to the edge of the plate. And our potential will be:

U = mgx sin(ωt).

So our Lagrangian:

L =
1
2
mẋ2 +

1
2
mx2ω2 −mgx sin(ωt).

Remember ω is a constant.

After we Euler-Lagrange it we have:

−mg sin(ωt) +mxω2 −mẍ = 0.

Or:
ẍ− ω2x = −g sin(ωt). (1)

For the solution it is suggested to try a technique similar to what we used to solve equation
5.48 in the text. Here we try a solution of the form:

wt

x

Figure 2: Plot keeping 4 terms.

x(t) = xp(t) + xh(t).

The homogeneous equation is:
ẍ− ω2x = 0.

The solution to this is:
xh(t) = c1e

(ωt) + c2e
(−ωt).

Or similarly:
xh(t) = r1 cosh(ωt) + r2 sinh(ωt).

And for the particular solution they suggest trying:

xp(t) = A sin(ωt).

Plugging this into equation (1) we get:

−ω2A sin(ωt)− ω2A sin(ωt) = −g sin(ωt).

Solving for A we have:
A =

g

2ω2
.
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So our solution looks like:

x(t) = r1 cosh(ωt) + r2 sinh(ωt) +
g

2ω2
sin(ωt). (2)

We have initial conditions:
x(0) = x0,

and
ẋ(0) = 0.

These combined with equation (2) lead us the the solution for x(t):

x(t) = x0 cosh(ωt) +
g

2ω2
(sin(ωt)− sinh(ωt)) . (3)

(5) Taylor 7.36

(a) The kinetic energy will be:

T =
1
2
mṙ2 +

1
2
mr2φ̇2;

and the potential energy will be:

U =
1
2
k(l0 − r)2 −mgr cosφ.

So our Lagrangian is:

L =
1
2
mṙ2 +

1
2
mr2φ̇2 − 1

2
k(l0 − r)2 +mgr cosφ.

(b) From the Euler-Lagrange equations we get:

r̈ = rφ̇2 + g cosφ+
k

m
(l0 − r);

and:
d

dt

[
r2φ̇
]

= −gr sinφ.

(c) Now we are asked to solve these equations for small oscillations. For small oscillations
these equations become:

r̈ = g +
k

m
(l0 − r); (4)

And:
d

dt

[
r2φ̇
]

= −grφ. (5)

Setting equation (4) equal to zero we find the equilibrium value or r is r0 = m
k g + l0.
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Now we will expand for small values of r by setting r = r0 + ε.
We have:

¨(r0 + ε) = g +
k

m
(l0 − r0 − ε);

Or:
ε̈ = g +

k

m
(l0 −

m

k
g − l0 − ε).

And finally:

ε̈ = − k

m
ε;

Where we have the equation for simple harmonic motion with ω2 = k
m . And for equation

(5) expanding out we have:
φ̈ = − g

r0
φ. (6)

Where we have the equation for simple harmonic motion with ω2 = g
r0

.

(6) Taylor 7.37

r

f

Figure 3: Figure for 7.37.

(a) The kinetic energy will be:

T = mṙ2 +
1
2
mr2φ̇2.

Note: here we have two blocks that will have translational kinetic energy. And the potential
energy will be:

U = mgr.

So our Lagrangian is:

L = mṙ2 +
1
2
mr2φ̇2 −mgr.
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(b) From the Euler-Lagrange equations we get:

2r̈ = rφ̇2 − g. (7)

And:
d

dt

[
mr2φ̇

]
= l.

Where l is a constant we know as the angular momentum. So in this problem the angular
momentum is conserved. Solving for φ̇ we have φ̇ = l

mr2
. Let’s plug this into equation (7)

to get:

2r̈ =
l2

m2r3
− g. (8)

(c) To find the equilibrium position we set r̈ = 0 in equation (8) above. Therefore:

r0 = 3

√
l2

m2g
. (9)

Physically if you plug the definition of l back in to equation (9) you get:

g = rφ̇2.

Which is to say the gravitational acceleration of the falling block is equal to the centripetal
acceleration of the rotating block.

(d) Finally we want to expand for small oscillations r = r0 + ε. So we have:

2ε̈ =
l2

m2(r0 + ε)3
− g.

Or:

2ε̈ =
l2

m2r30(1 + ε
r0

)3
− g.

Or:

2ε̈ =
l2

m2r30
(1− 3

ε

r0
+ ...)− g.

But due to equation (9) we have:

ε̈ = − 3l2

2m2r40
ε.

Where we have the equation for simple harmonic motion with ω2 =
√

3
2

l
mr20

.
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