PHYSICS 110A : CLASSICAL MECHANICS
HW 4 SOLUTIONS

(2) Taylor 7.14

For the yo-yo the kinetic energy will have a rotational and translational motion:
1

1
T = §m1}2 + §Iw2.

Now in our coordinate system v = & and w = ¢ We also know the moment of inertia for a
solid disk is I = %mRQ. Finally since the rope does not slip as the yo-yo falls we can say
v = wR (remember this equation?), or for us & = ¢R. Altogether we have:

1 1/1 AN

U=—-mgz.

Our potential energy is:

So out Lagrangian is:

3
L= ZdeQ + mgz.

using the Euler-Lagrange equation we find:

(3) Taylor 7.27

Here the kinetic energy is (please see figure 1):

T= %4m5ﬂ2 + %m(—i? +9)% + —|—%3m(—5& + —9)% = 4mi* + 2my?® + 2miy).
And our potential will be:
U=—4dmgx —mg(ly —x+y) —3mg(ly —x + 1o — y) = mg2y.
Where we dropped any constants. So our Lagrangian is:
L = 4mi? 4 2mg? + 2may — mg2y.

After we Euler-Lagrange it we have:

4F = —ij.
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Figure 1: Figure for 7.27.

And:
20+ 1 = —g.

You can solve these coupled equations to get:

i=2.

7

(4) Taylor 7.33

We find the kinetic energy for the bar of soap (useful for making money to sustain your
fight club). There is both a rotational and translational term (please see figure 2).

1 1
T = Em:i:Q + §mx2w2.



Where zx is the distance from the soap to the edge of the plate. And our potential will be:
U = mgx sin(wt).

So our Lagrangian:

1 1
L= §m9'v2 + §m:c2w2 — mgz sin(wt).

Remember w is a constant.

After we Euler-Lagrange it we have:

2

—mg sin(wt) + maw* — mi = 0.

Or:
i — wiz = —gsin(wt). (1)

For the solution it is suggested to try a technique similar to what we used to solve equation
5.48 in the text. Here we try a solution of the form:

$
wt

Figure 2: Plot keeping 4 terms.

2(t) = 2p(t) + 2 (0).

The homogeneous equation is:

2

I —wz=0.

The solution to this is:
xp(t) = c1e®t) 4 cpel=9t),

Or similarly:
xp(t) = rq cosh(wt) + 7o sinh(wt).

And for the particular solution they suggest trying:
xp(t) = Asin(wt).
Plugging this into equation (1) we get:
—w? Asin(wt) — w? Asin(wt) = —gsin(wt).

Solving for A we have:



So our solution looks like:

a(t) = r1 cosh(wt) + 7o sinh(wt) + 2’;2 sin(wt). (2)
w
We have initial conditions:
z(0) = o,
and
#(0) = 0.
These combined with equation (2) lead us the the solution for z(t):
2(t) = o cosh(wt) + 2’42 (sin(wt) — sinh(wt)). (3)
w

(5) Taylor 7.36

(a) The kinetic energy will be:

1 1 .
T = imf'Q + imr2¢2;

and the potential energy will be:
1 2
U= ik(lo — 1) — mgr cos ¢.
So our Lagrangian is:

1 1 . 1
L= 5m7'“2 + imr2¢>2 — §k(l0 — )2 + mgr cos ¢.

(b) From the Euler-Lagrange equations we get:

: k
=g+ geosp+ (o~ v);
m

and:
% [72(4 = —grsin ¢.

(c) Now we are asked to solve these equations for small oscillations. For small oscillations
these equations become:

7'“'=g+%(lo—7“); (4)
And: p
= [26] = —gro. (5)

Setting equation (4) equal to zero we find the equilibrium value or r is ro = 79 + lo.



Now we will expand for small values of r by setting r = r¢ + €.

We have: "
. _ LI
(ro +€) 9+m(0 To — €);
Or: .
. m
e:g—l—a(lo—?g—lo—e).
And finally:
. k
€= ——r¢;
m

Where we have the equation for simple harmonic motion with w? = % And for equation
(5) expanding out we have:

i=—Ls. (6)

Where we have the equation for simple harmonic motion with w? = %.

(6) Taylor 7.37

s

Figure 3: Figure for 7.37.
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Note: here we have two blocks that will have translational kinetic energy. And the potential
energy will be:

U = mgr.
So our Lagrangian is:

1 .
L =mi? + §mr2¢2 — mgr.



(b) From the Euler-Lagrange equations we get:

2% = r¢? — g. (7)
And: p
7 [mr%zg} =l.
Where [ is a constant we know as the angular momentum So in this problem the angular
momentum is conserved. Solving for d) we have gb = . Let’s plug this into equation (7)
to get:
. 12

(c) To find the equilibrium position we set 7 = 0 in equation (8) above. Therefore:

5f 12

ro = {| ——.
m2g

Physically if you plug the definition of [ back in to equation (9) you get:
g =rd>.

Which is to say the gravitational acceleration of the falling block is equal to the centripetal
acceleration of the rotating block.

(d) Finally we want to expand for small oscillations r = ro + €. So we have:

l2
2" = - .
¢ m2(ro + €)3 g
Or:
l2
6= 5= [ <3 —-g.
m2rg(1+ 55)
Or: )
l €
2¢ = —-3—+..)—g.
€ m2 8,( o +..)—g
But due to equation (9) we have:
.. 312
€= ————¢€.
2m?2rg

Where we have the equation for simple harmonic motion with w? = \/g mlr .
0



