
PHYSICS 110A : CLASSICAL MECHANICS
HW 5 SOLUTIONS

(1) Taylor 7.38
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Figure 1: Figure for 7.38.

The kinetic energy will be:

T =
1
2
mṙ2 +

1
2
mr2 sin2 αφ̇2.

And the potential energy will be:

U = mgr cosα.

So our Lagrangian is:

L =
1
2
mṙ2 +

1
2
mr2 sin2 αφ̇2 −mgr cosα.

From the Euler-Lagrange equations we get:

r̈ = r sin2 αφ̇2 − g cosα. (1)

And:
d

dt

[
mr2 sin2 αφ̇

]
= lz.

Where lz is a constant we know as the angular momentum in the z-direction. Solving for φ̇
we have φ̇ = lz

mr2 sin2 α
. Let’s plug this into equation (1) to get:

r̈ =
l2z

m2r3 sin2 α
− g cosα. (2)
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To find the equilibrium position we set r̈ = 0 in equation (2) above. Therefore:

r0 = 3

√
l2

m2g sin2 α cosα
. (3)

Finally we want to expand for small oscillations r = r0 + ε. So we have:

ε̈ =
l2z

m2(r0 + ε)3 sin2 α
− g cosα.

Or:

ε̈ =
l2z

m2r30(1 + ε
r0

)3 sin2 α
− g cosα.

Or:

ε̈ =
l2z

m2r30 sin2 α
(1− 3

ε

r0
+ ...)− g cosα.

But due to equation (3) we have:

ε̈ = − 3l2z
m2r40 sin2 α

ε.

Where we have the equation for simple harmonic motion with ω =
√

3lz
mr20 sinα

.

(2) Taylor 7.39

For the Lagrangian we get:

L =
1
2
m
[
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
− U(r).

Which lead to the equations of motion:

mr̈ = −dU(r)
dr

+ (mrθ̇2 +mr sin2 θφ̇2), (4)

and,
d

dt
[mr2 sin2 θφ̇] = 0, (5)

and,
d

dt
[mr2θ̇] = 2mr2 sin θ cos θφ̇2. (6)

Equation (4) is Newton’s second law with the force from potential term −dU(r)
dr as well as

a centrifugal force term mrθ̇2 +mr sin2 θφ̇2.
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Equation (5) shows that the lz is conserved.

Equation (6) shows that the lφ is conserved, however since the φ̂ vector is constantly chang-
ing the right hand side is not zero.

For θ0 = π/2 and θ̇0 = 0 we have from equation (6):

d

dt
[mr2θ̇] = 0.

Or,
mr2θ̇ = C.

So θ remains π/2 and the object will remain in that plane.

For φ0 = φ0 and φ̇0 = 0 we have from equation (5):

mr2 sin2 θφ̇ = C,

So φ remains φ0 and the object will remain in that vertical plane.

(3) Taylor 7.41

Our parabola has the shape:
z = kρ2.

Which gives us a relationship between ρ̇ and ż:

ż = 2kρρ̇.

For the Lagrangian we get:

L =
1
2
mρ̇2 +

1
2
mρ2ω2 +

1
2
mż2 −mgz.

Which we can plug the above constraints to get:

L =
1
2
mρ̇2 +

1
2
mρ2ω2 + 2mk2ρ2ρ̇2 −mgkρ2.

Which cleans up to look like:

L =
1
2
m(1 + 4k2ρ2)ρ̇2 +

1
2
m(ω2 − 2gk)ρ2.

Finding the equation of motion we get:

d

dt

[
m(1 + 4k2ρ2)ρ̇

]
= m[ω2 − 2gk]ρ+ 4mk2ρρ̇2.

Or:
(1 + 4k2ρ2)ρ̈+ 4k2ρρ̇2 = [ω2 − 2gk]ρ. (7)
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Assuming ρ̇0 = 0 equilibrium will occur when the right hand side is zero, so for ρ = 0 and
ω2 = 2gk.

Now for small ρ and ρ̇ we can rewrite equation (7) as:

ρ̈ ≈ [ω2 − 2gk]ρ.

So this force is similar to a spring force of the shape F = kx. Now when 2gk > ω2 the k
constant is negative and it is a restoring force. For 2gk < ω2 the k constant is positive and
it is not a restoring force

(4) Taylor 7.50

For the Lagrangian we get:

m1

m2

x

y

Figure 2: Figure for 7.50.

L =
1
2
m1ẋ

2 +
1
2
m2ẏ

2 +m2gy.

And our equation of constraint is:

f = x+ y − l.

From this our Lagrange multiplier equation leads us to:

m1ẍ = λ, (8)

and
m2ÿ −m2g = λ. (9)

4



From our constraint equation we get:

ẍ = −ÿ.

Solving for λ we get,

λ =
−m1m2g

m1 +m2
.

If we were to look at this with Newton’s second law we would get two equations:

−T = m1ax,

and,
m2g − T = m2a.

Comparing with equations above we see λ = −T .

(5) Taylor 7.51
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Figure 3: Figure for 7.51.

L =
1
2
mẋ2 +

1
2
mẏ2 +mgy.

And our equation of constraint is:

f =
√
x2 + y2 − l.

From this our Lagrange multiplier equation leads us to:

mẍ = λ
x√

x2 + y2
, (10)

and
mÿ −mg = λ

y√
x2 + y2

. (11)
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Now calling θ the angle from the vertical we can rewrite these as:

mẍ = λsinθ, (12)

and
mÿ −mg = λcosθ. (13)

Writing out equations from Newton’s second law we get:

mẍ = −Tsinθ,

and
mÿ = −Tcosθ +mg.

So we see λ = −T .

If we were to use the constraint equation:

f = x2 + y2 − l2.

We get for our equations of motion:

mẍ = λ2x,

and
mÿ −mg = λ2y.

Getting rid of λ in the equations (12) and (13) we get:

mẍy

x
= mÿ −mg,

Which is exactly what you get getting rid of lambda in equations (10) and (11).
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