
PHYSICS 110A : CLASSICAL MECHANICS

HW 8 SOLUTIONS

(1) Taylor 11.14

For our generalized coordinates we will take the angles φ1 and φ2.
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Figure 1: Figure for 11.14.

This leads to a kinetic energy of:

T =
1

2
mL2[φ̇2

1 + φ̇2

2].

And the potential term will be:

U ≈
1

2
kL2[φ2 − φ1]

2 + mgL[2 − cos φ1 − cos φ2].

Where we have assumed the springs ∆x goes as Lφ since we are dealing with small oscilla-
tions. Substituting in for cos φ = 1 − φ2/2 + ... we get:

U ≈
1

2
kL2[φ2 − φ1]

2 +
mgL

2
[φ2

1
− φ2

2
].

From this we build T and V matrices as:

T = mL2

[

1 0
0 1

]

And:

V = mL2

[

g/L + k/m −k/m
−k/m g/L + k/m

]

Where we can rewrite as:

V = mL2

[

ω2

0
+ β2

0
−β2

0

−β2

0
ω2

0
+ β2

0

]

Where β2

0
= k/m and ω2

0
= g/L.
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Using det[ω2T − V ] = 0 we find eigenvalues of ω1 = ω0 and ω2 =
√

ω2

0
+ 2β2

0
.

These eigenvalues lead to un-normalized eigenvectors of:

Ψ1 =

[

1
1

]

,

And:

Ψ2 =

[

−1
1

]

,

From these you can see Ψ1 is the mode where the masses oscillate in phase with each other
(this makes sense because if the masses are in phase the spring is not compressed and we
see β is not in the expression for ω1), and Ψ2 is the mode where the masses oscillates out
of phase with each other.

(2) Taylor 11.19

For our generalized coordinates we will take x and φ.
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Figure 2: Figure for 11.19.

This leads to a kinetic energy of:

T =
1

2
(m0 + M)ẋ2 +

1

2
mL2φ̇2 + MLφ̇ẋ cos φ.

Where for small angles we have:

T ≈
1

2
(m0 + M)ẋ2 +

1

2
ML2φ̇2 + MLφ̇ẋ.

The potential term will be:

U =
1

2
kx2 + MgL[1 − cos φ].

Where for small angles we have:

U ≈
1

2
kx2 +

MgLφ2

2
.
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From this we build T and V matrices as:

T =

[

(m0 + M) ML
ML ML2

]

And:

V =

[

k 0
0 MgL

]

From the values given for constants we can rewrite as:

T =

[

2 1
1 1

]

And:

V =

[

2 0
0 1

]

Using det[ω2T − V ] = 0 we find eigenvalues of ω1 =
√

2 −
√

2 and ω2 =
√

2 +
√

2.

These eigenvalues lead to un-normalized eigenvectors of:

Ψ1 =

[

0.382
0.541

]

,

And:

Ψ2 =

[

0.923
−1.30

]

,

From these you can see Ψ1 is the mode where the masses oscillate in phase with each other,
and Ψ2 is the mode where the masses oscillates out of phase with each other.

(3) Taylor 11.29

For our generalized coordinates we will use r and φ which mark the location of the center
of mass of the rod and α which is the angle of the rod with respect to the horizontal as in
figure (3).

So our kinetic energy will be:

T =
1

2
mṙ2 +

1

2
mr2φ̇2 +

1

2
Iα̇2.

Plugging in for the moment of inertia of a rod about it’s center of mass we have:

T =
1

2
mṙ2 +

1

2
mr2φ̇2 +

1

6
mb2α̇2.

Now the potential is a bit hairier and we will assume small angles from the outset.
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Figure 3: Figure for 11.29.

For small angles we will call the ∆x for spring (1) as L1 = r + bα and ∆x for spring
(2) as L1 = r − bα.

So the potential due to the springs will be:

U =
1

2
k(r − bα − L0)

2 +
1

2
k(r + bα − L0)

2.

Where L0 is the rest length of the spring.

Now the potential due to gravity is:

U = −mgr cos φ.

So altogether we have:

U =
1

2
k(r − bα − L0)

2 +
1

2
k(r + bα − L0)

2 − mgr cos φ.

We will make the approximations cosφ ≈ 1 − φ2/2 and r = r0 + ǫ. This leads us to:

U = −mgr0 +
1

2
mgr0φ

2 − mgǫ + k((r0 − L0) + ǫ)2 + k(bα2).

Which can be reduced to:

U = −mgr0 +
1

2
mgr0φ

2 − mgǫ + kǫ2 + k(r0 − L0)
2 + 2k(r0 − L0)ǫ + k(bα2).

Finally we realize that at equilibrium the force up from the springs is equal to gravity. So
from Newton’s second law we have the relationship:

mg = 2k(r0 − L0).

So the terms linear in ǫ cancel and we have (dropping all constants):

U =
1

2
mgr0φ

2 + kǫ2 + k(r0 − L0)
2 + k(bα2).
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From this we build T and V matrices as:

T =





m 0 0
0 mr2

0
0

0 0 1

3
mb2





And:

V = kR2





2k 0 0
0 mgr0 0
0 0 2kb2





Since these are diagonal det[ω2T − V ] = 0 lead us to three equations:

ω2m = 2k,

ω2mr2

0
= mgr0,

and:

ω2
1

3
mb2 = 2kb2,

Which lead to eigenvalues of ω1 =
√

2k
m

(for the r-coordinate), ω2 =
√

g
r0

(for the φ-

coordinate), and ω3 =
√

6k
m

(for the α-coordinate).

(4) Taylor 11.31

For our generalized coordinates we will take the three angles φ1, φ2, and φ3.

φ1

φ2

φ3

Figure 4: Figure for 11.31.

This leads to a kinetic energy of:

T =
1

2
mR2[2φ̇2

1
+ φ̇2

2
+ φ̇2

3
].
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And the potential term will be:

U =
1

2
kR2[(φ1 − φ2)

2 + (φ2 − φ3)
2 + (φ3 − φ1)

2].

From this we build T and V matrices as:

T = mR2





2 0 0
0 1 0
0 0 1





And:

V = kR2





2 −1 −1
−1 2 −1
−1 −1 2





Using det[ω2T − V ] = 0 we find eigenvalues of ω1 = 0, ω2 =
√

2ω0, and ω3 =
√

3ω0.

These eigenvalues lead to un-normalized eigenvectors of:

Ψ1 =





1
1
1



 ,

Ψ2 =





−1
1
1



 ,

And:

Ψ2 =





0
1
−1



 .

From these you can see Ψ1 is the mode where the three masses rotate around at some
constant velocity, Ψ2 is the mode where the first mass oscillates out of phase with the other
two masses, and Ψ3 is the mode where mass 1 doesn’t oscillate and the other two masses
oscillate out of phase with each other.

Professor Arovas has added some notes in section 10.6.1 of his lecture notes on an alternate
technique to solve this problem.
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