Ch. 21: Current, Resistance, **Circuits**

Current: How charges flow through circuits

Resistors: convert electrical energy into thermal/radiative energy

Electrical Energy & Power; Household **Circuits**

Time-Dependent Circuits

Current : Rate at which charge flows through an area A (cross-section of a wire)

Flow is assumed to be perpendicular to area.

Units = Coul/sec = Amp.

Remember: I is defined as the direction in which positive charges will travel (in metal, the charge carriers are actually electrons)

Potential difference sets up Efield to drive Current

$$
V_1 - V_2 = \Delta V
$$

Example: Terminals of a battery

Example:

A flashlight bulb carries a current of 0.1 A. Find the charge that passes through the bulb in 0.5 seconds:

 $I = \Delta Q/\Delta T \rightarrow$: $\Delta Q = I \times \Delta T = 0.1 C/s \times 0.5s = 0.05 C$

How many electrons does this correspond to? $\Delta Q = N \times e$ $N = \Delta Q/e = 0.05C / (1.6 \times 10^{-19} C/e^-) = 3.1 \times 10^{17} e^{-5}$

Remember: I is defined as the direction in which positive charges will travel (in metal, the charge carriers are actually electrons)

From quick quiz 21.1:

Rank the currents from lowest to highest:

@ 2006 Brooks/Cole - Thomsor

Remember: I is defined as the direction in which positive charges will travel (in metal, the charge carriers are actually electrons)

From quick quiz 21.1:

Rank the currents from lowest to highest:

Negative charges moving left are equivalent to positive charges moving right.

- (a) Equivalent to $5 +$'s moving right.
- (b) $4 + s$ moving left
- (c) Equivalent to $4 +$'s moving right
- (d) Equivalent to $2 + s$ moving right

Amp-hour

Unit of charge

charge = current \times time

Ex.: Ni-metal hydride battery: How much charge (in C) is equal to 2100 mAh?

Charge = $(2100 \times 10^{-3} \text{ A})$ (1 hour) $= (2100 \times 10^{-3} \text{ C/s})(3600 \text{s})$

 $= 7560 C.$

Amp-hour

If one of these batteries is used to power a device which draws 0.15 Amps, how long will the battery last?

 $I = \Delta Q/\Delta T$

 $\Delta T = \Delta Q / I = (2100 \times 10^{-3}$ Amp \times hr) / 0.15 Amps = 14 hours.

Drift Velocity, V_{d}

Volume = $A \Delta x$

 $n =$ density of charge carriers $=$ # of charge carriers per unit vol.

 $N = Total # of charge$ carriers = $n A \Delta x$

Total charge in this volume: $\Delta Q = \ddot{N} \times \text{charge/carrier} = n A \Delta x q$

 $\Delta x = v_d \Delta t$ $\Delta Q = nA v_d \Delta t$ q $I = \Delta Q/\Delta t = n A v_d q$

Drift Velocity, V_{d}

Electrons undergo repeated collisions and move randomly. Typical velocity for Cu is 2×10^6 m/s

In the presence of an external field, the average motion is a slow drift

Electric signal travels very fast -- almost at the speed of light: electrons interact and "push" other electrons in the conductor.

Example:

Find the drift velocity of electrons in a copper conductor whose diameter is 2 mm when the applied current is 0.5 A. The mass density of Cu is ρ = 8.95g/cm3. Each Cu atom contributes 1 electron. One mole of Cu has a mass of 63.5 gm.

Soln: Need to calculate density of charge carriers (# of e–'s/m3)

How many moles per cm³? (8.95gm/cm³)/(63.5gm/mol) = 0.14 mol/cm³

Every mol contain 6x1023 atoms.

Number of atoms per cm³: $(0.14 \text{ mol/cm}^3)(6x10^{23} \text{ atoms/mol}) =$ $8.4x10^{22}$ atoms/cm³

Density of charge carriers (given that $1e^-/atom$) = 8.4x10²² e⁻/cm³

 $v_d = I/(nqA) = 0.5A/(8.4x10^{28}e^{-}/m^3 1.6x10^{-19}C 3.14(.001m)^2)$ $= 1.2x10^{-5}$ m/s = 0.012 mm/s

If A = 50 Amps: v_d would be 1.2 mm/s -- still a snail's pace!

Current Density $J = I/A = n q v_d$

SI unit: Amps / m2

Ammeter

Device used to measure current

All charge must pass through ammeter

@ 2006 Brooks/Cole - Thomson

21.2: Resistance & Ohm's Law

Resistance of a conductor is defined as ratio of potential difference across it to the current that results: Ohm's Law: For many materials, R remains constant over a wide range of applied ΔV or I.

Resistors

In a circuit: the resistance of the conducting wires is negligible, so $\Delta V = 0$ (no extra loss in potential) between points A & B.

But a resistor can cause a significant drop in ΔV (comparing V before/after the resistor):

Resistors

Analogy: Waterfalls: sudden drop in gravitational potential energy

ΔPE converted to kinetic energy of water

electrical potential energy converted to thermal energy in resistor

Change in PE is +qΔV (battery) or –qΔV (resistor)

Points A and D are "grounded" -- Potential $V = 0$. Points B and C are both at higher potential

Resistors

RESISTANCE regulates current and causes conversion of electrical potential energy to heat.

Common examples: heating elements in toasters, hair dryers, space heaters; light bulb filaments

Examples:

Consider a simple V-R circuit comprising a light bulb. Assume there is a 1.5-volt battery and the light bulb draws a current of 0.2 Amps. Find the R of the light bulb filament:

 $R = \Delta V/I = 1.5V/0.2 A = 7.5 \Omega$

A 120-Volt (rel. to ground) household circuit is connected to a lamp; the light bulb filament has $R =$ 240 Ω. Find I.

 $I = \Delta V/R = 120V/240\Omega = 0.5 A$

Resistance is determined by geometry & resistivity

 $R = \rho \frac{L}{A}$

semi-conductors {

insulators

^aAll values are at 20°C.

^bNichrome is a nickel-chromium alloy commonly used in heating elements.

@ 2006 Brooks/Cole - Thomson

{

 $R = \rho \frac{L}{\Delta}$

Resistance caused by charge carriers colliding with the lattice of the conductor. More collisions = more resistance

 $L =$ length

Double the length \rightarrow double the resistance

(electrons must undergo twice as many collisions across the resistor)

$$
R=\rho\frac{L}{A}
$$

A = cross-section area

Decrease Area: Resistance is raised since flow of charge carriers is constricted

Conductivity σ

 $\sigma = 1/\rho$ $R = \rho L/A$ $R = L/(\sigma A)$ $V/I = L/(\sigma A)$ $V/L = I/(\sigma A)$ $E = J/\sigma$ $J = \sigma E$

Resistivity and conductivity are "microscopic" properties of the material

Resistance is a macroscopic property of an object, and is a function of geometry and resistivity

Some materials exhibit non-Ohmic resistance

In this course, assume Ohmic resistance unless otherwise stated

Temperature dependence of resistance

At higher T, the charge carriers' collisions with the lattice are more frequent.

 v_{d} becomes lower. So I becomes lower.

And R becomes larger for a given potential.

 T_0 = reference temperature

 α = temperature coefficient of resistivity, units of $(C)^{-1}$

For Ag, Cu, Au, Al, W, Fe, Pt, Pb: values of α are \sim $3 - 5 \times 10^{-3}$ (°C) $^{-1}$

Example: A platinum resistance thermometer uses the change in R to measure temperature. Suppose $R_0 = 50$ Ω at T₀=20 °C.

 α for Pt is 3.92×10⁻³ (°C)⁻¹ in this temperature range. What is R when $T = 50.0$ °C?

$$
R = R_{\rm o}[1 + \alpha (T - T_{\rm o})]
$$

R = 50Ω [1 + 3.92 × 10⁻³ (°C)⁻¹ (30.0 °C)] = 55.88 Ω

Temperature coefficient of resistivity

Example: A platinum resistance thermometer has a resistance R₀ = 50.0 Ω at T₀=20 °C. α for Pt is 3.92×10⁻³ $(°C)^{-1}$. The thermometer is immersed in a vessel containing melting tin, at which point R increases to 91.6Ω. What is the melting point of tin?

$$
R = R_o[1 + \alpha (T - T_o)]
$$

\n
$$
91.6\Omega = 50\Omega [1 + 3.92 \times 10^{-3} (^{\circ}\text{C})^{-1} (T - 20^{\circ}\text{C})]
$$

\n
$$
1.83 = [1 + 3.92 \times 10^{-3} (^{\circ}\text{C})^{-1} (T - 20^{\circ}\text{C})]
$$

\n
$$
0.83 = 3.92 \times 10^{-3} (^{\circ}\text{C})^{-1} (T - 20^{\circ}\text{C})
$$

\n
$$
212^{\circ}\text{C} = T - 20^{\circ}\text{C}
$$

\n
$$
T = 232 \text{ }^{\circ}\text{C}
$$