Physics 1B: Electricity & Magnetism

Dr. Alex Markowitz
(UCSD/CASS)
Fall 2010

Logistical+Administrative Info.

Lectures: Tu & Th 09:30-10:50 a.m., 2722 York Hall

TA: Grigor Aslanyan

You must also be concurrently enrolled in Physics 1B-LAB -- completely separate course/grading

Textbook: Serway & Jewett, <u>Physics I: Volume II --</u> <u>Principles of Physics</u>.

Course website:

http://physics.ucsd.edu/students/courses/fall2010/physics1b/

Our Office Hours:

My Office Hours: Mon 11:30-12:30 & Thur 11:30-

12:30

My Office Location: 412 SERF Bldg.

Grigor's Office Hours: Mon 2-3 & Thur 2-3

Grigor's office: 4514 Mayer Hall Addn.

My Office Location

Science & Engineering Research Facility

Office #412

Grigor's Office Location

Mayer Hall Addition,

Office #4514

Discussion / Problem Sessions: Every Monday evening, 6:00-7:50 p.m., in 2622 York

EXAMS:

4 QUIZZES in lecture:

Tues. Oct 5, Tues. Oct 19, Tues. Nov 2, and Thurs. Nov 18. (45 mins each)

FINAL EXAM:

Final Exam: Thursday, December 9, 08:00-11:00, location TBA

Grading:

Final Exam = 37%

Quizzes = 63% (top three quiz grades are 18% each; lowest quiz grade is 9%).

There will be no make-up exams. Please plan ahead for the exams accordingly!

Bring your own scantron forms (X-101864-PAR only!) and #2 pencils!

Scientific calculators: okay (but no iPhones, etc.!)

HOMEWORK -- Will not be collected/graded, but are the best way to practice for the quizzes/final.

Do all the text's 'Quick Quizzes' and try as many conceptual questions as you can.

Physics Tutorial Center, 2702 Mayer Hall Addition. Days/Hours of operation (tentative as of 9/22): Sun through Thurs, 3-8 pm

More administrative info.

Deadlines:

Last day to add a class: Friday, 10/8
Last day to drop a class without a W and change
grade option: Friday, 10/22
Last day to drop a class WITH a W but without an
F: Monday, 11/29

See the Physics Dept. Student Affairs Office, 2521 Mayer Hall Addition, for additional info.

More administrative info.

ACADEMIC DISHONESTY: Please read the "UC Policy on Integrity of Scholarship" in the UCSD General Catalog. Cheating, including knowingly allowing a peer to copy your quizzes or tests, will result in an F in this course and referral to the Dean for disciplinary action. See

http://senate.ucsd.edu/manual/Appendices/app2.htm &

http://www.ucsd.edu/catalog/front/AcadRegu.html

Some recommendations

Keep a running list of equations for quick reference (an 'equation toolbox')

Commit to studying and reviewing notes consistently -- Do not wait until the night before an exam (cramming never helps).

Online notes are meant to augment, not be a substitute for, attending lectures and problem sessions

All quizzes/exams are cumulative!

General overview of course:

- 19: Charges, electrostatic forces, electric fields
- 20: Electric potential, electrical energy, energy storage
- 21: Electrical Currents (moving charges), DC Circuits, Time-dependent Circuits
- 22: Magnets, magnetism, magnetic forces
- 23: Induced currents from magnetism; AC Currents; inductive circuits
- 24: Electromagnetic radiation

Why is E+M important?

In this course, applications covered include:

Electric Motors and Generators; Power Line Transmission & Distribution; Household Circuits; Batteries

Magnets & Magnetism: Electromagnets, Computer Drives & Data Storage, Planetary Magnetic Fields

Medical Diagnostic Imaging (X-rays)

Medical Devices (Defibrillators)

EM Radiation (visible light, radio, TV, cell phones)

Ch. 19: Electric Forces & Electric Fields

Properties of electric charges & how they interact with each other -- on both macroscopic and microscopic scales

© 2006 Brooks/Cole - Thomson

Electric Charges & Conservation of Charge

Nature of Matter

Insulators & Conductors

Charging by Induction

Electrical Charges

Two kinds of charges: positive & negative

Like charges repel

Unlike charges attract

Electrical Charges

Charge is a quantized quantity ("e")

Proton: $e = +1.6x10^{-19} C$

$$m_p = 1.67 \times 10^{-27} \text{ kg}$$

Electron: $e = -1.6x10^{-19} C$

$$m_e = 9.11x10^{-31} \text{ kg}$$

Units = Coulomb

An object may have a total charge of 0, ±1e, ±2e, ±3e,...

CONSERVATION OF CHARGE: Total amount of charge is conserved in any interaction

Electric Charges & Conservation of Charge

Nature of Matter

Insulators & Conductors

Charging by Induction

Nature of Matter

Review: Atoms contain nuclei with protons and neutrons;

e-'s orbit around nucleus

Most matter is neutral: equal numbers of +, – charges (sum of all charges is zero)

Charge transfer is usually due to movement of electrons

Charging by Rubbing

Examples: Glass + silk; Rubbing a balloon against your hair

Negative charges are transferred from glass to silk

© 2006 Brooks/Cole - Thomson

Application: static electricity

Electric Charges & Conservation of Charge

Nature of Matter

Insulators & Conductors

Charging by Induction

Insulators & Conductors

Insulators: do not conduct charges: glass, rubber, paper, plastic

Conductors: Charges can move freely. Most metals. Density of charge carriers in Cu: 10²⁹/m³

Semi-conductors: intermediate conduction properties -- silicon, germanium. Density of charge carriers in Si: 10¹⁶/m³

In conductors, charges can move freely

Electric Charges & Conservation of Charge

Nature of Matter

Insulators & Conductors

Charging by Induction

Charging by Induction

Question - why do only negative charges 'jump ship'?

© 2006 Brooks/Cole - Thomsor

Charging by Induction

In insulators: centers of +,- charges separate slightly: POLARIZATION

Ex.: rubber balloon sticking to neutral wall

(a)

19.4 - 19.6

Electrostatic Forces; Coulomb's Law

Electrostatic Forces from multiple charges

Electric Fields: point charges

Electric Fields: multiple point charges, continuous charge distributions

Electric Field Lines

Electric Force

A collection of 4 charges, each with +1e...

...equivalent to "a charge" with +4e

Electric Force

A collection of 4 charges, each with +1e...

...equivalent to "a charge" with +4e

Given two objects with charges $q_1 \& q_2$:

Coulomb's Law:
$$|F_e| = \frac{k_e |q_1| |q_2|}{r^2}$$

Coulomb constant $k_e = 8.99 \times 10^9 \text{ N m}^2 / \text{ C}^2 = 1/(4\pi\epsilon_0)$

Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{Nm}^2)$

Electric vs. Gravitational Forces

Consider a hydrogen atom: One proton, one electron, r = 5.3 x 10⁻¹¹ m

$$\begin{split} F_e &= \frac{k_e \ q_1 \ q_2}{r^2} = \frac{8.99 \times 10^9 \text{Nm}^2/\text{C}^2 \ (1.6 \times 10^{-19} \ \text{C})^2}{(5.3 \times 10^{-11} \ \text{m})^2} \\ &= 8.2 \times 10^{-8} \ \text{N} \\ F_g &= \frac{G \ m_1 \ m_2}{r^2} = \frac{6.67 \times 10^{-11} \ \text{Nm}^2/\text{kg}^2 \ (1.67 \times 10^{-27} \ \text{kg})(9.11 \times 10^{-31} \ \text{kg})}{(5.3 \times 10^{-11} \ \text{m})^2} \\ &= 3.6 \times 10^{-47} \ \text{N} \end{split}$$

Both forces are prop. to 1/r², but gravity is **much** weaker!