Physics 2a, Nov 17, lecture 25
*Reading: chapters 9 and 10.

e Last time, Examples of moments of inertia:

LML? rod through center
§M L?  rod through end
I = gM R?  solid cylinder
éM R?  solid sphere
2MR? thin walled hollow sphere.

For cylinder or sphere of radius R, write I = ¢cM R?, and note that choiiow > Csolid
and ceylinder > Csphere Make intuitive sense, since bigger ¢ means more mass farther from
the axis of rotation. (Parallel axis result: the moment around an axis parallel to, and at
a distance d from, one going through the CM is I, = I, + Md?. For example, the I of a
rod through an end vs through the center are related this way.)

Race round rigid bodies down an incline plane, which wins? Use conservation of
energy. Finitian = Mgh. Efina = %Mvgm + %IwQ, and w = vy, /R (rolling without
slipping), s0 Efinat = 3(1 + ¢)Mv2,,, 80 vep, = v/2gh/(1+¢). Smaller I object wins.
Makes sense, less energy taken up with rotation means more going into velocity. Writing
h = dsin 3 where d is the distance traveled along the slope shows that the acceleration
along the slope is a = gsin 3/(1 + ¢).

Unwinding cable example. Mass m on string, wrapped around cylinder with mass M
and radius R. Mass drops height h. Find it’s speed.

mgh = +mv? + 11(v/R)?, so v = \/2gh/(1 + I/mR?), with I = 1M R?. Note that
v? = 2ah, with a = g/(1 + I/mR?).

e Let’s now reconsider the above examples, as illustrations of the use of torque, 7 =
rx F.

Consider first the unwinding cable example. The downward force on the mass is

mg —T' = ma. The tension T provides a torque 7 = TR = [« on the cylinder. Finally,
a = Ra. Solve these to get a = g/(1+ I/mR?).

Now consider the rolling body example. The force parallel to the slope is Mgsin 3 —
fr = Ma. The torque around the middle is 7 = Rf; = Ia. Setting a = aR for non-
slipping, get gsin 3 = a(1 + ¢), where ¢ = I/M R?, and this agrees with the acceleration
found last time using energy considerations. Note that fr = cMgsin3/(1 + ¢) and n =

Mg cos 3, so need minimum friction coefficient pus, = T tan 0.
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e More on angular momentum, L= YT X Py = Lem + 1 @, and examples. Note that
it depends on choice of origin. As seen in Monday’s lecture, 7 = ‘fl—%.

If no torque, 7 = 0, angular momentum is conserved, L = constant.

Two objects, A and B, since Fap = —FHBHA, we see T4_.p = —TB—A, equal and
opposite torques, so %(EA + EB) = 0. In general, Newton’s 3rd law — Tiotal = Tewternals
which vanishes for a closed system. So closed systems have conserved angular momentum.
At a fundamental level, angular momentum is always conserved, though it can flow in and
out of a system. Conservation of angular momentum is a deep principle, like conservation
of energy and conservation of momentum. (They are related to symmetries: energy to
time translations, momentum to space translations, and angular momentum to rotational
invariance).

e Spinning with dumbbells, bring them in and use conservation of L to find wy.
Compare Ky — K; to work done.

e Bullet in door example. Door width d and mass M. Bullet of mass m and velocity
v hits at distance ¢ from hinge. Using conservation of E, get L, = mul before, and L=lw
after, where I = %.Md2 + ml?. Equating gives w = mul/I. Note Kpepore = %mv2 and
Kofter = %Iuﬂ, and Kpefore — Kafter is positive, as expected, and equal to the energy lost
to heat in the inelastic collision of bullet and door.

e Gyroscopes and precession. The weight of the gyro leads to 7 = 7 x w. This is
perpendicular to L (since L is parallel to ), SO %(I_; . E) = 0, the magnitude of L is
unchanged, but it’s direction rotates in a circle. The procession angular speed is 2 =
\d[/|L|/dt = Mgr/Iw.



