

Physics 2A Lecture 3: Sept 28, 2010

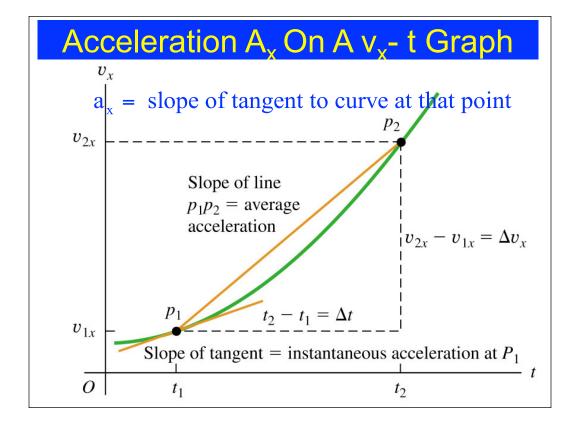
Average Acceleration
$$a_{av-x} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{\Delta v_x}{\Delta t}$$

Instant acceleration = limit of average accelaration

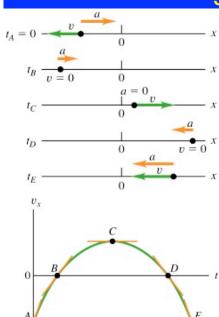
when time
$$\Delta t \rightarrow 0$$
. $a_x = \lim_{\Delta t \rightarrow 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt}$

Acceleration has units of (m/s²)

Now on, use acceleration to mean instant acceleration



Examining a v_x – t Graph



	v_x -t graph	Motion of particle
A	$v_x < 0$; positive slope, so $a_x > 0$	moving in -x-direction, slowing down
В	$v_x = 0;$ positive slope, so $a_x > 0$	instantaneously at rest, about to move in +x-direction
C	$v_x > 0$; zero slope, so $a_x = 0$	moving in +x-direction at maximum speed
D	$v_x = 0;$ negative slope, so $a_x < 0$	instantaneously at rest, about to move in -x-direction
Е	$v_x < 0$; negative slope, so $a_x < 0$	moving in -x-direction, speeding up

Acceleration & The x-t Graph

Remember Calculus?

Can rewrite definition of (instant.) acceleration a_x

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^{2}x}{dt^{2}}$$

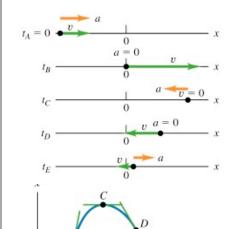
When

$$\frac{d^2x}{dt^2} > 0, x - t$$
 curve is concave (curves \uparrow), v_x increasing

$$\frac{d^2x}{dt^2}$$
 < 0, x - t curve is convex (curves \downarrow), v_x decreasing

$$\frac{d^2x}{dt^2} = 0$$
, x – t curve has no curvature (inflexion pt), $v_x = const$

The x-t Graph For Same Motion



	x-t graph	Motion of particle
A	positive slope, upward curvature, so $v_x > 0$, $a_x > 0$	moving in +x-direction, speeding up
В	positive slope, zero curvature, so $v_x > 0$, $a_x = 0$	moving in +x-direction, speed not changing
С	zero slope, downward curvature, so $v_x = 0$, $a_x < 0$	instantaneously at rest, velocity changing from + to -
D	negative slope, zero curvature, so $v_x < 0$, $a_x = 0$	moving in -x-direction, speed not changing
Ε	negative slope, upward curvature, so $v_x < 0$, $a_x > 0$	moving in -x-direction, slowing down

Motion With Constant Acceleration

Motion diagram showing position, velocity & acceleration of an object

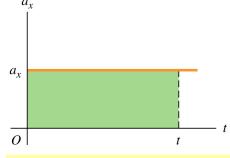
$$t = 0 \quad \frac{1}{0} \quad x$$

$$t = \Delta t \quad \frac{1}{0} \quad x$$

$$t = 2\Delta t \quad \frac{1}{0} \quad x$$

$$t = 3\Delta t \quad \frac{1}{0} \quad x$$

$$t = 4\Delta t \quad x$$



$$a_x = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = constant$$

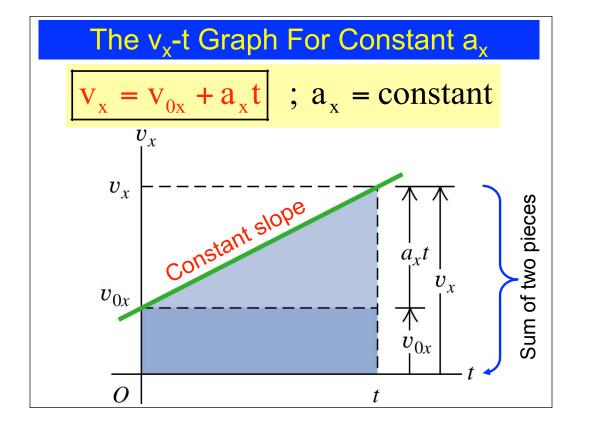
Start clock at $t_1 = 0$, observe again at time $t_2 = t$

Call v_{0x} the velocity at $t_1 = 0$, v_x the velocity at $t_2 = t$

$$a_x = \frac{v_x - v_{0x}}{t - 0}$$

 \Rightarrow

$$\left[\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}}\mathbf{t}\right] \; ; \; \mathbf{a}_{\mathbf{x}} = \mathbf{c}\mathbf{c}$$



Evolution of x vs t when a_x =Constant

At time $t_1 = 0$, object at $x = x_0$, has $v_{x1} = v_{0x}$

At time $t_2 = t$, object at x = x, has $v_{x2} = v_x$

then
$$V_{av-x} = \frac{x - x_0}{t}$$

When a_x = constant, velocity changes at const rate

so for time interval
$$0 \otimes t$$
, $v_{av-x} = \frac{v_{0x} + v_x}{2}$

But since
$$v_x = v_{0x} + a_x t \Rightarrow v_{av-x} = \frac{1}{2} (v_{0x} + v_{0x} + a_x t)$$

$$= v_{0x} + \frac{1}{2} a_x t$$

#