Physics 2a, Dec 3, lecture 31
*Reading: chapter 13.
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e Last time, mass on a spring, F' = —kx = ma = m‘éT;” is solved by

x(t) = Acos(wt + ¢), (1)

where w = (/k/m. The amplitude A is the maximum displacement from equilibrium.
Then

v(t) = Ccli_f = —wAsin(wt + ¢), (2)

so the maximum speed is wA. As expected, the energy is a constant:
E = Imi® + 2ka? = dmw? A% (sin®(wt + @) + cos®(wt + ¢)) = tmw? A%

For any potential U(z), expanding (in a Taylor’s series) near a point of stable equi-
librium will always give something that’s approximately quadratic for small displacements
(ignoring higher terms in the Taylor’s series), so a mass on a spring behaves exactly like
ANY small oscillations around a point of stable equilibrium.

Example: vibrations of molecules, U = Uo((%)12 — 2(
r = Ry, and expanding r = Ry + z gives a SHO with k = 72U,/ R3.
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- )6) has a minimum at

e Example: putty dropped on mass on spring, either when mass is at equilibrium
position or when mass is at maximum displacement. In the first case energy is lost and
the amplitude is reduced.

e Angular SHM: If 7 = —k6 (k is called the torsion constant), then 7 = Ia = I% is
solved by 6 = O(coswt + ¢), where w = \/k/1.

e Pendulum. Fy = —mgsinf =~ —mgh, so ™ = LFy ~ —mgL#, which gives the angular
SHO, with x = mgL. Since I = mL?, we have w = \/g/7L (Check: units). This is the
approximate motion for small initial angle displacements ©. If © is big, then need to keep
full expression 7 = —mgLsinf and then can’t solve the differential equation as easily in
terms of trig functions, need special functions.

For a rigid body acting as a pendulum, replace L with distance d between the pivot
point and the center of mass, and w = \/W .

Example: meter stick of mass m, suspended by an end. Using I = %mL2 and d = L/2,
get period T = QWm Using L = 1m get T ~ 1.64s.
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d’z The solution of

e Damped oscillations. Add friction term, F' = —kz — bz = mG7.

this differential equation is

z(t) = Ae 2™ cos(w't + ¢),

b2

kb2

where W’ = /& — 2.
m 4m
When w’ = 0, the system is critically damped. When ' is imaginary, the system is
overdamped, and the the solution is a sum of exponentials rather than a cos.
The amplitude decreases exponentially in time, thanks to the energy loss to friction.

Indeed, the power loss to friction (heat) is seen by the decrease in the oscillation energy:

B — _pi2.
Cr — kg —bi+ Fy coswqt. Solving

dt
e Forced oscillations. Take F,, = Fycoswgt, so m5
the differential equation gives (you’ll learn how to do this in a later class) amplitude

A= Fo
V (k —mw?2)? + b2w?

This amplitude is peaked when wy = /k/m (resonance), with height ~ 1/b. A system
can have destructively huge oscillation amplitude if driven at its resonance frequency.

That’s all folks! Good luck in your finals! Best Wishes, Ken



