
Physics 2a, Dec 3, lecture 31

⋆Reading: chapter 13.

• Last time, mass on a spring, F = −kx = ma = md2x
dt2 is solved by

x(t) = A cos(ωt + φ), (1)

where ω =
√

k/m. The amplitude A is the maximum displacement from equilibrium.

Then

v(t) =
dx

dt
= −ωA sin(ωt + φ), (2)

so the maximum speed is ωA. As expected, the energy is a constant:

E = 1

2
mẋ2 + 1

2
kx2 = 1

2
mω2A2(sin2(ωt + φ) + cos2(ωt + φ)) = 1

2
mω2A2.

For any potential U(x), expanding (in a Taylor’s series) near a point of stable equi-

librium will always give something that’s approximately quadratic for small displacements

(ignoring higher terms in the Taylor’s series), so a mass on a spring behaves exactly like

ANY small oscillations around a point of stable equilibrium.

Example: vibrations of molecules, U ≈ U0(
(

R0

r

)12

− 2
(

R0

r

)6

) has a minimum at

r = R0, and expanding r = R0 + x gives a SHO with k = 72U0/R2

0
.

• Example: putty dropped on mass on spring, either when mass is at equilibrium

position or when mass is at maximum displacement. In the first case energy is lost and

the amplitude is reduced.

• Angular SHM: If τ = −κθ (κ is called the torsion constant), then τ = Iα = I d2θ
dt2 is

solved by θ = Θ(cos ωt + φ), where ω =
√

κ/I.

• Pendulum. Fθ = −mg sin θ ≈ −mgθ, so τ = LFθ ≈ −mgLθ, which gives the angular

SHO, with κ = mgL. Since I = mL2, we have ω =
√

g/L. (Check: units). This is the

approximate motion for small initial angle displacements Θ. If Θ is big, then need to keep

full expression τ = −mgL sin θ and then can’t solve the differential equation as easily in

terms of trig functions, need special functions.

For a rigid body acting as a pendulum, replace L with distance d between the pivot

point and the center of mass, and ω =
√

mgd/I.

Example: meter stick of mass m, suspended by an end. Using I = 1

3
mL2 and d = L/2,

get period T = 2π
√

2L/3g Using L = 1m get T ≈ 1.64s.
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• Damped oscillations. Add friction term, F = −kx − bẋ = md2x
dt2

. The solution of

this differential equation is

x(t) = Ae−bt/2m cos(ω′t + φ),

where ω′ =
√

k
m −

b2

4m2 .

When ω′ = 0, the system is critically damped. When ω′ is imaginary, the system is

overdamped, and the the solution is a sum of exponentials rather than a cos.

The amplitude decreases exponentially in time, thanks to the energy loss to friction.

Indeed, the power loss to friction (heat) is seen by the decrease in the oscillation energy:
dE
dt = −bẋ2.

• Forced oscillations. Take Fx = F0 cos ωdt, so md2x
dt2

= −kx− bẋ+F0 cos ωdt. Solving

the differential equation gives (you’ll learn how to do this in a later class) amplitude

A =
F0

√

(k − mω2

d)2 + b2ω2

d

.

This amplitude is peaked when ωd =
√

k/m (resonance), with height ∼ 1/b. A system

can have destructively huge oscillation amplitude if driven at its resonance frequency.

That’s all folks! Good luck in your finals! Best Wishes, Ken
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