7.2 Wave Nature of Matter

De Broglie Wavelength Diffraction of electrons **Uncertainty Principle** Wave Function Tunneling

Wave properties of matter

Material particles behave as waves with a wavelength given by the De Broglie wavelength (Planck's constant/momentum)

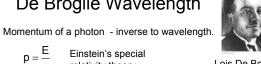
$$\lambda = \frac{h}{h}$$

The particles are diffracted by passing through an aperture in a similar manner as light waves.

The wave properties of particles mean that when you confine it in a very small space its momentum (and kinetic energy) must increase. (uncertainty principle) This is responsible for the size of the atom.

Wave properties are only dominant in very small particles.

De Broglie Wavelength



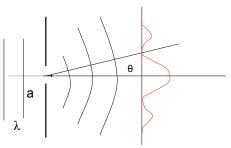
$$p = \frac{E}{C}$$
 Einstein's special relativity theory since
$$E = \frac{hc}{C}$$

Wavelength of a particle- inverse to momentum.

$$\lambda = \frac{h}{p}$$

De Broglie proposed that this wavelength applied to material particles as well as for photons. (1924)

Wave properties



Diffraction of waves Increases as the ratio λ/a

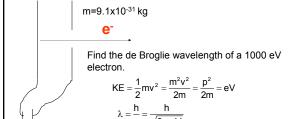
de Broglie wavelength of a baseball

v= 45 m/s A baseball with a mass of 0.15 kg is pitched at 45 m/s What is its De Broglie wavelength?

$$\lambda = \frac{h}{p} = \frac{h}{mv} \qquad = \frac{6.6x10^{-34js}}{(0.15kg)(45m/s)} = 9.8x10^{-35}m$$

Diffraction effects of a baseball are negligible

de Broglie wavelength of an electron

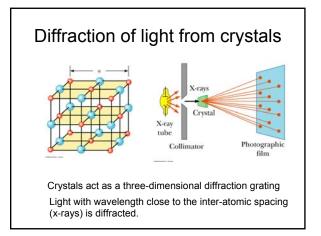


atomic dimensions V = 1000 V $6.6x10^{-34}Js$ $\frac{0.0410-38}{\sqrt{2(9.1x10^{-31}kg)(1.6x10^{-19}C)(1000J/C)}}=4.0x10^{-11}m$

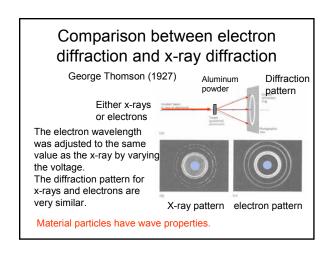
Proof of the wave nature of electrons by Electron Diffraction

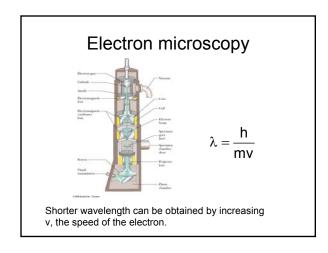
- · Davisson Germer Experiment
- Thompson Experiment

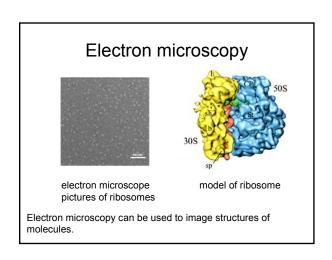
Showed the wave nature of light by diffraction of electrons by crystals.



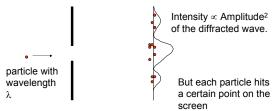
Diffraction of electrons from crystals Davisson-Germer Experiment (1927) An electron beam is scattered from a crystal Ni crystal The scattered beam shows a diffraction pattern expected for the crystal spacing.







Diffraction of particles Probabilistic Interpretation of the wave amplitude.



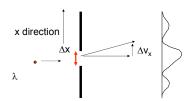
The amplitude² is interpreted as the probability of the particle hitting the screen at a certain position This is true for electrons as well as photons.

Wavefunction

In quantum mechanics the result of an experiment is given in terms of a wavefunction Ψ . The square of the wavefunction Ψ^2 is the probability of the particle being at a certain position.

The wavefunction can be calculated using using the Schrödinger Equation. For instance for electrons in an atom.

Wave property of particles



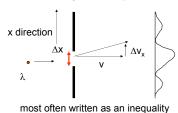
Decreasing the slit reduces Δx But increases the width of the diffraction, Δv_{ν}

When Δx decreases, Δp_x increases.

Uncertainty Principle

Particle passing through a slit --The uncertainty in position is Δx

The uncertainty in the x component of momentum is $\Delta p_x = m \Delta v_x$



 $\Delta x \Delta p_x \ge \frac{h}{4\pi}$

The particle is diffracted

Therefore

 $\Delta x \Delta p_x = h$

The position and velocity cannot be know with unlimited certainty.

The size of an atom

What accounts for the size of the hydrogen atom?

electron proton
$$PE = -\frac{k_0 e^2}{r}$$
PE-> - infin

Classical electrostatics predicts that the potential energy of the hydrogen atom should go to - infinity

The finite size of the atom is a quantum mechanical effect.

As the size of the atom r decreases - The uncertainty in the momentum increases until the uncertainty in momentum limits the momentum. Then the kinetic energy must increase due to the uncertainty principle.

Use linear momentum as a rough estimate.

$$\Delta x \Delta p_x \approx h$$
 $\Delta p_x \approx \frac{h}{\Delta x} = \frac{h}{r}$
 $r = \Delta x$

 $\Delta p_x = \frac{h}{2r} \approx p_x$ p_x cannot be smaller than Δp_x

$$KE = \frac{1}{2}mv_x^2 = \frac{p_x^2}{2m} \approx \frac{h^2}{8r^2m}$$

E= KE+PE goes through a minimum as a function of r

