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8.1 Atomic Physics 
Atomic Spectra
Bohr Model

Extensions of the Bohr model 
X-ray emission

Electrons in Atoms
Quantum numbers
Pauli Exclusion Principle

Atomic spectra and atomic 
structure.

The spectra of atoms provide information about 
the energies of the electron in the atom. 

Sharp peaks at discrete wavelengths indicate that 
only specified energies are allowed in the atom.

For the Hydrogen atom the Bohr theory explains 
the energies in a simple manner based on a 
quantization of angular momentum.

The quantization is explained by the de Broglie 
theory in terms of standing waves for the 
electron.

Atomic structure

The scattering of alpha particles (He2+) nuclei from a thin
gold foil.  The back scattering of a few alpha particles 
showed that the nucleus is a small compact object.

Ernest Rutherford 1911
Geiger and Marsden

Planetary model of the atom

Alpha
particle

Scattering from a small compact nucleus

Atomic spectra
Emission

high voltage

gas of atom A
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A  ->  e- (slow) + A*e- (fast) +

A* ->   A   +  hf

Excitation
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Atomic Spectra
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Atomic Spectra

Emission

Absorption
(dark lines)

Discrete spectral lines are observed.

Balmer series for Hydrogen
ultraviolet visible

Lowest λ Highest λ

A series of peaks closer together (continuum) at low λ

Rydberg Constant
The Balmer series could be analyzed mathematically in
terms of an empirical equation.  

H 2 2

1 1 1R
2 n

⎛ ⎞= −⎜ ⎟λ ⎝ ⎠

Rydberg Constant  RH = 1.0973732x107 m-1

n = 3,4, 5 .......... Integers larger than 2.

Disagreement with classical theory
Classical physics for the planetary model of the atom 
predicts that the energy of the electron
can have any value - cannot explain discrete spectral lines.

The classical theory could not explain the stability of the 
atom, why the electron does not fall into the nucleus 
radiating energy.

z+ e-

Planetary Model of the atom

hf

Bohr Theory
1. Electrons move in circular orbits.
2. Only specified atomic energy levels are allowed.
3. Energy is emitted when electron go from one energy 

level to another.
4. The orbital angular momentum of the electron is 

“quantized” in units of h/2π = (called h bar)
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Angular momentum of a tennis ball

r

m

v
r= 0.5 m
m = 0.1 kg
v= 2 m/s

L =mvr
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L n= h What is n for the ball?is quantized.

n is so large that L appears continuous
n

L

Angular momentum of a typical 
electron in an atom

sJ10x9)m10x1.0)(s/m10)(kg10x1.9(mvrL 349731 ⋅=== −−−

r

m

v
m=9.1x10-31kg
r =0.1 x10-9 m
v=107 m/s

L is much smaller.  
Quantization is apparent
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Classical dynamics
For central force (hydrogen atom)
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r is a function of v

but any value of r is allowed

v increases as r 
decreases

r

Bohr theory for hydrogen atom

mvr n=

Bohr model

n= 1, 2, 3,  ........ integers
angular momentum is quantized

Classical energies

any value of r is allowed

Only values of r are allowed that
follow the quanization condition

Results from Bohr theory
Only specific values of r are allowed that 

depend on universal constants 
2 2

n 2
e e
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n=1, 2, 3, ....... integers

radius increases as n2

n=1

n=2

n=3

For n=1

2 34
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0.053 nmSize of the Hydrogen atom in the ground state

(eliminate v)

Total Energies

Classical

Bohr
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Total energy varies as 1/r
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Total energy of allowed states with n=1, 2, 3, -----
varies as 1/n2
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Excited state energy levels
Energy levels  are quantized

2 4
e e

n 2 2 2

m k e 1 13.6E eV
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Emission energies 

initial final 2 2
final initial

1 1E E E 13.6
n n
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Predicts spectral lines in the ultraviolet (Lyman series)
and infrared (Paschen series), maximum energies, continuum.

(proportional to 1/n2)

hfmax =13.6 eV

∆Emax

Agreement with Rydberg equation
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Rmeasured = 1.097x107 m-1

Example
Find the wavelength in the hydrogen emission 

spectrum for transition from n=3 to n=2.

2 2
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red line in Balmer series

76.56x10 m 656nm−λ = =

n=1

n=2

n=3

Explanation of Bohr theory in terms 
of the de Broglie wavelength

hmvr n
2

=
π

quantization of angular momentum

h2 r n n
mv

⎛ ⎞π = = λ⎜ ⎟
⎝ ⎠ circumference = nλ

Quantization of angular momentum is equivalent to forming
circular standing waves. (Constructive interference)

Integral no. of wavelengths.

Particle in a Box (prob. 32)
A simple quantum model for a confined particle.

A one-dimensional box of length L

L

potential energy 
U =0 inside the box, 
U=∞ outside the box

A particle in a box 
has wave properties 
of a standing wave
on a string fixed at 
both ends.

U

n=1

n=2

Ψ1

Ψ2

distance

Particle in a box
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Find the kinetic energy of the particle in the box

n=1

n=2

Ψ1

Ψ2

distance

The wavelength is

The energy is

2

1 28
hE
L m

= The lowest energy state is not zero
but gets lower for larger boxes
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Pigment molecules

beta carotene – long molecule has absorption in the visible 
region.  The excitation energy decreases when the electron 
is delocalized in a long molecule.

Bohr theory
Shows that the energy levels in the hydrogen atom are 
quantized.

Correctly predicts the energies of the hydrogen atom (and 
hydrogen like atoms.)

The Bohr theory is incorrect in that it does not obey the 
uncertainty principle. It shows electrons in well defined 
orbits.

Quantum mechanical theories are used to calculate the 
energies of electrons in atoms.  (i.e. Shrödinger equation)

Extension of the Bohr Theory
Bohr theory can only be used to predict energies of
Hydrogen-like atoms.  (i.e. atoms with only one electron)
This includes H, He+, Li2+ ....

For example He+ ( singly ionized helium has 1 electron 
and a nucleus with a charge of Z = +2)

For this case the energy for each state is multiplied by
Z2 =4 2 2 4

e e
n 2 2

2 2
n 2 2 2

m k z e 1E
2 n

1 1 1E 13.6(Z ) 13.6(2 ) 54.4 eV
n n n

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

for He+

Characteristic X-rays are due to 
emission from heavy atoms 

excited by electrons

A Bohr model for x-ray emission

Z+

Inner shell electrons

Zeff is an effective
charge of the nucleus
due to screening.

( ) 2
2
effn n

16.13ZE =

Energy from Bohr model

Characteristic x-rays
The wavelength of characteristic x-ray peaks due to 
emission from high energy states of heavy atoms (high Z).

e-

dislodge
K shell e-

fast 

metal 
atom 

Mo 
Z=43

n=1

n=2
hf

Kα

Characteristic x-rays

High energies due to high Zeff
2
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X-ray emission

Zeff = Z-1

Calculate the wavelength for Kα x-ray emission of Mo 
(Z=+42) The electron in the L shell must be in a l=1 (p 
state) 

( )2
(Lshell) 2

1E 13.6 Z 3
2

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠K shell

L shell

hf

Kα

2
Kshell 2

1E 13.6(Z 1)
1
⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

73 pm

n=1

n=2

s

s
p

K shell

L shell Zeff =Z-3 Calculated
value
73 pm

Mo

Electrons in atoms.
Electrons in atoms exist in discrete energy levels

The pattern of energy levels which results from a quantum 
mechanical rule called the Pauli Exclusion Principle. is 
responsible for the periodicity in the chemical properties of 
the different elements as seen in the Periodic Table.

Bohr atom

n=1

n=2

n=3

Quantum mechanics

2 states

8 states

18 states

Quantum calculations show that more states
are needed to describe the electrons in an atom

2

2

6

2
6
10

The number of states determined
by quantum numbers.

Orbital angular momentum
Classically the angular momentum L of an electron moving
in a circle can have any value

vr

mIn quantum mechanics the
values of the angular momentum 
are quantized and specified by a 
orbital angular momentum quantum no. ℓ

For an electron with a principle quantum no. n 
the value of ℓ ranges from 0 to n-1.

L

i.e. for n=2 , ℓ can have values of 0 and 1.

Orbital magnetic quantum number

Magnetic field
L

Classically an electron moving in a circle is a current
which results in a magnetic dipole along the direction of L.
Classically, the dipole can have any orientation with
respect to a field.
In quantum mechanics, only discrete orientations are
allowed.  The orientation are determined by the orbital
magnetic quantum no. ml 
The value of ml ranges from – ℓ to + ℓ.

ml =1

ml=0

ml =-1

. 
ℓ =1

i.e. for ℓ=1,  ml can have values of -1, 0, and 1.
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Spin magnetic quantum number

In quantum mechanics an electron has an intrinsic
magnetic moment due to spin.  The magnetic
moment can have two orientations in a magnetic 
field determined by a spin quantum number ms

e-

s ms =1/2

ms = - 1/2

ms = +1/2 or -1/2

for an electron 2 spin states are possible + 1/2 

Atomic energy levels and quantum 
numbers.

principle quantum number  n

angular momentum quantum number

orbital magnetic quantum number m  

range of values
1, 2, 3, ...........
0, 1 to n-1

,..to..− +

spin magnetic quantum number ms
1 1,or
2 2

− +

The state of an electron is specified by the set of its quantum
numbers   (n, ℓ, ml ,, ms)
The number of states is determined by the set of possible
quantum numbers.

2+½123
2+½223

2+½023
2+½-123
2+½-223
2+½113
2+½013
2+½-113
2+½003
2+½112
2+½012
2+½-112
2+½002
2+½001

no. of
states

msmlln

Electronic states in an atom n=1,2 and 3
no. 
n

2

8

18

2
2

6

2

6

10

no. 
n, l

Pauli Exclusion Principle
No two electrons in an atom can have the same quantum
number, n, l, ml , or ms.

To form an atom with many electrons the electrons
go into the lowest energy unoccupied state.

The periodic properties of the elements  as shown in the
Periodic Table can be explained by  the Pauli Exclusion
Principle by properties of filled shells.

Electrons in atoms- Shell Notation
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Periodic Table of the Elements
Dmitri Mendeleev (1834-1907) noble

gases

2
10
18
36
54
86

Z

Noble gas configurations

He  Z= 2 1s2

Ne  Z=10 1s2 2s2 2p6

Ar Z=18 1s2     2s2 2p6 3s2 3p6

Kr  Z= 36 1s2     2s2 2p6 3s2 3p6 4s2 4p63d10

Noble gases have Filled Subshells

Filled subshell configuration    s2 ,  p6 ,  d10

Noble gases have filled subshells
Stable, difficult to ionize   A -> A+ + e-


