PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #4

(1) Consider a three-dimensional ultrarelativistic gas, with dispersion $\varepsilon = \hbar c |\mathbf{k}|$. Find the viral expansion of the equation of state p = p(n, T) to order n^3 for both bosons and fermions.

(2) Suppose photons had a dispersion $\varepsilon = Jk^2$. All other things being equal (surface temperature of the sun, earth-sun distance, earth and solar radii, *etc.*), what would be the surface temperature of the earth? *Hint: Derive the corresponding version of Stefan's law.*

(3) Almost all elements freeze into solids well before they can undergo Bose condensation. Setting the Lindemann temperature equal to the Bose condensation temperature, show that this implies a specific ratio of $k_{\rm B}\Theta_{\rm D}$ to \hbar^2/Ma^2 , where M is the atomic mass and a is the lattice spacing. Evaluate this ratio for the noble gases He, Ne, Ar, Kr, and Xe. (You will have to look up some numbers.)

(4) A nonrelativistic Bose gas consists of particles of spin S = 1. Each boson has mass m and magnetic moment μ_0 . A gas of these particles is placed in an external field H.

(a) What is the relationship of the Bose condensation temperature $T_{\rm c}(H)$ to $T_{\rm c}(H = 0)$ when $\mu_0 H \gg k_{\rm B} T$?

(b) Find the magnetization M for $T < T_c$ when $\mu_0 H \gg k_{\rm B} T$. Calculate through order $\exp(-\mu_0 H/k_{\rm B} T)$.