
PHYSICS 210A : STATISTICAL PHYSICS

FINAL EXAMINATION

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

Ĥ = −Hσσ − Hττ − Kστ ,

where Hσ and Hτ are magnetic fields acting on the σ and τ spins, respectively. Each spin
is a two-state Ising variable, i.e. σ = ±1 and τ = ±1.

(a) Compute the partition function ξ for a single dimer. [5 points]

The single dimer partition function is

ξ = 2cosh

(

Hσ + Hτ

k
B
T

)

eK/k
B

T + 2cosh

(

Hσ − Hτ

k
B
T

)

e−K/k
B

T .

(b) Find m ≡ 〈σ〉. [5 points]

〈σ〉 = − ∂F

∂Hσ =
k

B
T

ξ

∂ξ

∂Hσ =
sinh

(

H
σ+H

τ

k
B

T

)

eK/k
B

T + 2 sinh
(

H
σ
−H

τ

k
B

T

)

e−K/k
B

T

cosh
(

H
σ+H

τ

k
B

T

)

eK/k
B

T + 2cosh
(

H
σ
−H

τ

k
B

T

)

e−K/k
B

T
.

Now consider an interacting model,

Ĥ = −1
2

∑

i,j

Jσ
ij σi σj − 1

2

∑

i,j

Jτ
ij τi τj − K

∑

i

σi τi .

Treat the first two terms by mean field theory, writing σi = m + δσi and τi = n + δτi,
with m = 〈σi〉 and n = 〈τi〉 are presumed to be independent of i. You may assume that
all interactions are ferromagnetic. Treat the third term exactly and do not make the mean
field approximation for this term.

(c) What is the mean field Hσ
eff for the σ spins? [5 points]

The mean fields are

Hσ
eff = Ĵσ(0)m , Hτ

eff = Ĵτ(0)n ,

where Ĵσ(0) =
∑

j Jσ
ij and Ĵτ(0) =

∑

j Jτ
ij .

(d) What is the mean field free energy per site F/N? Hint : Once you have the mean fields
Hσ and Hτ , you can make use of the results of part (a). [5 points]

F =1
2NĴσ(0)m2 + 1

2NĴτ(0)n2

− Nk
B
T

{

2 cosh

(

Ĵσ(0)m + Ĵτ (0)n

k
B
T

)

eK/k
B

T + 2cosh

(

Ĵσ(0)m − Ĵτ (0)n

k
B
T

)

e−K/k
B

T

}

.
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(e) Find the mean field equations. [5 points]

Setting the variation of F with respect to m and n to zero, we find

m =
sinh

(

m Tσ+n Tτ

T

)

eTK/T + sinh
(

m Tσ−n Tτ

T

)

e−TK/T

cosh
(

m Tσ+n Tτ

T

)

eT
K

/T + cosh
(

m Tσ−n Tτ

T

)

e−T
K

/T

and

n =
sinh

(

m Tσ+n Tτ

T

)

eTK/T − sinh
(

m Tσ−n Tτ

T

)

e−TK/T

cosh
(

m Tσ+n Tτ

T

)

eT
K

/T + cosh
(

m Tσ−n Tτ

T

)

e−T
K

/T
,

where k
B
Tσ ≡ Ĵσ(0), k

B
Tτ ≡ Ĵτ(0), and k

B
TK ≡ K.

(f) The mean field free energy has a Landau expansion of the form

f(m,n) = f0 + 1
2aσσ m2 + 1

2 aττn
2 + aστ mn + O

(

m4,m3n,m2n2,mn3, n4
)

.

Focusing only on the quadratic terms, find an equation for the temperature where the
curvature of the free energy first changes sign as T is decreased from infinity. If there is no
preempting first order transition, this gives you the critical temperature Tc. You will need
to first find the coefficients aσσ , aττ , and aστ . [10 points]

Expanding f = F/N in powers of m and n, we must go to work on the log, expanding
the hyperbolic cosine terms each to fourth order in their arguments, and then using the
power series for the logarithm itself. This is tedious, but you were only asked to go to the
lowest nontrivial order, which isn’t so difficult. Here I will show how to obtain the Landau
coefficients up to fourth order. We have

f = k
B
T ln

[

4 cosh(TK/T )
]

+ 1
2k

B
Tσm2 + 1

2k
B
Tτn2 + ∆f

where

∆f = −k
B
T ln





cosh
(

m Tσ+n Tτ

T

)

eT
K

/T + cosh
(

m Tσ−n Tτ

T

)

e−T
K

/T

2 cosh(TK/T )



 .

Working on the log term,

∆f = −k
B
T ln

[

1 +
m2 T 2

σ + n2 T 2
τ + 2m n Tσ Tτ tanh

(

TK/T
)

2T 2

+
m4 T 4

σ + 6m2 n2 T 2
σ T 2

τ + n4 T 4
τ + 4

(

m2 T 2
σ + n2 T 2

τ

)

m n Tσ Tτ tanh
(

TK/T
)

24T 3
+ . . .

]

.

To carry out the Landau expansion to quadratic order, as you were asked, one needs only
the first nontrivial term inside the big brackets. To go to fourth order, however, we must
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invoke ln(1+ ε) = ε− 1
2ε2 +O(ε3) and then combine the square of the second term and the

third term inside the big brackets. The result to fourth order is

f = k
B
T ln

[

4 cosh(TK/T )
]

+ 1
2k

B
Tσ

(

1 − Tσ

T

)

m2 + 1
2k

B
Tτ

(

1 − Tτ

T

)

n2 − k
B

Tσ Tτ

T
tanh

(

TK/T
)

m n

+
k

B
T 4

σ

12T 3
m4 +

k
B

T 4
τ

12T 3
n4 +

k
B

T 2
σ T 2

τ

4T 3
tanh2

(

TK/T
)

m4 +
k

B

(

m2 T 2
σ + n2 T 2

τ

)

Tσ Tτ m n

3T 3
tanh

(

TK/T
)

+ . . .

At any rate, the coefficients of the quadratic form are

aσσ = k
B
Tσ

(

1 − Tσ

T

)

, aττ = k
B
Tτ

(

1 − Tτ

T

)

, aστ = −k
B

Tσ Tτ

T
tanh

(

TK/T
)

.

If K = 0, the model decomposes into two independent Landau theories, with critical tem-
peratures Tσ and Tτ , respectively. When K 6= 0, we need to find the eigenvalues of the
matrix

M =

(

aσσ aστ

aστ aττ

)

,

which are

λ± = 1
2

(

aσσ + aττ

)

±
√

1
4

(

aσσ − aττ

)2
+ a2

στ

Setting the lower of the two eigenvalues to zero, we obtain the equation aσσ aττ = a2
στ . This

gives rise to the transcendental equation

T 2 −
(

Tσ + Tτ

)

T + Tσ Tτ sech2
(

TK/T
)

= 0 ,

the solution of which is the critical temperature Tc.

This is as far as you were asked to go. Proceeding further, let us adimensionalize by defining
θ ≡ T/

√
Tσ Tτ , θK = TK/

√
Tσ Tτ , and ε ≡

√

Tτ/Tσ. We may, without loss of generality,
assume 0 ≤ ε ≤ 1. We then have

θ
(

ε + ε−1 − θ
)

= sech2
(

θK/θ
)

.

In the top panel of Fig. 1 we plot the left hand side (LHS) of this equation in black and
the right hand side in different colors corresponding to three different values of θK , all
for ε = 0.7. Defining D(θ) ≡ θ2 −

(

ε + ε−1
)

θ + sech2
(

θK/θ
)

, the determinant det(M) is
proportional to D(θ)/θ2. For high temperatures, D(θ) > 0 and both eigenvalues λ± of M
are positive. What happens as we lower θ then depends on the value of θK . If θK > θ∗(ε),
then there is a single second order phase transition at the unique root of the equation
D(θ) = 0. As we pass through this temperature, the lower eigenvalue λ− passes through
zero and becomes negative. The low temperature phase exhibits a spontaneous moment,
where both m and n are nonzero. As θ is further decreased toward θ = 0, we still have
λ− < 0 < λ+ and no additional transitions are encountered.

If θK < θ∗(ε), then D(θ) = 0 has three roots, θ
A

> θ
B

> θ
C
. For θ > θ

A
, we have

0 < λ− < λ+. For θ
B

< θ < θ
A
, we have λ− < 0 < λ+. At θ = θB, the upper eigenvalue λ+

changes sign, and for θ
C

< θ < θ
B
, we have λ− < λ+ < 0, i.e. both eigenvalues are negative.
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Figure 1: Top panel: Graphical solution to the transcendental equation from problem (1)(f)
for ε = 0.7. Blue curve: θK = 0.1; green curve: θK = θ∗(ǫ) = 0.2514; red curve: θK = 0.5.
Bottom panel: Critical value of θK below which there are three solutions to det(M) = 0.

Finally, at θ = θ
C
, the upper eigenvalue changes sign once again, and for θ < θ

C
, we have

λ− < 0 < λ+ once more. Throughout the entire region θ < θ
A

the system is ordered and
there is a spontaneous moment in which both m and n are nonzero.

Despite the additional roots of D(θ) = 0 when θK < θ∗(ε), there are no additional phase

transitions. It is worth emphasizing two things that are not happening here. The first thing
is a spontaneous breaking of an additional symmetry. For K 6= 0, there is only one global
symmetry in this problem, which is the Z2 Ising symmetry under which σi → −σi and
τi → −τi for every spin. Many systems in Nature exhibit a cascade of symmetry breaking
transitions. Not this one. As soon as the σ spins develop a spontaneous moment, this
acts, through the K term, as an external field which immediately polarizes the τ spins,
and there is no phase where m 6= 0 and n = 0 (and vice versa). The second thing which
isn’t happening is a reentrant transition. If the lower eigenvalue λ− were to change sign at
θ

B
and θ

C
, as well as at θ

A
, then throughout the range θ

C
< θ < θ

B
we would have both

eigenvalues again positive, and the minimum of f(m,n) would again lie at m = n = 0 as
it does in the high temperature phase. As θ finally passed through θ

C
, the moment would

spontaneously reappear. The sign change of λ+ at θ = θ
B

however is inconsequential, since
λ− is negative and the minimum of f(m,n) already lies away from the origin for θ < θ

A
.
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(2) A three-dimensional gas of particles obeys the dispersion ε(k) = Ak5/2. There are no
internal degrees of freedom (i.e. the degeneracy factor is g = 1). The number density is n.
We will solve the problem for the more general dispersion ε(k) = Akσ and then indicate
the result for σ = 5

2 .

(a) Compute the single particle density of states g(ε). [5 points]

WIth ε = Akσ we have k(ε) = (ε/A)1/σ , and

g(ε) =
1

2π2

k2

ε′(k)

∣

∣

∣

∣

k=k(ε)

=
ε

3

σ
−1

2π2σA3/σ
=

ε1/5

5π2A6/5
.

(b) For bosons, compute the condensation temperature T
BEC

(n). [5 points]

The number density n(T, z, n0) for bosons, in the grand canonical ensemble, is

n(T, z, n0) =

∞
∫

0

dε
g(ε)

z−1eε/k
B

T − 1
+ n0 ,

where n0 is the condensate density. For T < T
BEC

, we have z = 1 and n0 > 0. For T > T
BEC

,
we have z < 1 and n0 = 0. Precisely at T = T

BEC
, both conditions apply: z = 1 and n0 = 0.

Thus,

n =

∞
∫

0

dε
g(ε)

eε/k
B

Tc − 1
=

Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
Tc

A

)3/σ

=
Γ
(

6
5

)

ζ
(

6
5

)

5π2

(

k
B
Tc

A

)6/5

.

Thus,

T
BEC

(n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB

=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB

.

(c) For fermions, compute the ground state energy density e0(n). [5 points]

The ground state energy density for spinless (i.e. g = 1) fermions is

ε0 =
E0

V
=

∫

d3k

(2π)3
Akσ Θ(k

F
− k) =

A

2π2

k3+σ
F

3 + σ
.

The number density is

n =
N

V
=

∫

d3k

(2π)3
Θ(k

F
− k) =

k3
F

6π2
=⇒ k

F
=
(

6π2n
)1/3

.

Thus,

ε0(n) =

(

6π2
)σ/3

1 + σ
3

· An1+ σ
3 = 6

11

(

6π2
)5/6 · An11/6 .
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(d) For photon statistics, compute the temperature T (n). [5 points]

The photon density is

n =

∞
∫

0

dε
g(ε)

eε/k
B

T − 1
,

which is the same expression as in part (b) above! Thus,

T (n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB

=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB

.

(e) For photon statistics, compute the entropy density s(n) = S/V . [5 points]

The grand potential is

Ω(T, V ) = V k
B
T

∞
∫

0

dε g(ε) ln
(

1 − e−ε/k
B

T
)

= −V

∞
∫

0

dε
H(ε)

eε/k
B

T − 1
,

where g(ε) = H ′(ε). Integrating g(ε) to obtain H(ε), we have

Ω(T, V ) = − V

6π2A3/σ

∞
∫

0

dε
ε3/σ

eε/k
B

T − 1
= −Γ

(

3
σ + 1

)

ζ
(

3
σ

)

6π2A3/σ
V
(

k
B
T
)1+ 3

σ

The entropy density is then

s(T ) = − 1

V

∂Ω

∂T
=

Γ
(

3
σ + 2

)

ζ
(

3
σ + 1

)

6π2

(

k
B
T

A

)3/σ

k
B

,

The number density, as we have seen, is

n(T ) =
Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

,

hence

s(n) =
ζ
(

3
σ + 1

)

ζ
(

3
σ

) ·
(

3
σ + 1

)

nk
B

=
ζ
(

11
5

)

ζ
(

6
5

) · 11
5 nk

B
.

On dimensionful grounds, we knew a priori that s(n) ∝ nk
B
.

(f) For bosons and fermions, compute the second virial coefficient B2(T ). [5 points]

We have

n =

∞
∫

0

dε
g(ε)

z−1eε/k
B

T − 1
= ± Γ

(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

ζ 3

σ

(±z)

p

k
B
T

=

∞
∫

0

dε
H(ε)

z−1eε/k
B

T − 1
= ± Γ

(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

ζ 3

σ
+1

(±z) ,
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where the top sign is for bosons and the bottom for fermions. It helps to define the thermal
wavelength

λT ≡
(

2π2σ

Γ
(

3
σ

)

)1/3

·
(

k
B
T

A

)1/σ

=

(

5π2

Γ
(

6
5

)

)1/3( A

k
B
T

)2/5

,

so

nλ3
T = ± ζ 3

σ

(±z) = z ± 2−3/σz2 + O
(

z3
)

pλ3
T

k
B
T

= ± ζ 3

σ
+1

(±z) = z ± 2−1−(3/σ)z2 + O
(

z3
)

.

From the first of these, we have

z = nλ3
T ∓ 2−3/σn2λ6

T + O
(

n3λ9
T

)

.

Substituting this into the second equation, we obtain the lowest nontrivial term in the virial
expansion of the equation of state:

p

k
B
T

= n ∓ 2−1−(3/σ) n2λ3
T + O

(

n3λ6
T

)

.

The second virial coefficient is then

B2(T ) = ∓2−1−(3/σ) λ3
T = ∓ 5π2

211/5 Γ
(

6
5

)

(

A

k
B
T

)6/5

.

(3) Provide clear, accurate, and brief answers for each of the following:

(a) For the free energy density f = 1
2am2 − 1

3ym3 + 1
4bm4, what does it mean to say that

‘a first order transition preempts the second order transition’? [5 points]

In the absence of a cubic term (i.e. when y = 0), there is a second order transition at a = 0,
assuming b > 0 for stability. The ordered phase, for a < 0, has a spontaneous moment
m 6= 0. When the cubic term is present, a first order (i.e. discontinuous) transition takes

place at a = 2y2

9b , which is positive. Thus, as a is decreased from large positive values, the
first order transition takes place before a reaches a = 0, hence we say that the second order
transition that would have occurred at a = 0 is preempted . Typically we write a ∝ T − Tc,
where Tc is what the second order transition temperature would be in the case y = 0.

(b) A system of noninteracting bosons has a power law dispersion ε(k) = Akσ. What is
the condition on the power σ and the dimension d of space such that Bose condensation
will occur at some finite temperature? [5 points]

At T = T
BEC

, we have the relation

n =

∫

ddk

(2π)d
1

eε(k)/k
B

T
BEC − 1

.
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If the integral fails to converge, then there is no finite temperature solution and no Bose
condensation. For small k, we may expand the exponential in the denominator, and we find
the occupancy function behaves as k

B
T

BEC
/ε(k) ∝ k−σ. From the integration metric, in d-

dimensional polar coordinates, we have ddk = Ωd kd−1 dk, where Ωd is the surface area of the
d-dimensional unit sphere. Thus, the integrand is proportional to kd−σ−1. For convergence,
then, we require d > σ. This is the condition for finite temperature Bose condensation.

(c) Which has a longer Thomas-Fermi screening length: a metal with a high density of
states at the Fermi level, or a metal with a low density of states? Explain why. [5 points]

A small electrical potential φ(r) will induce a local density change δn(r) = eφ(r) g(ε
F
) in

a metal, where g(ε
F
) is the density of states at the Fermi energy. We assume k

B
T ≪ ε

F
,

which is very much the case for most metals at room temperature. Then from Poisson’s
equation we derive ∇2φ = 4πe δn = λ−2

TF φ, where λ
TF

= 1/
√

4πe2g(ε
F
) is the Thomas-Fermi

screening length. Thus, high density of states is associated with a shorter screening length
– there are more electrons present per unit volume to participate in screening. The metal
with the lower density of states has the longer TF screening length.

(d) Sketch what the pair distribution function g(r) should look like for a fluid composed of
infinitely hard spheres of diameter a. How does g(r) change with temperature? [5 points]

The PDF for a hard sphere gas is shown in Fig. 2 below. The main features are g(r = 0)
for r < a, and a decaying oscillation for r > a. Since the potential is either U = 0 (no
two spheres overlapping), or U = ∞ (overlap of at least two spheres), temperature has no
effect, because U/k

B
T is also either 0 or ∞. The hard sphere gas is a reasonable model for

the physics of liquid Argon (see figure).

Figure 2: (3)(d) Pair distribution functions (PDF) for hard spheres of diameter a at filling
fraction η = π

6 a3n = 0.49 (left) and for liquid Argon at T = 85K (right). Molecular
dynamics data for hard spheres (points) is compared with the result of the Percus-Yevick
approximation. Experimental data on liquid argon are from the neutron scattering work of
Yarnell et al. (1973). The data (points) are compared with molecular dynamics calculations
by Verlet (1967) for a Lennard-Jones fluid. See fig. 5.8 of the lecture notes.
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(e) For the cluster γ shown in Fig. 3, identify the symmetry factor sγ , the lowest order
virial coefficient Bj to which this contributes, and write an expression for the cluster integral
bγ(T ) in terms of the Mayer function. [5 points]

Figure 3: Left: the connected cluster γ for problem (3)(e). Right: a labeled version of this
cluster used in expressing the cluster integral bγ .

The symmetry factor is 2!·3! = 12, because, consulting the right panel of Fig. 3, vertices 2
and 6 can be exchanged, and vertices 3, 4, and 5 can be permuted in any way. There are
six vertices, hence the lowest order virial coefficient to which this cluster contributes is B6.
The cluster integral is

bγ =
1

12V

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5

∫

ddx6 f12 f16 f23 f24 f25 f26 f34 f35 f36 f45 f46 f56 ,

where fij = e−u(rij)/k
B

T − 1. See Fig. 3 for the labels. Whee!

(f) Explain the following terms in the context of dynamical systems: recurrent, ergodic, and
mixing. How are these classifications arranged hierarchically? [5 points]

A recurrent dynamical system exhibits the property that within any finite region of phase
space one can find a point which will return to that region in a finite time. Poincaré
recurrence is guaranteed whenever the dynamics are invertible and volume-preserving on a
finite phase space. An ergodic system is one where time averages are equal to phase space
averages. For the dynamical system ϕ̇ = V (ϕ), ergodicity means

〈

f(ϕ)
〉

T
= lim

T→∞

1

T

T
∫

0

dt f
(

ϕ(t)
)

=
Tr f(ϕ) δ

(

E − H(ϕ)
)

Tr δ
(

E − H(ϕ)
) =

〈

f(ϕ)
〉

S
,

where f(ϕ) is any smooth function on phase space. A mixing system is one where any
smooth normalized distribution ̺(ϕ, t) satisfies

lim
t→∞

Tr ̺(ϕ, t) f(ϕ) =
〈

f(ϕ)
〉

S
.

Thus, the distribution spreads out ‘evenly’ over the entire energy surface. The hierarchy is

mixing ⊂ ergodic ⊂ recurrent .
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(g) What is the significance of the Ginzburg criterion? [5 points]

The Ginzburg criterion tells how close we can come to a second order phase transition before
fluctuation effects start to overwhelm the mean field contribution to the heat capacity. The
criterion for the sufficiency of mean field theory is |t| ≫ t

G
, where t = (T − Tc)/Tc is the

reduced temperature and t
G

=
(

a/R∗

)
2d

4−d , where a is the lattice spacing and R∗ is a length
scale set by the interactions. For most magnetic transitions, R∗ is on the order of the lattice
spacing, t

G
∼ 1, and mean field theory breaks down rapidly. For most superconductors, R∗

is on the order of the coherence length, which is large on the scale of the lattice spacing,
and t

G
∼ 10−18 − 10−12, and mean field exponents are quantitatively accurate essentially

all the way up to the transition.

Some useful formulas:

ζα(z) =

∞
∑

k=1

zk

kα

∞
∫

0

dε
εα−1

z−1eβε − 1
= Γ(α) ζα(z) (k

B
T )α

ln(1 + x) = x − 1
2x2 + 1

3x3 − 1
4x4 + . . .

cosh(x) = 1 + 1
2!x

2 + 1
4!x

4 + . . .
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