
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a three-dimensional ultrarelativistic gas, with dispersion ε = ~c|k|. Find
the viral expansion of the equation of state p = p(n, T ) to order n3 for both bosons and
fermions.

Solution : We have

βp = ∓g

∫

d3k

(2π)3
ln

(

1 ∓ z e−βε(k)
)

z = g

∫

d3k

(2π)3
1

z−1 eβε(k) ∓ 1
,

where g is the degeneracy of each k mode. WIth ε(k) = ~ck, we change variables to
t = β~ck and find

βp =
g

6π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t3

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j4

n =
g

2π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t2

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j3
,

where we have integrated by parts in the first of these equations. Now it’s time to ask
Mathematica :

In[1] = y = InverseSeries [ x + x^2/2^3 + x^3/3^3 + x^4/4^3 + x^5/5^3 + O[x]^6 ]

Out[1] = x -
x^2

8
-

5 x^3

864
-

31 x^4

13 824
-

56 039 x^5

62 208 000
+ O[x]^6

In[2] = w = y + y^2/2^4 + y^3/3^4 + y^4/4^4 + y^5/5^4

Out[2] = x -
x^2

16
-

47 x^3

5184
-

25 x^4

9216
-

2 014 561 x^5

1 866 240 000
+ O[x]^6

So with the definition

λT = π2/3 g−1/3 ~c

k
B
T

,

we have
p = nk

B
T

(

1 + B2 n + B3 n2 + . . .
)

,

where

B2 = ∓ 1
16 λ3

T , B3 = − 47
5184 λ6

T , B4 = ∓ 25
9216 λ9

T , B4 = − 2014561
1866240000 λ12

T .
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(2) Suppose photons had a dispersion ε = Jk
2. All other things being equal (surface

temperature of the sun, earth-sun distance, earth and solar radii, etc.), what would be the
surface temperature of the earth? Hint: Derive the corresponding version of Stefan’s law.

Solution : This material has been added to the notes; see §4.4.4. Assume a dispersion
of the form ε(k) for the (nonconserved) bosons. Then the energy current incident on a
differential area dA of surface normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz

· 1

eε(k)/k
B

T − 1
.

Note that
∂ε(k)

∂kz

=
kz

k

∂ε

∂k
= cos θ ε′(k) .

Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t = Akα/k
B
T ,

we find
dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(

2 + 2
α

)

Γ
(

2 + 2
α

)

· g k
2+ 2

α

B A−
2

α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law.

Equating the power incident on the earth to that radiated by the earth, we obtain

Te =

(

R⊙

2 ae

)
α

α+1

T⊙ .

Plugging in the appropriate constants and setting α = 2, we obtain Te = 101.3K. Brrr!

(3) Almost all elements freeze into solids well before they can undergo Bose condensation.
Setting the Lindemann temperature equal to the Bose condensation temperature, show that
this implies a specific ratio of k

B
Θ

D
to ~

2/Ma2, where M is the atomic mass and a is the
lattice spacing. Evaluate this ratio for the noble gases He, Ne, Ar, Kr, and Xe. (You will
have to look up some numbers.)

Solution : The Lindemann melting temperature TM and the Bose condensation tempera-
ture Tc for monatomic solids are given by

TM = x2 · Mk
B
Θ2

D
a2

9~2
, Tc =

2π~
2

Mk
B

(

n

ζ(3/2)

)2/3

,

where a is the lattice constant, M the atomic mass, and Θ
D

the Debye temperature. For
a simple cubic lattice, the number density is n = a−3. Helium solidifies into a hexagonal
close packed (HCP) structure, while Neon, Argon, Krypton, and Xenon solidify into a face-
centered cubic (FCC) structure. The unit cell volume for both HCP and FCC is a3/

√
2,

where a is the lattice spacing, so n =
√

2 a−3 for the rare gas solids. Thus, we find

TM

Tc

=
x

α
·
(

k
B
Θ

D

~2/Ma2

)2

.
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where

α = 18π

(
√

2

ζ(3/2)

)2/3

≈ 40 .

If we set x = 0.1 we find x
α ≈ 1

400 . Now we need some data for Θ
D

and a. The most conve-
nient table of data I’ve found is from H. Glyde’s article on solid helium in the Encyclopedia

of Physics. The table entry for 4He is for the BCC structure at a pressure p = 25 bar. For
a BCC structure the unit cell volume is 4a3/3

√
3. Define the ratio R ≡ k

B
Θ

D
/(~2/Ma2).

As one can see from the table and from the above equation for TM/Tc. the R values are
such that the melting temperature is predicted to be several orders of magnitude higher
than the ideal Bose condensation temperature in every case except 4He, where the ratio
is on the order of unity (and is less than unity if the actual melting temperature is used).
The reason that 4He under high pressure is a solid rather than a Bose condensate at low
temperatures is because the 4He atoms are not free particles.

crystal a (Å) M (amu) Θ
D

(K) T actual
M (K) Tc ~

2/Ma2k
B

(K) R
4He 3.57 4.00 25 1.6 3.9 0.985 25

Ne 4.46 20.2 66 24.6 0.50 0.125 530

Ar 5.31 39.9 84 83.8 0.18 0.0446 1900

Kr 5.65 83.8 64 161.4 0.076 0.0188 3400

Xe 6.13 131 55 202.0 0.041 0.0102 20000

Table 1: Lattice constants for Ne, Ar, Kr, and Xe from F. W. de Wette and R. M. J.
Cotterill, Solid State Comm. 6, 227 (1968). Debye temperatures and melting temperatures
from H. Glyde, Solid Helium in Encyclopedia of Physics. 4He data are for p = 25 bar, in
the bcc phase (from Glyde).

(4) A nonrelativistic Bose gas consists of particles of spin S = 1. Each boson has mass m

and magnetic moment µ0. A gas of these particles is placed in an external field H.

(a) What is the relationship of the Bose condensation temperature Tc(H) to Tc(H = 0)

when µ0H ≫ k
B
T ?

(b) Find the magnetization M for T < Tc when µ0H ≫ k
B
T . Calculate through order

exp(−µ0H/k
B
T ).

Solution : The number density of bosons is given by

n(T, z) = λ−3
T

{

ζ3/2

(

z eµ0H/k
B

T
)

+ ζ3/2

(

z
)

+ ζ3/2

(

z e−µ0H/k
B

T
)

}

.

The argument of ζz(z) cannot exceed unity, thus Bose condensation occurs for z = exp(−µ0H/k
B
T )

(assuming H > 0). Thus, the condition for Bose condensation is given by

nλ3
Tc

= ζ(3/2) + ζ3/2

(

e−µ0H/k
B

Tc

)

+ ζ3/2

(

e−2µ0H/k
B

Tc

)

.
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This is a transcendental equation for T = Tc(n,H). In the limit µ0H ≫ k
B
Tc, the second

two terms become negligible, since

ζs(z) =

∞
∑

j=1

zj

js
.

Thus,

Tc(H → ∞) =
2π~

2

m

(

n

ζ(3/2)

)2/3

.

When H = 0, we have Thus,

Tc(H → 0) =
2π~

2

m

(

n

3 ζ(3/2)

)2/3

.

Thus,
Tc(H → ∞)

Tc(H → 0)
= 32/3 = 2.08008 . . .

The magnetization density is

M = µ0 λ−3
T

{

ζ3/2

(

z eµ0H/k
B

T
)

− ζ3/2

(

z e−µ0H/k
B

T
)

}

.

For T < Tc, we have z = exp(−µ0H/k
B
T ) and therefore

M = µ0 λ−3
T

{

ζ(3/2) −
∞
∑

j=1

j−3/2 e−2jµ
0
H/k

B
T
}

= nµ0

{

1 − e−2µ
0
H/k

B
T

ζ(3/2)
+ O

(

e−4µ
0
H/k

B
T
)

}
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