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Chapter 2

Thermodynamics

2.1 References

– E. Fermi, Thermodynamics (Dover, 1956)
This outstanding and inexpensive little book is a model of clarity.

– A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

– H. B. Callen, Thermodynamics and an Introduction to Thermostatistics
(2nd edition, Wiley, 1985)
A comprehensive text appropriate for an extended course on thermodynamics.

– D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
An excellent thermodynamics text appropriate for upper division undergraduates. Contains many illustra-
tive practical applications.

– D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures
(Wiley, 1998)
Lively modern text with excellent choice of topics and good historical content. More focus on chemical and
materials applications than in Callen.

– L. E. Reichl, A Modern Course in Statistical Physics (2nd edition, Wiley, 1998)
A graduate level text with an excellent and crisp section on thermodynamics.
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2 CHAPTER 2. THERMODYNAMICS

2.2 What is Thermodynamics?

Thermodynamics is the study of relations among the state variables describing a thermodynamic system, and of
transformations of heat into work and vice versa.

2.2.1 Thermodynamic systems and state variables

Thermodynamic systems contain large numbers of constituent particles, and are described by a set of state variables
which describe the system’s properties in an average sense. State variables are classified as being either extensive
or intensive.

Extensive variables, such as volume V , particle number N , total internal energy E, magnetization M , etc., scale
linearly with the system size, i.e. as the first power of the system volume. If we take two identical thermodynamic
systems, place them next to each other, and remove any barriers between them, then all the extensive variables
will double in size.

Intensive variables, such as the pressure p, the temperature T , the chemical potential µ, the electric field E, etc., are
independent of system size, scaling as the zeroth power of the volume. They are the same throughout the system,
if that system is in an appropriate state of equilibrium. The ratio of any two extensive variables is an intensive
variable. For example, we write n = N/V for the number density, which scales as V 0. Intensive variables may
also be inhomogeneous. For example, n(r) is the number density at position r, and is defined as the limit of ∆N/∆V
of the number of particles ∆N inside a volume ∆V which contains the point r, in the limit V ≫ ∆V ≫ V/N .

Classically, the full motion of a system of N point particles requires 6N variables to fully describe it (3N positions
and 3N velocities or momenta, in three space dimensions)1. Since the constituents are very small, N is typically
very large. A typical solid or liquid, for example, has a mass density on the order of ̺ ∼ 1 g/cm3; for gases,
̺ ∼ 10−3 g/cm3. The constituent atoms have masses of 100 to 102 grams per mole, where one mole of X contains
NA of X , and NA = 6.0221415 × 1023 is Avogadro’s number. Thus, for solids and liquids we roughly expect
number densities n of 10−2 − 100 mol/cm3 for solids and liquids, and 10−5 − 10−3 mol/cm3 for gases. Clearly
we are dealing with fantastically large numbers of constituent particles in a typical thermodynamic system. The
underlying theoretical basis for thermodynamics, where we use a small number of state variables to describe a
system, is provided by the microscopic theory of statistical mechanics, which we shall study in the weeks ahead.

Intensive quantities such as p, T , and n ultimately involve averages over both space and time. Consider for
example the case of a gas enclosed in a container. We can measure the pressure (relative to atmospheric pressure)
by attaching a spring to a moveable wall, as shown in Fig. 2.2. From the displacement of the spring and the value
of its spring constant k we determine the force F . This force is due to the difference in pressures, so p = p0 +F/A.
Microscopically, the gas consists of constituent atoms or molecules, which are constantly undergoing collisions
with each other and with the walls of the container. When a particle bounces off a wall, it imparts an impulse
2n̂(n̂ · p), where p is the particle’s momentum and n̂ is the unit vector normal to the wall. (Only particles with
p · n̂ > 0 will hit the wall.) Multiply this by the number of particles colliding with the wall per unit time, and one
finds the net force on the wall; dividing by the area gives the pressure p. Within the gas, each particle travels for
a distance ℓ, called the mean free path, before it undergoes a collision. We can write ℓ = v̄τ , where v̄ is the average
particle speed and τ is the mean free time. When we study the kinetic theory of gases, we will derive formulas
for ℓ and v̄ (and hence τ ). For now it is helpful to quote some numbers to get an idea of the relevant distance
and time scales. For O2 gas at standard temperature and pressure (T = 0◦ C, p = 1 atm), the mean free path is
ℓ ≈ 1.1× 10−5 cm, the average speed is v̄ ≈ 480 m/s, and the mean free time is τ ≈ 2.5× 10−10 s. Thus, particles in
the gas undergo collisions at a rate τ−1 ≈ 4.0×109 s−1. A measuring device, such as our spring, or a thermometer,

1For a system of N molecules which can freely rotate, we must then specify 3N additional orientational variables – the Euler angles – and
their 3N conjugate momenta. The dimension of phase space is then 12N .
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Figure 2.1: From microscale to macroscale : physical versus social sciences.

effectively performs time and space averages. If there areNc collisions with a particular patch of wall during some
time interval on which our measurement device responds, then the root mean square relative fluctuations in the

local pressure will be on the order of N
−1/2
c times the average. Since Nc is a very large number, the fluctuations

are negligible.

If the system is in steady state, the state variables do not change with time. If furthermore there are no macroscopic
currents of energy or particle number flowing through the system, the system is said to be in equilibrium. A
continuous succession of equilibrium states is known as a thermodynamic path, which can be represented as a
smooth curve in a multidimensional space whose axes are labeled by state variables. A thermodynamic process
is any change or succession of changes which results in a change of the state variables. In a cyclic process, the
initial and final states are the same. In a quasistatic process, the system passes through a continuous succession of
equilibria. A reversible process is one where the external conditions and the thermodynamic path of the system can
be reversed (at first this seems to be a tautology). All reversible processes are quasistatic, but not all quasistatic
processes are reversible. For example, the slow expansion of a gas against a piston head, whose counter-force is
always infinitesimally less than the force pA exerted by the gas, is reversible. To reverse this process, we simply
add infinitesimally more force to pA and the gas compresses. A quasistatic process which is not reversible: slowly
dragging a block across the floor, or the slow leak of air from a tire. Irreversible processes, as a rule, are dissipative.
Other special processes include isothermal (dT = 0) isobaric (dp = 0), isochoric (dV = 0), and adiabatic (d̄Q = 0,
i.e. no heat exchange):

reversible: d̄Q = T dS isothermal: dT = 0

spontaneous: d̄Q < T dS isochoric: dV = 0

adiabatic: d̄Q = 0 isobaric: dp = 0

quasistatic: infinitely slowly

We shall discuss later the entropy S and its connection with irreversibility.

How many state variables are necessary to fully specify the equilibrium state of a thermodynamic system? For
a single component system, such as water which is composed of one constituent molecule, the answer is three.
These can be taken to be T , p, and V . One always must specify at least one extensive variable, else we cannot
determine the overall size of the system. For a multicomponent system with g different species, we must specify
g + 2 state variables, which may be {T, p,N1, . . . , Ng}, where Na is the number of particles of species a. Another
possibility is the set (T, p, V, x1, . . . , xg−1}, where the concentration of species a is xa = Na/N . Here, N =

∑g
a=1Na

is the total number of particles. Note that
∑g

a=1 xa = 1.

If then follows that if we specify more than g + 2 state variables, there must exist a relation among them. Such
relations are known as equations of state. The most famous example is the ideal gas law,

pV = Nk
B
T , (2.1)
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Figure 2.2: The pressure p of a gas is due to an average over space and time of the impulses due to the constituent
particles.

relating the four state variables T , p, V , and N . Here kB = 1.3806503 × 10−16 erg/K is Boltzmann’s constant.
Another example is the van der Waals equation,

(
p+

aN2

V 2

)
(V − bN) = NkBT , (2.2)

where a and b are constants which depend on the molecule which forms the gas. For a third example, consider a
paramagnet, where

M

V
=
CH

T
, (2.3)

where M is the magnetization, H the magnetic field, and C the Curie constant.

Any quantity which, in equilibrium, depends only on the state variables is called a state function. For example,
the total internal energy E of a thermodynamics system is a state function, and we may write E = E(T, p, V ).
State functions can also serve as state variables, although the most natural state variables are those which can be
directly measured.

2.2.2 Heat

Once thought to be a type of fluid, heat is now understood in terms of the kinetic theory of gases, liquids, and
solids as a form of energy stored in the disordered motion of constituent particles. The units of heat are therefore
units of energy, and it is appropriate to speak of heat energy, which we shall simply abbreviate as heat:2

1 J = 107 erg = 6.242× 1018 eV = 2.390 × 10−4 kcal = 9.478× 10−4 BTU . (2.4)

We will use the symbol Q to denote the amount of heat energy absorbed by a system during some given ther-
modynamic process, and d̄Q to denote a differential amount of heat energy. The symbol d̄ indicates an ‘inexact
differential’, about which we shall have more to say presently. This means that heat is not a state function: there
is no ‘heat function’ Q(T, p, V ).

2One calorie (cal) is the amount of heat needed to raise 1 g of H2O from T0 = 14.5◦ C to T1 = 15.5◦ C at a pressure of p0 = 1 atm. One
British Thermal Unit (BTU) is the amount of heat needed to raise 1 lb. of H2O from T0 = 63◦ F to T1 = 64◦ F at a pressure of p0 = 1 atm.
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2.2.3 Work

In general we will write the differential element of work d̄W done by the system as

d̄W =
∑

i

Fi dXi , (2.5)

where Fi is a generalized force and dXi a generalized displacement3. The generalized forces and displacements are
themselves state variables, and by convention we will take the generalized forces to be intensive and the general-
ized displacements to be extensive. As an example, in a simple one-component system, we have d̄W = p dV . More
generally, we write

d̄W =

−
P

j
yj dXj︷ ︸︸ ︷(

p dV − H · dM − E · dP − σ dA+ . . .
)
−

P

a
µa dNa︷ ︸︸ ︷(

µ1 dN1 + µ2 dN2 + . . .
)

(2.6)

Here we distinguish between two types of work. The first involves changes in quantities such as volume, mag-
netization, electric polarization, area, etc. The conjugate forces yi applied to the system are then −p, the magnetic
field H , the electric field E, the surface tension σ, respectively. The second type of work involves changes in the
number of constituents of a given species. For example, energy is required in order to dissociate two hydrogen
atoms in an H2 molecule. The effect of such a process is dNH2

= −1 and dNH = +2.

As with heat, d̄W is an inexact differential, and work W is not a state variable, since it is path-dependent. There is
no ‘work function’ W (T, p, V ).

2.2.4 Pressure and Temperature

The units of pressure (p) are force per unit area. The SI unit is the Pascal (Pa): 1 Pa = 1 N/m2 = 1 kg/ms2. Other
units of pressure we will encounter:

1 bar ≡ 105 Pa

1 atm ≡ 1.01325× 105 Pa

1 torr ≡ 133.3 Pa .

Temperature (T ) has a very precise definition from the point of view of statistical mechanics, as we shall see. Many
physical properties depend on the temperature – such properties are called thermometric properties. For example,
the resistivity of a metal ρ(T, p) or the number density of a gas n(T, p) are both thermometric properties, and can
be used to define a temperature scale. Consider the device known as the ‘constant volume gas thermometer’
depicted in Fig. 2.3, in which the volume or pressure of a gas may be used to measure temperature. The gas
is assumed to be in equilibrium at some pressure p, volume V , and temperature T . An incompressible fluid of
density ̺ is used to measure the pressure difference ∆p = p − p0, where p0 is the ambient pressure at the top of
the reservoir:

p− p0 = ̺g(h2 − h1) , (2.7)

where g is the acceleration due to gravity. The height h1 of the left column of fluid in the U-tube provides a
measure of the change in the volume of the gas:

V (h1) = V (0) −Ah1 , (2.8)

whereA is the (assumed constant) cross-sectional area of the left arm of the U-tube. The device can operate in two
modes:

3We use the symbol d̄ in the differential d̄W to indicate that this is not an exact differential. More on this in section 2.4 below.
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Figure 2.3: The constant volume gas thermometer. The gas is placed in thermal contact with an object of temper-
ature T . An incompressible fluid of density ̺ is used to measure the pressure difference ∆p = pgas − p0.

• Constant pressure mode : The height of the reservoir is adjusted so that the height difference h2 − h1 is held
constant. This fixes the pressure p of the gas. The gas volume still varies with temperature T , and we can
define

T

Tref

=
V

Vref

, (2.9)

where Tref and Vref are the reference temperature and volume, respectively.

• Constant volume mode : The height of the reservoir is adjusted so that h1 = 0, hence the volume of the gas
is held fixed, and the pressure varies with temperature. We then define

T

Tref

=
p

pref

, (2.10)

where Tref and pref are the reference temperature and pressure, respectively.

What should we use for a reference? One might think that a pot of boiling water will do, but anyone who has
gone camping in the mountains knows that water boils at lower temperatures at high altitude (lower pressure).
This phenomenon is reflected in the phase diagram for H2O, depicted in Fig. 2.4. There are two special points in the
phase diagram, however. One is the triple point, where the solid, liquid, and vapor (gas) phases all coexist. The
second is the critical point, which is the terminus of the curve separating liquid from gas. At the critical point, the
latent heat of transition between liquid and gas phases vanishes (more on this later on). The triple point temperature
Tt at thus unique and is by definition Tt = 273.16 K. The pressure at the triple point is 611.7 Pa = 6.056 × 10−3 atm.

A question remains: are the two modes of the thermometer compatible? E.g. it we boil water at p = p0 = 1 atm,
do they yield the same value for T ? And what if we use a different gas in our measurements? In fact, all these
measurements will in general be incompatible, yielding different results for the temperature T . However, in the
limit that we use a very low density gas, all the results converge. This is because all low density gases behave as
ideal gases, and obey the ideal gas equation of state pV = Nk

B
T .
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Figure 2.4: A sketch of the phase diagram of H2O (water). Two special points are identified: the triple point (Tt, pt)
at which there is three phase coexistence, and the critical point (Tc, pc), where the latent heat of transformation
from liquid to gas vanishes. Not shown are transitions between several different solid phases.

2.2.5 Standard temperature and pressure

It is customary in the physical sciences to define certain standard conditions with respect to which any arbitrary
conditions may be compared. In thermodynamics, there is a notion of standard temperature and pressure, abbre-
viated STP. Unfortunately, there are two different definitions of STP currently in use, one from the International
Union of Pure and Applied Chemistry (IUPAC), and the other from the U.S. National Institute of Standards and
Technology (NIST). The two standards are:

IUPAC : T0 = 0◦ C = 273.15 K , p0 = 105 Pa

NIST : T0 = 20◦ C = 293.15 K , p0 = 1 atm = 1.01325× 105 Pa

To make matters worse, in the past it was customary to define STP as T0 = 0◦ C and p0 = 1 atm. We will use the
NIST definition in this course. Unless I slip and use the IUPAC definition. Figuring out what I mean by STP will
keep you on your toes.

The volume of one mole of ideal gas at STP is then

V =
NAkB

T0

p0

=

{
22.711 ℓ (IUPAC)

24.219 ℓ (NIST) ,
(2.11)

where 1 ℓ = 106 cm3 = 10−3 m3 is one liter. Under the old definition of STP as T0 = 0◦ C and p0 = 1 atm, the
volume of one mole of gas at STP is 22.414 ℓ, which is a figure I remember from my 10th grade chemistry class
with Mr. Lawrence.
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Figure 2.5: As the gas density tends to zero, the readings of the constant volume gas thermometer converge.

2.3 The Zeroth Law of Thermodynamics

Equilibrium is established by the exchange of energy, volume, or particle number between different systems or
subsystems:

energy exchange =⇒ T = constant =⇒ thermal equilibrium

volume exchange =⇒ p = constant =⇒ mechanical equilibrium

particle exchange =⇒ µ = constant =⇒ chemical equilibrium

Equilibrium is transitive, so

If A is in equilibrium with B, and B is in equilibrium with C, then A is in equilibrium with C.

This known as the Zeroth Law of Thermodynamics4.

2.4 Mathematical Interlude : Exact and Inexact Differentials

The differential

dF =
k∑

i=1

Ai dxi (2.12)

is called exact if there is a function F (x1, . . . , xk) whose differential gives the right hand side of eqn. 2.12. In this
case, we have

Ai =
∂F

∂xi

⇐⇒ ∂Ai

∂xj

=
∂Aj

∂xi

∀ i, j . (2.13)

4As we shall see further below, thermomechanical equilibrium in fact leads to constant p/T , and thermochemical equilibrium to constant
µ/T . If there is thermal equilibrium, then T is already constant, and so thermomechanical and thermochemical equilibria then guarantee the
constancy of p and µ.
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Figure 2.6: Two distinct paths with identical endpoints.

For exact differentials, the integral between fixed endpoints is path-independent:

B∫

A

dF = F (xB

1 , . . . , x
B

k) − F (xA

1 , . . . , x
A

k ) , (2.14)

from which it follows that the integral of dF around any closed path must vanish:

∮
dF = 0 . (2.15)

When the cross derivatives are not identical, i.e. when ∂Ai/∂xj 6= ∂Aj/∂xi, the differential is inexact. In this case,
the integral of dF is path dependent, and does not depend solely on the endpoints.

As an example, consider the differential

dF = K1 y dx+K2 xdy . (2.16)

Let’s evaluate the integral of dF , which is the work done, along each of the two paths in Fig. 2.6:

W (I) = K1

xB∫

xA

dx y
A

+K2

yB∫

yA

dy x
B

= K1 yA
(x

B
− x

A
) +K2 xB

(y
B
− y

A
) (2.17)

W (II) = K1

xB∫

xA

dx y
B

+K2

yB∫

yA

dy x
A

= K1 yB
(x

B
− x

A
) +K2 xA

(y
B
− y

A
) . (2.18)

Note that in general W (I) 6= W (II). Thus, if we start at point A, the kinetic energy at point B will depend on the
path taken, since the work done is path-dependent.
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Figure 2.7: The first law of thermodynamics is a statement of energy conservation.

The difference between the work done along the two paths is

W (I) −W (II) =

∮
dF = (K2 −K1) (xB − xA) (yB − yA) . (2.19)

Thus, we see that if K1 = K2, the work is the same for the two paths. In fact, if K1 = K2, the work would be
path-independent, and would depend only on the endpoints. This is true for any path, and not just piecewise
linear paths of the type depicted in Fig. 2.6. Thus, if K1 = K2, we are justified in using the notation dF for the
differential in eqn. 2.16; explicitly, we then have F = K1 xy. However, if K1 6= K2, the differential is inexact, and
we will henceforth write d̄F in such cases.

2.5 The First Law of Thermodynamics

2.5.1 Conservation of energy

The first law is a statement of energy conservation, and is depicted in Fig. 2.7. It says, quite simply, that during
a thermodynamic process, the change in a system’s internal energy E is given by the heat energy Q added to the
system, minus the work W done by the system:

∆E = Q−W . (2.20)

The differential form of this, the First Law of Thermodynamics, is

dE = d̄Q− d̄W . (2.21)

We use the symbol d̄ in the differentials d̄Q and d̄W to remind us that these are inexact differentials. The energy
E, however, is a state function, hence dE is an exact differential.

Consider a volume V of fluid held in a flask, initially at temperature T0, and held at atmospheric pressure. The
internal energy is then E0 = E(T0, p, V ). Now let us contemplate changing the temperature in two different ways.
The first method (A) is to place the flask on a hot plate until the temperature of the fluid rises to a value T1. The
second method (B) is to stir the fluid vigorously. In the first case, we add heat Q

A
> 0 but no work is done, so

WA = 0. In the second case, if we thermally insulate the flask and use a stirrer of very low thermal conductivity,
then no heat is added, i.e. QB = 0. However, the stirrer does work −WB > 0 on the fluid (rememberW is the work
done by the system). If we end up at the same temperature T1, then the final energy is E1 = E(T1, p, V ) in both
cases. We then have

∆E = E1 − E0 = Q
A

= −W
B
. (2.22)

It also follows that for any cyclic transformation, where the state variables are the same at the beginning and the
end, we have

∆Ecyclic = Q−W = 0 =⇒ Q = W (cyclic) . (2.23)
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2.5.2 Single component systems

A single component system is specified by three state variables. In many applications, the total number of particles
N is conserved, so it is useful to take N as one of the state variables. The remaining two can be (T, V ) or (T, p) or
(p, V ). The differential form of the first law says

dE = d̄Q− d̄W

= d̄Q− p dV + µdN . (2.24)

The quantity µ is called the chemical potential. Here we shall be interested in the case dN = 0 so the last term will
not enter into our considerations. We ask: how much heat is required in order to make an infinitesimal change in
temperature, pressure, or volume? We start by rewriting eqn. 2.24 as

d̄Q = dE + p dV − µdN . (2.25)

We now must roll up our sleeves and do some work with partial derivatives.

• (T, V,N) systems : If the state variables are (T, V,N), we write

dE =

(
∂E

∂T

)

V,N

dT +

(
∂E

∂V

)

T,N

dV +

(
∂E

∂N

)

T,V

dN . (2.26)

Then

d̄Q =

(
∂E

∂T

)

V,N

dT +

[(
∂E

∂V

)

T,N

+ p

]
dV +

[(
∂E

∂N

)

T,V

− µ

]
dN . (2.27)

• (T, p,N) systems : If the state variables are (T, p,N), we write

dE =

(
∂E

∂T

)

p,N

dT +

(
∂E

∂p

)

T,N

dp+

(
∂E

∂N

)

T,p

dN . (2.28)

We also write

dV =

(
∂V

∂T

)

p,N

dT +

(
∂V

∂p

)

T,N

dp+

(
∂V

∂N

)

T,p

dN . (2.29)

Then

d̄Q =

[(
∂E

∂T

)

p,N

+ p

(
∂V

∂T

)

p,N

]
dT +

[(
∂E

∂p

)

T,N

+ p

(
∂V

∂p

)

T,N

]
dp

+

[(
∂E

∂N

)

T,p

+ p

(
∂V

∂N

)

T,p

− µ

]
dN .

(2.30)

• (p, V,N) systems : If the state variables are (p, V,N), we write

dE =

(
∂E

∂p

)

V,N

dp+

(
∂E

∂V

)

p,N

dV +

(
∂E

∂N

)

p,V

dN . (2.31)

Then

d̄Q =

(
∂E

∂p

)

V,N

dp+

[(
∂E

∂V

)

p,N

+ p

]
dV +

[(
∂E

∂N

)

p,V

− µ

]
dN . (2.32)
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cp c̃p cp c̃p
SUBSTANCE (J/molK) (J/gK) SUBSTANCE (J/molK) (J/g K)

Air 29.07 1.01 H2O (25◦ C) 75.34 4.181
Aluminum 24.2 0.897 H2O (100◦+ C) 37.47 2.08

Copper 24.47 0.385 Iron 25.1 0.450
CO2 36.94 0.839 Lead 26.4 0.127

Diamond 6.115 0.509 Lithium 24.8 3.58
Ethanol 112 2.44 Neon 20.786 1.03

Gold 25.42 0.129 Oxygen 29.38 0.918
Helium 20.786 5.193 Paraffin (wax) 900 2.5

Hydrogen 28.82 5.19 Uranium 27.7 0.116
H2O (−10◦ C) 38.09 2.05 Zinc 25.3 0.387

Table 2.1: Specific heat (at 25◦ C, unless otherwise noted) of some common substances. (Source: Wikipedia.)

The heat capacity of a body, C, is by definition the ratio d̄Q/dT of the amount of heat absorbed by the body to the
associated infinitesimal change in temperature dT . The heat capacity will in general be different if the body is
heated at constant volume or at constant pressure. Setting dV = 0 gives, from eqn. 2.27,

CV,N =

(
d̄Q

dT

)

V,N

=

(
∂E

∂T

)

V,N

. (2.33)

Similarly, if we set dp = 0, then eqn. 2.30 yields

Cp,N =

(
d̄Q

dT

)

p,N

=

(
∂E

∂T

)

p,N

+ p

(
∂V

∂T

)

p,N

. (2.34)

Unless explicitly stated as otherwise, we shall assume that N is fixed, and will write CV for CV,N and Cp for Cp,N .

The units of heat capacity are energy divided by temperature, e.g. J/K. The heat capacity is an extensive quantity,
scaling with the size of the system. If we divide by the number of moles N/NA, we obtain the molar heat capacity,
sometimes called the molar specific heat: c = C/ν, where ν = N/NA is the number of moles of substance. Specific
heat is also sometimes quoted in units of heat capacity per gram of substance. We shall define

c̃ =
C

mN
=

c

M
=

heat capacity per mole

mass per mole
. (2.35)

Here m is the mass per particle and M is the mass per mole: M = NAm.

Suppose we raise the temperature of a body from T = T
A

to T = T
B

. How much heat is required? We have

Q =

TB∫

TA

dT C(T ) , (2.36)

where C = CV or C = Cp depending on whether volume or pressure is held constant. For ideal gases, as we shall
discuss below, C(T ) is constant, and thus

Q = C(TB − TA) =⇒ TB = TA +
Q

C
. (2.37)
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Figure 2.8: Heat capacity CV for one mole of hydrogen (H2) gas. At the lowest temperatures, only translational
degrees of freedom are relevant, and f = 3. At around 200 K, two rotational modes are excitable and f = 5. Above
1000 K, the vibrational excitations begin to contribute. Note the logarithmic temperature scale. (Data from H. W.
Wooley et al., Jour. Natl. Bureau of Standards, 41, 379 (1948).)

In metals at very low temperatures one finds C = γT , where γ is a constant5. We then have

Q =

TB∫

TA

dT C(T ) = 1
2γ
(
T 2

B
− T 2

A

)
(2.38)

TB =
√
T 2

A + 2γ−1Q . (2.39)

2.5.3 Ideal gases

The ideal gas equation of state is pV = NkBT . In order to invoke the formulae in eqns. 2.27, 2.30, and 2.32, we
need to know the state function E(T, V,N). A landmark experiment by Joule in the mid-19th century established
that the energy of a low density gas is independent of its volume6. Essentially, a gas at temperature T was allowed
to freely expand from one volume V to a larger volume V ′ > V , with no added heat Q and no work W done.
Therefore the energy cannot change. What Joule found was that the temperature also did not change. This means
that E(T, V,N) = E(T,N) cannot be a function of the volume.

Since E is extensive, we conclude that
E(T, V,N) = ν ε(T ) , (2.40)

where ν = N/NA is the number of moles of substance. Note that ν is an extensive variable. From eqns. 2.33 and
2.34, we conclude

CV (T ) = ν ε′(T ) , Cp(T ) = CV (T ) + νR , (2.41)

where we invoke the ideal gas law to obtain the second of these. Empirically it is found that CV (T ) is temperature
independent over a wide range of T , far enough from boiling point. We can then writeCV = ν cV , where ν ≡ N/NA

is the number of moles, and where cV is the molar heat capacity. We then have

cp = cV +R , (2.42)

5In most metals, the difference between C
V

and Cp is negligible.
6See the description in E. Fermi, Thermodynamics, pp. 22-23.
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Figure 2.9: Molar heat capacities cV for three solids. The solid curves correspond to the predictions of the Debye
model, which we shall discuss later.

where R = NAkB = 8.31457 J/molK is the gas constant. We denote by γ = cp/cV the ratio of specific heat at
constant pressure and at constant volume.

From the kinetic theory of gases, one can show that

monatomic gases: cV = 3
2R , cp = 5

2R , γ = 5
3

diatomic gases: cV = 5
2R , cp = 7

2R , γ = 7
5

polyatomic gases: cV = 3R , cp = 4R , γ = 4
3 .

Digression : kinetic theory of gases

We will conclude in general from noninteracting classical statistical mechanics that the specific heat of a substance
is cv = 1

2fR, where f is the number of phase space coordinates, per particle, for which there is a quadratic kinetic
or potential energy function. For example, a point particle has three translational degrees of freedom, and the
kinetic energy is a quadratic function of their conjugate momenta: H0 = (p2

x +p2
y +p2

z)/2m. Thus, f = 3. Diatomic
molecules have two additional rotational degrees of freedom – we don’t count rotations about the symmetry axis
– and their conjugate momenta also appear quadratically in the kinetic energy, leading to f = 5. For polyatomic
molecules, all three Euler angles and their conjugate momenta are in play, and f = 6.

The reason that f = 5 for diatomic molecules rather than f = 6 is due to quantum mechanics. While translational
eigenstates form a continuum, or are quantized in a box with ∆kα = 2π/Lα being very small, since the dimensions
Lα are macroscopic, angular momentum, and hence rotational kinetic energy, is quantized. For rotations about a
principal axis with very low moment of inertia I , the corresponding energy scale ~

2/2I is very large, and a high
temperature is required in order to thermally populate these states. Thus, degrees of freedom with a quantization
energy on the order or greater than ε0 are ‘frozen out’ for temperatures T <∼ ε0/kB

.

In solids, each atom is effectively connected to its neighbors by springs; such a potential arises from quantum
mechanical and electrostatic consideration of the interacting atoms. Thus, each degree of freedom contributes
to the potential energy, and its conjugate momentum contributes to the kinetic energy. This results in f = 6.
Assuming only lattice vibrations, then, the high temperature limit for cV (T ) for any solid is predicted to be 3R =
24.944 J/molK. This is called the Dulong-Petit law. The high temperature limit is reached above the so-called Debye
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temperature, which is roughly proportional to the melting temperature of the solid.

In table 2.1, we list cp and c̃p for some common substances at T = 25◦ C (unless otherwise noted). Note that

cp for the monatomic gases He and Ne is to high accuracy given by the value from kinetic theory, cp = 5
2R =

20.7864 J/molK. For the diatomic gases oxygen (O2) and air (mostly N2 and O2), kinetic theory predicts cp =
7
2R = 29.10, which is close to the measured values. Kinetic theory predicts cp = 4R = 33.258 for polyatomic gases;
the measured values for CO2 and H2O are both about 10% higher.

2.5.4 Adiabatic transformations of ideal gases

Assuming dN = 0 and E = ν ε(T ), eqn. 2.27 tells us that

d̄Q = CV dT + p dV . (2.43)

Invoking the ideal gas law to write p = νRT/V , and remembering CV = ν cV , we have, setting d̄Q = 0,

dT

T
+
R

cV

dV

V
= 0 . (2.44)

We can immediately integrate to obtain

d̄Q = 0 =⇒





TV γ−1 = constant

pV γ = constant

T γp1−γ = constant

(2.45)

where the second two equations are obtained from the first by invoking the ideal gas law. These are all adiabatic
equations of state. Note the difference between the adiabatic equation of state d(pV γ) = 0 and the isothermal
equation of state d(pV ) = 0. Equivalently, we can write these three conditions as

V 2 T f = V 2
0 T

f
0 , pf V f+2 = pf

0 V
f+2
0 , T f+2 p−2 = T f+2

0 p−2
0 . (2.46)

It turns out that air is a rather poor conductor of heat. This suggests the following model for an adiabatic atmosphere.
The hydrostatic pressure decrease associated with an increase dz in height is dp = −̺g dz, where ̺ is the density
and g the acceleration due to gravity. Assuming the gas is ideal, the density can be written as ̺ = Mp/RT , where
M is the molar mass. Thus,

dp

p
= −Mg

RT
dz . (2.47)

If the height changes are adiabatic, then, from d(T γp1−γ) = 0, we have

dT =
γ − 1

γ

Tdp

p
= −γ − 1

γ

Mg

R
dz , (2.48)

with the solution

T (z) = T0 −
γ − 1

γ

Mg

R
z =

(
1 − γ − 1

γ

z

λ

)
T0 , (2.49)

where T0 = T (0) is the temperature at the earth’s surface, and

λ =
RT0

Mg
. (2.50)

WithM = 28.88 g and γ = 7
5 for air, and assuming T0 = 293 K, we find λ = 8.6 km, and dT/dz = −(1−γ−1)T0/λ =

−9.7 K/km. Note that in this model the atmosphere ends at a height zmax = γλ/(γ − 1) = 30 km.
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Again invoking the adiabatic equation of state, we can find p(z):

p(z)

p0

=

(
T

T0

) γ
γ−1

=

(
1 − γ − 1

γ

z

λ

) γ
γ−1

(2.51)

Recall that

ex = lim
k→∞

(
1 +

x

k

)k
. (2.52)

Thus, in the limit γ → 1, where k = γ/(γ− 1) → ∞, we have p(z) = p0 exp(−z/λ). Finally, since ̺ ∝ p/T from the
ideal gas law, we have

̺(z)

̺0

=

(
1 − γ − 1

γ

z

λ

) 1
γ−1

. (2.53)

2.5.5 Adiabatic free expansion

Consider the situation depicted in Fig. 2.10. A quantity (ν moles) of gas in equilibrium at temperature T and
volume V1 is allowed to expand freely into an evacuated chamber of volume V2 by the removal of a barrier.
Clearly no work is done on or by the gas during this process, hence W = 0. If the walls are everywhere insulating,
so that no heat can pass through them, then Q = 0 as well. The First Law then gives ∆E = Q−W = 0, and there
is no change in energy.

If the gas is ideal, then since E(T, V,N) = NcV T , then ∆E = 0 gives ∆T = 0, and there is no change in tem-
perature. (If the walls are insulating against the passage of heat, they must also prevent the passage of particles,
so ∆N = 0.) There is of course a change in volume: ∆V = V2, hence there is a change in pressure. The initial
pressure is p = NkBT/V1 and the final pressure is p′ = NkBT/(V1 + V2).

If the gas is nonideal, then the temperature will in general change. Suppose, for example, that E(T, V,N) =
αV xN1−x T y, where α, x, and y are constants. This form is properly extensive: if V andN double, thenE doubles.
If the volume changes from V to V ′ under an adiabatic free expansion, then we must have, from ∆E = 0,

(
V

V ′

)x

=

(
T ′

T

)y

=⇒ T ′ = T ·
(
V

V ′

)x/y

. (2.54)

If x/y > 0, the temperature decreases upon the expansion. If x/y < 0, the temperature increases. Without an
equation of state, we can’t say what happens to the pressure.

Adiabatic free expansion of a gas is a spontaneous process, arising due to the natural internal dynamics of the system.
It is also irreversible. If we wish to take the gas back to its original state, we must do work on it to compress it. If
the gas is ideal, then the initial and final temperatures are identical, so we can place the system in thermal contact
with a reservoir at temperature T and follow a thermodynamic path along an isotherm. The work done on the gas
during compression is then

W = −Nk
B
T

Vi∫

Vf

dV

V
= Nk

B
T ln

(
Vf

Vi

)
= Nk

B
T ln

(
1 +

V2

V1

)
(2.55)

The work done by the gas is W =
∫
p dV = −W . During the compression, heat energy Q = W < 0 is transferred to

the gas from the reservoir. Thus, Q = W > 0 is given off by the gas to its environment.
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Figure 2.10: In the adiabatic free expansion of a gas, there is volume expansion with no work or heat exchange
with the environment: ∆E = Q = W = 0.

2.6 Heat Engines and the Second Law of Thermodynamics

2.6.1 There’s no free lunch so quit asking

A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be represented
as a succession of equilibrium states: A → B → C · · · → A. The net result of such a cyclic process is to convert
heat into mechanical work, or vice versa.

For a system in equilibrium at temperature T , there is a thermodynamically large amount of internal energy
stored in the random internal motion of its constituent particles. Later, when we study statistical mechanics, we
will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes 1

2kB
T to the total internal energy.

An immense body in equilibrium at temperature T has an enormous heat capacity C, hence extracting a finite
quantity of heat Q from it results in a temperature change ∆T = −Q/C which is utterly negligible. Such a body
is called a heat bath, or thermal reservoir. A perfect engine would, in each cycle, extract an amount of heat Q from the
bath and convert it into work. Since ∆E = 0 for a cyclic process, the First Law then gives W = Q. This situation is
depicted schematically in Fig. 2.11. One could imagine running this process virtually indefinitely, slowly sucking
energy out of an immense heat bath, converting the random thermal motion of its constituent molecules into
useful mechanical work. Sadly, this is not possible:

A transformation whose only final result is to extract heat from a source at fixed temperature and
transform that heat into work is impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to a body at
higher temperature is impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second Law of
Thermodynamics.
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Figure 2.11: A perfect engine would extract heat Q from a thermal reservoir at some temperature T and convert it
into useful mechanical work W . This process is alas impossible, according to the Second Law of thermodynamics.
The inverse process, where work W is converted into heat Q, is always possible.

2.6.2 Engines and refrigerators

While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from one
thermal reservoir to another one, at lower temperature, and to convert some of that heat into work. This is what
an engine does. The energy accounting for one cycle of the engine is depicted in the left hand panel of Fig. 2.12.
An amount of heat Q2 > 0 is extracted- from the reservoir at temperature T2. Since the reservoir is assumed to
be enormous, its temperature change ∆T2 = −Q2/C2 is negligible, and its temperature remains constant – this
is what it means for an object to be a reservoir. A lesser amount of heat, Q1, with 0 < Q1 < Q2, is deposited
in a second reservoir at a lower temperature T1. Its temperature change ∆T1 = +Q1/C1 is also negligible. The
difference W = Q2 − Q1 is extracted as useful work. We define the efficiency, η, of the engine as the ratio of the
work done to the heat extracted from the upper reservoir, per cycle:

η =
W

Q2

= 1 − Q1

Q2

. (2.56)

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper reservoir
over many cycles of the engine. Thus, the efficiency is proportional to the ratio of the work done to the cost of the
fuel.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat Q1 is
extracted from the lower reservoir – the inside of our refrigerator – and is pumped into the upper reservoir. As
Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of our cycle. Some amount
of work W must be performed on the refrigerator in order for it to extract the heat Q1. Since ∆E = 0 for the cycle,
a heat Q2 = W +Q1 must be deposited into the upper reservoir during each cycle. The analog of efficiency here
is called the coefficient of refrigeration, κ, defined as

κ =
Q1

W =
Q1

Q2 −Q1

. (2.57)

Thus, κ is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

Please note the deliberate notation here. I am using symbols Q and W to denote the heat supplied to the engine
(or refrigerator) and the work done by the engine, respectively, and Q and W to denote the heat taken from the
engine and the work done on the engine.

A perfect engine has Q1 = 0 and η = 1; a perfect refrigerator has Q1 = Q2 and κ = ∞. Both violate the Second
Law. Sadi Carnot7 (1796 – 1832) realized that a reversible cyclic engine operating between two thermal reservoirs

7Carnot died during cholera epidemic of 1832. His is one of the 72 names engraved on the Eiffel Tower.
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Figure 2.12: An engine (left) extracts heat Q2 from a reservoir at temperature T2 and deposits a smaller amount of
heat Q1 into a reservoir at a lower temperature T1, during each cycle. The differenceW = Q2 −Q1 is transformed
into mechanical work. A refrigerator (right) performs the inverse process, drawing heat Q1 from a low tempera-
ture reservoir and depositing heat Q2 = Q1 +W into a high temperature reservoir, where W is the mechanical (or
electrical) work done per cycle.

must produce the maximum amount of work W , and that the amount of work produced is independent of the
material properties of the engine. We call any such engine a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations
that the efficiency ηC can only be a function of the temperatures T1 and T2: ηC = ηC(T1, T2). We can then define

T1

T2

≡ 1 − η
C
(T1, T2) . (2.58)

Below, in §2.6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this
temperature scale coincides precisely with the ideal gas temperature scale from §2.2.4.

2.6.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this,
let’s suppose that an amazing wonder engine has an efficiency even greater than that of the Carnot engine. A key
feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating
a Carnot refrigerator. Let’s use our notional wonder engine to drive a Carnot refrigerator, as depicted in Fig. 2.13.

We assume that
W

Q2

= ηwonder > ηCarnot =
W ′

Q′
2

. (2.59)

But from the figure, we have W = W ′, and therefore the heat energy Q′
2 −Q2 transferred to the upper reservoir is

positive. From

W = Q2 −Q1 = Q′
2 −Q′

1 = W ′ , (2.60)

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on
the system:

Q′
2 −Q2 = Q′

1 −Q1 > 0 . (2.61)
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Figure 2.13: A wonder engine driving a Carnot refrigerator.

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second Law is
correct – Lord Kelvin articulated it, and who are we to argue with a Lord? – the wonder engine cannot exist.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency, which is
the efficiency of a Carnot engine. For an irreversible engine, we must have

η =
W

Q2

= 1 − Q1

Q2

≤ 1 − T1

T2

= ηC . (2.62)

Thus,
Q2

T2

− Q1

T1

≤ 0 . (2.63)

2.6.4 The Carnot cycle

Let us now consider a specific cycle, known as the Carnot cycle, depicted in Fig. 2.14. The cycle consists of two
adiabats and two isotherms. The work done per cycle is simply the area inside the curve on our p− V diagram:

W =

∮
p dV . (2.64)

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system obeys the First
Law,

dE = d̄Q− d̄W = d̄Q− p dV . (2.65)

We will now assume that the working material is an ideal gas, and we compute W as well as Q1 and Q2 to find
the efficiency of this cycle. In order to do this, we will rely upon the ideal gas equations,

E =
νRT

γ − 1
, pV = νRT , (2.66)

where γ = cp/cv = 1 + 2
f , where f is the effective number of molecular degrees of freedom contributing to the

internal energy. Recall f = 3 for monatomic gases, f = 5 for diatomic gases, and f = 6 for polyatomic gases. The
finite difference form of the first law is

∆E = Ef − Ei = Qif −Wif , (2.67)

where i denotes the initial state and f the final state.
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Figure 2.14: The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

AB: This stage is an isothermal expansion at temperature T2. It is the ‘power stroke’ of the engine. We have

WAB =

VB∫

VA

dV
νRT2

V
= νRT2 ln

(
VB

VA

)
(2.68)

E
A

= E
B

=
νRT2

γ − 1
, (2.69)

hence

QAB = ∆EAB +WAB = νRT2 ln

(
VB

VA

)
. (2.70)

BC: This stage is an adiabatic expansion. We have

QBC = 0 (2.71)

∆EBC = EC − EB =
νR

γ − 1
(T1 − T2) . (2.72)

The energy change is negative, and the heat exchange is zero, so the engine still does some work during this
stage:

W
BC

= Q
BC

− ∆E
BC

=
νR

γ − 1
(T2 − T1) . (2.73)

CD: This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion, mutatis
mutandis:

WCD =

VD∫

VC

dV
νRT2

V
= νRT1 ln

(
VD

VC

)
(2.74)

E
C

= E
D

=
νRT1

γ − 1
, (2.75)

hence

Q
CD

= ∆E
CD

+W
CD

= νRT1 ln

(
VD

V
C

)
. (2.76)
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DA: This last stage is an adiabatic compression, and we may draw on the results from the adiabatic expansion in
BC:

QDA = 0 (2.77)

∆EDA = ED − EA =
νR

γ − 1
(T2 − T1) . (2.78)

The energy change is positive, and the heat exchange is zero, so work is done on the engine:

W
DA

= Q
DA

− ∆E
DA

=
νR

γ − 1
(T1 − T2) . (2.79)

We now add up all the work values from the individual stages to get for the cycle

W = W
AB

+W
BC

+W
CD

+W
DA

= νRT2 ln

(
V

B

V
A

)
+ νRT1 ln

(
V

D

V
C

)
.

(2.80)

Since we are analyzing a cyclic process, we must have ∆E = 0, we must have Q = W , which can of course be
verified explicitly, by computing Q = Q

AB
+Q

BC
+Q

CD
+Q

DA
. To finish up, recall the adiabatic ideal gas equation

of state, d(TV γ−1) = 0. This tells us that

T2 V
γ−1
B

= T1 V
γ−1
C

(2.81)

T2 V
γ−1
A = T1 V

γ−1
D . (2.82)

Dividing these two equations, we find
VB

V
A

=
VC

V
D

, (2.83)

and therefore

W = νR(T2 − T1) ln

(
VB

VA

)
(2.84)

Q
AB

= νRT2 ln

(
V

B

V
A

)
. (2.85)

Finally, the efficiency is given by the ratio of these two quantities:

η =
W

Q
AB

= 1 − T1

T2

. (2.86)

2.6.5 The Stirling cycle

Many other engine cycles are possible. The Stirling cycle, depicted in Fig. 2.15, consists of two isotherms and two
isochores. Recall the isothermal ideal gas equation of state, d(pV ) = 0. Thus, for an ideal gas Stirling cycle, we
have

p
A
V1 = p

B
V2 , p

D
V1 = p

C
V2 , (2.87)

which says
pB

pA

=
pC

pD

=
V1

V2

. (2.88)
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Figure 2.15: A Stirling cycle consists of two isotherms (blue) and two isochores (green).

AB: This isothermal expansion is the power stroke. Assuming ν moles of ideal gas throughout, we have pV =
νRT2 = p1V1, hence

W
AB

=

V2∫

V1

dV
νRT2

V
= νRT2 ln

(
V2

V1

)
. (2.89)

Since AB is an isotherm, we have E
A

= E
B

, and from ∆E
AB

= 0 we conclude Q
AB

= W
AB

.

BC: Isochoric cooling. Since dV = 0 we have W
BC

= 0. The energy change is given by

∆EBC = EC − EB =
νR(T1 − T2)

γ − 1
, (2.90)

which is negative. Since W
BC

= 0, we have Q
BC

= ∆E
BC

.

CD: Isothermal compression. Clearly

W
CD

=

V1∫

V2

dV
νRT1

V
= −νRT1 ln

(
V2

V1

)
. (2.91)

Since CD is an isotherm, we have EC = ED, and from ∆ECD = 0 we conclude QCD = WCD.

DA: Isochoric heating. Since dV = 0 we have WDA = 0. The energy change is given by

∆EDA = EA − ED =
νR(T2 − T1)

γ − 1
, (2.92)

which is positive, and opposite to ∆E
BC

. Since W
DA

= 0, we have Q
DA

= ∆E
DA

.

We now add up all the work contributions to obtain

W = WAB +WBC +WCD +WDA

= νR(T2 − T1) ln

(
V2

V1

)
.

(2.93)
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Figure 2.16: An Otto cycle consists of two adiabats (dark red) and two isochores (green).

The cycle efficiency is once again

η =
W

QAB

= 1 − T1

T2

. (2.94)

2.6.6 The Otto and Diesel cycles

The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two
isochores, and is depicted in Fig. 2.16. Assuming an ideal gas, along the adiabats we have d(pV γ) = 0. Thus,

p
A
V γ

1 = p
B
V γ

2 , p
D
V γ

1 = p
C
V γ

2 , (2.95)

which says
pB

pA

=
pC

pD

=

(
V1

V2

)γ

. (2.96)

AB: Adiabatic expansion, the power stroke. The heat transfer is Q
AB

= 0, so from the First Law we have W
AB

=
−∆EAB = EA − EB, thus

W
AB

=
pAV1 − pBV2

γ − 1
=
pAV1

γ − 1

[
1 −

(
V1

V2

)γ−1
]
. (2.97)

Note that this result can also be obtained from the adiabatic equation of state pV γ = pAV
γ
1 :

W
AB

=

V2∫

V1

p dV = p
A
V γ

1

V2∫

V1

dV V −γ =
p

A
V1

γ − 1

[
1 −

(
V1

V2

)γ−1
]
. (2.98)

BC: Isochoric cooling (exhaust); dV = 0 hence W
BC

= 0. The heat Q
BC

absorbed is then

QBC = EC − EB =
V2

γ − 1
(pC − pB) . (2.99)

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.
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Figure 2.17: A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore (green).

CD: Adiabatic compression; QCD = 0 and WCD = EC − ED:

WCD =
pCV2 − pDV1

γ − 1
= − pDV1

γ − 1

[
1 −

(
V1

V2

)γ−1
]
. (2.100)

DA: Isochoric heating, i.e. the combustion of the gas. As with BC we have dV = 0, and thus WDA = 0. The heat
Q

DA
absorbed by the gas is then

Q
DA

= E
A
− E

D
=

V1

γ − 1
(p

A
− p

D
) . (2.101)

The total work done per cycle is then

W = W
AB

+W
BC

+W
CD

+W
DA

=
(p

A
− p

D
)V1

γ − 1

[
1 −

(
V1

V2

)γ−1
]
,

(2.102)

and the efficiency is defined to be

η ≡ W

Q
DA

= 1 −
(
V1

V2

)γ−1

. (2.103)

The ratio V2/V1 is called the compression ratio. We can make our Otto cycle more efficient simply by increasing the
compression ratio. The problem with this scheme is that if the fuel mixture becomes too hot, it will spontaneously
‘preignite’, and the pressure will jump up before point D in the cycle is reached. A Diesel engine avoids preignition
by compressing the air only, and then later spraying the fuel into the cylinder when the air temperature is sufficient
for fuel ignition. The rate at which fuel is injected is adjusted so that the ignition process takes place at constant
pressure. Thus, in a Diesel engine, step DA is an isobar. The compression ratio is r ≡ VB/VD, and the cutoff ratio
is s ≡ V

A
/V

D
. This refinement of the Otto cycle allows for higher compression ratios (of about 20) in practice, and

greater engine efficiency.
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For the Diesel cycle, we have, briefly,

W = p
A
(V

A
− V

D
) +

p
A
V

A
− p

B
V

B

γ − 1
+
p

C
V

C
− p

D
V

D

γ − 1

=
γ pA(VA − VD)

γ − 1
− (pB − pC)VB

γ − 1

(2.104)

and

Q
DA

=
γ p

A
(V

A
− V

D
)

γ − 1
. (2.105)

To find the efficiency, we will need to eliminate pB and pC in favor of pA using the adiabatic equation of state
d(pV γ) = 0. Thus,

p
B

= p
A
·
(
V

A

V
B

)γ
, p

C
= p

A
·
(
V

D

V
B

)γ
, (2.106)

where we’ve used pD = pA and VC = VB. Putting it all together, the efficiency of the Diesel cycle is

η =
W

Q
DA

= 1 − 1

γ

r1−γ(sγ − 1)

s− 1
. (2.107)

2.6.7 The Joule-Brayton cycle

Our final example is the Joule-Brayton cycle, depicted in Fig. 2.18, consisting of two adiabats and two isobars.
Along the adiabats we have Thus,

p2 V
γ
A

= p1 V
γ
D

, p2 V
γ
B

= p1 V
γ
C
, (2.108)

which says

V
D

V
A

=
V

C

V
B

=

(
p2

p1

)γ−1

. (2.109)

AB: This isobaric expansion at p = p2 is the power stroke. We have

W
AB

=

VB∫

VA

dV p2 = p2 (V
B
− V

A
) (2.110)

∆EAB = EB − EA =
p2 (V

B
− V

A
)

γ − 1
(2.111)

Q
AB

= ∆E
AB

+W
AB

=
γ p2 (V

B
− V

A
)

γ − 1
. (2.112)

BC: Adiabatic expansion; Q
BC

= 0 and W
BC

= E
B
− E

C
. The work done by the gas is

W
BC

=
p2VB

− p1VC

γ − 1
=
p2VB

γ − 1

(
1 − p1

p2

· VC

V
B

)

=
p2 VB

γ − 1

[
1 −

(
p1

p2

)1−γ−1]
.

(2.113)
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Figure 2.18: A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

CD: Isobaric compression at p = p1.

WCD =

VD∫

VC

dV p1 = p1 (VD − VC) = −p2 (VB − VA)

(
p1

p2

)1−γ−1

(2.114)

∆E
CD

= E
D
− E

C
=
p1 (V

D
− V

C
)

γ − 1
(2.115)

Q
CD

= ∆E
CD

+W
CD

= − γ p2

γ − 1
(V

B
− V

A
)

(
p1

p2

)1−γ−1

. (2.116)

BC: Adiabatic expansion; QDA = 0 and WDA = ED − EA. The work done by the gas is

W
DA

=
p1VD

− p2VA

γ − 1
= − p2VA

γ − 1

(
1 − p1

p2

· VD

V
A

)

= −p2 VA

γ − 1

[
1 −

(
p1

p2

)1−γ−1]
.

(2.117)

The total work done per cycle is then

W = W
AB

+W
BC

+W
CD

+W
DA

=
γ p2 (V

B
− V

A
)

γ − 1

[
1 −

(
p1

p2

)1−γ−1]
(2.118)

and the efficiency is defined to be

η ≡ W

QAB

= 1 −
(
p1

p2

)1−γ−1

. (2.119)
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2.6.8 Carnot engine at maximum power output

While the Carnot engine described above in §2.6.4 has maximum efficiency, it is practically useless, because the
isothermal processes must take place infinitely slowly in order for the working material to remain in thermal
equilibrium with each reservoir. Thus, while the work done per cycle is finite, the cycle period is infinite, and the
engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea8 is as follows. During
the isothermal expansion stage, the working material is maintained at a temperature T2w < T2. The temperature
difference between the working material and the hot reservoir drives a thermal current,

d̄Q2

dt
= κ2 (T2 − T2w) . (2.120)

Here, κ2 is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied by a
geometric parameter (which is the ratio of the total wall area to its thickness). Similarly, during the isothermal
compression, the working material is maintained at a temperature T1w > T1, which drives a thermal current to
the cold reservoir,

d̄Q1

dt
= κ1 (T1w − T1) . (2.121)

Now let us assume that the upper isothermal stage requires a duration ∆t2 and the lower isotherm a duration
∆t1. Then

Q2 = κ2 ∆t2 (T2 − T2w) (2.122)

Q1 = κ1 ∆t1 (T1w − T1) . (2.123)

Since the engine is reversible, we must have
Q1

T1w

=
Q2

T2w

, (2.124)

which says

∆t1
∆t2

=
κ2 T2w (T1w − T1)

κ1 T1w (T2 − T2w)
. (2.125)

The power is

P =
Q2 −Q1

(1 + α) (∆t1 + ∆t2)
, (2.126)

where we assume that the adiabatic stages require a combined time of α (∆t1 + ∆t2). Thus, we find

P =
κ1 κ2 (T2w − T1w) (T1w − T1) (T2 − T2w)

(1 + α) [κ1 T2 (T1w − T1) + κ2 T1 (T2 − T2w) + (κ2 − κ1) (T1w − T1) (T2 − T2w)]
(2.127)

We optimize the engine by maximizing P with respect to the temperatures T1w and T2w. This yields

T2w = T2 −
T2 −

√
T1T2

1 +
√
κ2/κ1

(2.128)

T1w = T1 +

√
T1T2 − T1

1 +
√
κ1/κ2

. (2.129)

8See F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
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Power source T1 (◦C) T2 (◦C) η
Carnot

η (theor.) η (obs.)

West Thurrock (UK)
Coal Fired Steam Plant ∼ 25 565 0.641 0.40 0.36
CANDU (Canada)
PHW Nuclear Reactor ∼ 25 300 0.480 0.28 0.30
Larderello (Italy)
Geothermal Steam Plant ∼ 80 250 0.323 0.175 0.16

Table 2.2: Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn (1975).

The efficiency at maximum power is then

η =
Q2 −Q1

Q2

= 1 − T1w

T2w

= 1 −
√
T1

T2

. (2.130)

One also finds at maximum power

∆t2
∆t1

=

√
κ1

κ2

. (2.131)

Finally, the maximized power is

Pmax =
κ1κ2

1 + α

(√
T2 −

√
T1√

κ1 +
√
κ2

)2

. (2.132)

Table 2.2, taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical Carnot
cycle, given by eqn. 2.130, rather accurately predicts the efficiencies of functioning power plants.

2.7 The Entropy

2.7.1 Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures T1 and T2 must
satisfy

Q1

T1

+
Q2

T2

≤ 0 , (2.133)

with the equality holding for reversible processes. This is a restatement of eqn. 2.63, after writing Q1 = −Q1 for
the heat transferred to the engine from reservoir #1. Consider now an arbitrary curve in the p − V plane. We can
describe such a curve, to arbitrary accuracy, as a combination of Carnot cycles, as shown in Fig. 2.19. Each little
Carnot cycle consists of two adiabats and two isotherms. We then conclude

∑

i

Qi

Ti

−→
∮

C

d̄Q

T
≤ 0 , (2.134)

with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could then define a
new state function, which he called the entropy, S, that depended only on the initial and final states of a reversible
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Figure 2.19: An arbitrarily shaped cycle in the p − V plane can be decomposed into a number of smaller Carnot
cycles. Red curves indicate isotherms and blue curves adiabats, with γ = 5

3 .

process:

dS =
d̄Q

T
=⇒ SB − SA =

B∫

A

d̄Q

T
. (2.135)

Since Q is extensive, so is S; the units of entropy are [S] = J/K.

2.7.2 The Third Law of Thermodynamics

Eqn. 2.135 determines the entropy up to a constant. By choosing a standard state Υ, we can define SΥ = 0, and
then by taking A = Υ in the above equation, we can define the absolute entropy S for any state. However, it
turns out that this seemingly arbitrary constant SΥ in the entropy does have consequences, for example in the
theory of gaseous equilibrium. The proper definition of entropy, from the point of view of statistical mechanics,
will lead us to understand how the zero temperature entropy of a system is related to its quantum mechanical
ground state degeneracy. Walther Nernst, in 1906, articulated a principle which is sometimes called the Third
Law of Thermodynamics,

The entropy of every system at absolute zero temperature always vanishes.

Again, this is not quite correct, and quantum mechanics tells us that S(T = 0) = kB ln g, where g is the ground
state degeneracy. Nernst’s law holds when g = 1.

We can combine the First and Second laws to write

dE + d̄W = d̄Q ≤ T dS , (2.136)

where the equality holds for reversible processes.
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2.7.3 Entropy changes in cyclic processes

For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: ∆S
CYC

= 0. This
is because the entropy S is a state function, with a unique value for every equilibrium state. A cyclical process
returns to the same equilibrium state, hence S must return as well to its corresponding value from the previous
cycle.

Consider now a general engine, as in Fig. 2.12. Let us compute the total entropy change in the entire Universe
over one cycle. We have

(∆S)TOTAL = (∆S)ENGINE + (∆S)HOT + (∆S)COLD , (2.137)

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir9. Clearly
(∆S)ENGINE = 0. The changes in the reservoir entropies are

(∆S)HOT =

∫

T=T2

d̄QHOT

T
= −Q2

T2

< 0 (2.138)

(∆S)
COLD

=

∫

T=T1

d̄QCOLD

T
=

Q1

T1

= −Q1

T1

> 0 , (2.139)

because the hot reservoir loses heat Q2 > 0 to the engine, and the cold reservoir gains heat Q1 = −Q1 > 0 from
the engine. Therefore,

(∆S)TOTAL = −
(
Q1

T1

+
Q2

T2

)
≥ 0 . (2.140)

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For an
irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

2.7.4 Gibbs-Duhem relation

Recall eqn. 2.6:

d̄W = −
∑

j

yj dXj −
∑

a

µa dNa . (2.141)

For reversible systems, we can therefore write

dE = T dS +
∑

j

yj dXj +
∑

a

µa dNa . (2.142)

This says that the energy E is a function of the entropy S, the generalized displacements {Xj}, and the particle
numbers {Na}:

E = E
(
S, {Xj}, {Na}

)
. (2.143)

Furthermore, we have

T =

(
∂E

∂S

)

{X
j
,Na}

, yj =

(
∂E

∂Xj

)

S,{X
i(6=j)

,Na}

, µa =

(
∂E

∂Na

)

S,{X
j
,N

b(6=a)
}

(2.144)

Since E and all its arguments are extensive, we have

λE = E
(
λS, {λXj}, {λNa}

)
. (2.145)

9We neglect any interfacial contributions to the entropy change, which will be small compared with the bulk entropy change in the ther-
modynamic limit of large system size.
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We now differentiate the LHS and RHS above with respect to λ, setting λ = 1 afterward. The result is

E = S
∂E

∂S
+
∑

j

Xj

∂E

∂Xj

+
∑

a

Na

∂E

∂Na

= TS +
∑

j

yj Xj +
∑

a

µaNa .
(2.146)

Mathematically astute readers will recognize this result as an example of Euler’s theorem for homogeneous func-
tions. Taking the differential of eqn. 2.146, and then subtracting eqn. 2.142, we obtain

S dT +
∑

j

Xj dyj +
∑

a

Na dµa = 0 . (2.147)

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written in terms of
all the intensive quantities alone. For example, for a single component system, we must have p = p(T, µ), which
follows from

S dT − V dp+N dµ = 0 . (2.148)

2.7.5 Entropy for an ideal gas

For an ideal gas, we have E = 1
2fNkB

T , and

dS =
1

T
dE +

p

T
dV − µ

T
dN

= 1
2fNkB

dT

T
+
p

T
dV +

(
1
2fkB

− µ

T

)
dN .

(2.149)

Invoking the ideal gas equation of state pV = Nk
B
T , we have

dS
∣∣
N

= 1
2fNkB

d lnT +Nk
B
d lnV . (2.150)

Integrating, we obtain
S(T, V,N) = 1

2fNkB lnT +NkB lnV + ϕ(N) , (2.151)

where ϕ(N) is an arbitrary function. Extensivity of S places restrictions on ϕ(N), so that the most general case is

S(T, V,N) = 1
2fNkB lnT +NkB ln

(
V

N

)
+Na , (2.152)

where a is a constant. Equivalently, we could write

S(E, V,N) = 1
2fNkB ln

(
E

N

)
+NkB ln

(
V

N

)
+Nb , (2.153)

where b = a − 1
2fkB

ln(1
2fkB

) is another constant. When we study statistical mechanics, we will find that for the
monatomic ideal gas the entropy is

S(T, V,N) = NkB

[
5
2 + ln

(
V

Nλ3
T

)]
, (2.154)

where λT =
√

2π~2/mk
B
T is the thermal wavelength, which involved Planck’s constant. Let’s now contrast two

illustrative cases.
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• Adiabatic free expansion – Suppose the volume freely expands from Vi to Vf = r Vi, with r > 1. Such an
expansion can be effected by a removal of a partition between two chambers that are otherwise thermally
insulated (see Fig. 2.10). We have already seen how this process entails

∆E = Q = W = 0 . (2.155)

But the entropy changes! According to eqn. 2.153, we have

∆S = Sf − Si = NkB ln r . (2.156)

• Reversible adiabatic expansion – If the gas expands quasistatically and reversibly, then S = S(E, V,N) holds
everywhere along the thermodynamic path. We then have, assuming dN = 0,

0 = dS = 1
2fNkB

dE

E
+Nk

B

dV

V

= Nk
B
d ln

(
V Ef/2

)
.

(2.157)

Integrating, we find

E

E0

=

(
V0

V

)2/f

. (2.158)

Thus,

Ef = r−2/f Ei ⇐⇒ Tf = r−2/f Ti . (2.159)

2.7.6 Example system

Consider a model thermodynamic system for which

E(S, V,N) =
aS3

NV
, (2.160)

where a is a constant. We have

dE = T dS − p dV + µdN , (2.161)

and therefore

T =

(
∂E

∂S

)

V,N

=
3aS2

NV
(2.162)

p = −
(
∂E

∂V

)

S,N

=
aS3

NV 2
(2.163)

µ =

(
∂E

∂N

)

S,V

= − aS3

N2V
. (2.164)

Choosing any two of these equations, we can eliminate S, which is inconvenient for experimental purposes. This
yields three equations of state,

T 3

p2
= 27a

V

N
,

T 3

µ2
= 27a

N

V
,

p

µ
= −N

V
, (2.165)

only two of which are independent.
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What about CV and Cp? To find CV , we recast eqn. 2.162 as

S =

(
NV T

3a

)1/2

. (2.166)

We then have

CV = T

(
∂S

∂T

)

V,N

=
1

2

(
NV T

3a

)1/2

=
N

18a

T 2

p
, (2.167)

where the last equality on the RHS follows upon invoking the first of the equations of state in eqn. 2.165. To find
Cp, we eliminate V from eqns. 2.162 and 2.163, obtaining T 2/p = 9aS/N . From this we obtain

Cp = T

(
∂S

∂T

)

p,N

=
2N

9a

T 2

p
. (2.168)

Thus, Cp/CV = 4.

We can derive still more. To find the isothermal compressibility κT = − 1
V

(
∂V
∂p

)
T,N

, use the first of the equations of

state in eqn. 2.165. To derive the adiabatic compressibility κS = − 1
V

(
∂V
∂p

)
S,N

, use eqn. 2.163, and then eliminate

the inconvenient variable S.

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done and
the engine efficiency. To do this, it is helpful to eliminate S in the expression for the energy, and to rewrite the
equation of state:

E = pV =

√
N

27a
V 1/2 T 3/2 , p =

√
N

27a

T 3/2

V 1/2
. (2.169)

We assume dN = 0 throughout. We now see that for isotherms,

dT = 0 :
E√
V

= constant (2.170)

Furthermore, since

d̄W
∣∣
T

=

√
N

27a
T 3/2 dV

V 1/2
= 2 dE

∣∣
T
, (2.171)

we conclude that

dT = 0 : Wif = 2(Ef − Ei) , Qif = Ef − Ei +Wif = 3(Ef − Ei) . (2.172)

For adiabats, eqn. 2.162 says d(TV ) = 0, and therefore

d̄Q = 0 : TV = constant ,
E

T
= constant , EV = constant (2.173)

as well as Wif = Ei − Ef . We can use these relations to derive the following:

E
B

=

√
V

B

V
A

E
A

, E
C

=
T1

T2

√
V

B

V
A

E
A

, E
D

=
T1

T2

E
A
. (2.174)
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Now we can write

WAB = 2(EB − EA) = 2

(√
V

B

VA

− 1

)
EA (2.175)

WBC = (EB − EC) =

√
VB

VA

(
1 − T1

T2

)
EA (2.176)

W
CD

= 2(E
D
− E

C
) = 2

T1

T2

(
1 −

√
V

B

V
A

)
E

A
(2.177)

WDA = (ED − EA) =

(
T1

T2

− 1

)
EA (2.178)

Adding up all the work, we obtain

W = W
AB

+W
BC

+W
CD

+W
DA

= 3

(√
VB

VA

− 1

)(
1 − T1

T2

)
EA .

(2.179)

Since

Q
AB

= 3(E
B
− E

A
) = 3

2WAB
= 3

(√
V

B

V
A

− 1

)
E

A
, (2.180)

we find once again

η =
W

Q
AB

= 1 − T1

T2

. (2.181)

2.7.7 Measuring the entropy of a substance

If we can measure the heat capacity CV (T ) or Cp(T ) of a substance as a function of temperature down to the
lowest temperatures, then we can measure the entropy. At constant pressure, for example, we have T dS = Cp dT ,
hence

S(p, T ) = S(p, T = 0) +

T∫

0

dT ′
Cp(T

′)

T ′
. (2.182)

The zero temperature entropy is S(p, T = 0) = k
B

ln g where g is the quantum ground state degeneracy at pressure
p. In all but highly unusual cases, g = 1 and S(p, T = 0) = 0.

2.8 Thermodynamic Potentials

Thermodynamic systems may do work on their environments. Under certain constraints, the work done may be
bounded from above by the change in an appropriately defined thermodynamic potential.
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2.8.1 Energy E

Suppose we wish to create a thermodynamic system from scratch. Let’s imagine that we create it from scratch in
a thermally insulated box of volume V . The work we must to to assemble the system is then

W = E . (2.183)

After we bring all the constituent particles together, pulling them in from infinity (say), the system will have total
energy E. After we finish, the system may not be in thermal equilibrium. Spontaneous processes will then occur
so as to maximize the system’s entropy, but the internal energy remains at E.

We have, from the First Law, dE = d̄Q− d̄W . For equilibrium systems, we have

dE = T dS − p dV + µdN , (2.184)

which says that E = E(S, V,N), and

T =

(
∂E

∂S

)

V,N

, −p =

(
∂E

∂V

)

S,N

, µ =

(
∂E

∂N

)

S,V

. (2.185)

The Second Law, in the form d̄Q ≤ T dS, then yields

dE ≤ T dS − p dV + µdN . (2.186)

This form is valid for single component systems and is easily generalized to multicomponent systems, or magnetic
systems, etc. Now consider a process at fixed (S, V,N). We then have dE ≤ 0. This says that spontaneous
processes in a system with dS = dV = dN = 0 always lead to a reduction in the internal energy E. Therefore,
spontaneous processes drive the internal energy E to a minimum in systems at fixed (S, V,N).

Allowing for other work processes, we have

d̄W ≤ T dS − dE . (2.187)

Hence, the work done by a thermodynamic system under conditions of constant entropy is bounded above by −dE, and the
maximum d̄W is achieved for a reversible process.

It is useful to define the quantity
d̄Wfree = d̄W − p dV , (2.188)

which is the differential work done by the system other than that required to change its volume. Then

d̄Wfree ≤ T dS − p dV − dE , (2.189)

and we conclude that for systems at fixed (S, V ) that d̄Wfree ≤ −dE.

2.8.2 Helmholtz free energy F

Suppose that when we spontaneously create our system while it is in constant contact with a thermal reservoir
at temperature T . Then as we create our system, it will absorb heat from the reservoir. Therefore, we don’t have
to supply the full internal energy E, but rather only E − Q, since the system receives heat energy Q from the
reservoir. In other words, we must perform work

W = E − TS (2.190)
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to create our system, if it is constantly in equilibrium at temperature T . The quantity E − TS is known as the
Helmholtz free energy, F , which is related to the energy E by a Legendre transformation,

F = E − TS . (2.191)

The general properties of Legendre transformations are discussed in Appendix II, §2.16.

Under equilibrium conditions, we have

dF = −S dT − p dV + µdN . (2.192)

Thus, F = F (T, V,N), whereas E = E(S, V,N), and

−S =

(
∂F

∂T

)

V,N

, −p =

(
∂F

∂V

)

T,N

, µ =

(
∂F

∂N

)

T,V

. (2.193)

In general, the Second Law tells us that

dF ≤ −S dT − p dV + µdN . (2.194)

The equality holds for reversible processes, and the inequality for spontaneous processes. Therefore, spontaneous
processes drive the Helmholtz free energy F to a minimum in systems at fixed (T, V,N).

We may also write
d̄W ≤ −S dT − dF , (2.195)

In other words, the work done by a thermodynamic system under conditions of constant temperature is bounded above by
−dF , and the maximum d̄W is achieved for a reversible process. We also have

d̄Wfree ≤ −S dT − p dV − dF , (2.196)

and we conclude, for systems at fixed (T, V ), that d̄Wfree ≤ −dF .

2.8.3 Enthalpy H

Suppose that when we spontaneously create our system while it is thermally insulated, but in constant mechanical
contact with a ‘volume bath’ at pressure p. For example, we could create our system inside a thermally insulated
chamber with one movable wall where the external pressure is fixed at p. Thus, when creating the system, in
addition to the system’s internal energy E, we must also perform work pV in order to make room for the it. In
other words, we must perform work

W = E + pV . (2.197)

The quantity E + pV is known as the enthalpy, H. (We use the sans-serif symbol H for enthalpy to avoid confusing
it with magnetic field, H .)

The enthalpy is obtained from the energy via a different Legendre transformation:

H = E + pV . (2.198)

In equilibrium, then,
dH = T dS + V dp+ µdN , (2.199)

which says H = H(S, p,N), with

T =

(
∂H

∂S

)

p,N

, V =

(
∂H

∂p

)

S,N

, µ =

(
∂H

∂N

)

S,p

. (2.200)
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In general, we have

dH ≤ T dS + V dp+ µdN , (2.201)

hence spontaneous processes drive the enthalpy H to a minimum in systems at fixed (S, p,N).

For general systems,

dH ≤ T dS − d̄W + p dV + V dp , (2.202)

hence

d̄Wfree ≤ T dS + V dp− dH , (2.203)

and we conclude, for systems at fixed (S, p), that d̄Wfree ≤ −dH.

2.8.4 Gibbs free energy G

If we create a thermodynamic system at conditions of constant temperature T and constant pressure p, then it
absorbs heat energy Q = TS from the reservoir and we must expend work energy pV in order to make room for
it. Thus, the total amount of work we must do in assembling our system is

W = E − TS + pV . (2.204)

This is the Gibbs free energy, G.

The Gibbs free energy is obtained by a second Legendre transformation:

G = E − TS + pV (2.205)

Note that G = F + pV = H − TS. For equilibrium systems, the differential of G is

dG = −S dT + V dp+ µdN , (2.206)

therefore G = G(T, p,N), with

−S =

(
∂G

∂T

)

p,N

, V =

(
∂G

∂p

)

T,N

, µ =

(
∂G

∂N

)

T,p

. (2.207)

From eqn. 2.146, we have

E = TS − pV + µN , (2.208)

therefore

G = µN . (2.209)

The Second Law says that

dG ≤ −S dT + V dp+ µdN , (2.210)

hence spontaneous processes drive the Gibbs free energy G to a minimum in systems at fixed (T, p,N). For general
systems,

d̄Wfree ≤ −S dT + V dp− dG . (2.211)

Accordingly, we conclude, for systems at fixed (T, p), that d̄Wfree ≤ −dG.
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2.8.5 Grand potential Ω

The grand potential, sometimes called the Landau free energy, is defined by

Ω = E − TS − µN . (2.212)

Its differential is

dΩ = −S dT − p dV −N dµ , (2.213)

hence

−S =

(
∂Ω

∂T

)

V,µ

, −p =

(
∂Ω

∂V

)

T,µ

, −N =

(
∂Ω

∂µ

)

T,V

. (2.214)

Again invoking eqn. 2.146, we find

Ω = −pV . (2.215)

The Second Law tells us

dΩ ≤ −d̄W − S dT − µdN −N dµ , (2.216)

hence

d̄W̃free ≡ d̄Wfree + µdN ≤ −S dT − p dV −N dµ− dΩ . (2.217)

We conclude, for systems at fixed (T, V, µ), that d̄W̃free ≤ −dΩ.

2.9 Maxwell Relations

Maxwell relations are conditions equating certain derivatives of state variables which follow from the exactness
of the differentials of the various state functions.

2.9.1 Relations deriving from E(S, V, N)

The energy E(S, V,N) is a state function, with

dE = T dS − p dV + µdN , (2.218)

and therefore

T =

(
∂E

∂S

)

V,N

, −p =

(
∂E

∂V

)

S,N

, µ =

(
∂E

∂N

)

S,V

. (2.219)

Taking the mixed second derivatives, we find

∂2E

∂S ∂V
=

(
∂T

∂V

)

S,N

= −
(
∂p

∂S

)

V,N

(2.220)

∂2E

∂S ∂N
=

(
∂T

∂N

)

S,V

=

(
∂µ

∂S

)

V,N

(2.221)

∂2E

∂V ∂N
= −

(
∂p

∂N

)

S,V

=

(
∂µ

∂V

)

S,N

. (2.222)
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2.9.2 Relations deriving from F (T, V, N)

The energy F (T, V,N) is a state function, with

dF = −S dT − p dV + µdN , (2.223)

and therefore

−S =

(
∂F

∂T

)

V,N

, −p =

(
∂F

∂V

)

T,N

, µ =

(
∂F

∂N

)

T,V

. (2.224)

Taking the mixed second derivatives, we find

∂2F

∂T ∂V
= −

(
∂S

∂V

)

T,N

= −
(
∂p

∂T

)

V,N

(2.225)

∂2F

∂T ∂N
= −

(
∂S

∂N

)

T,V

=

(
∂µ

∂T

)

V,N

(2.226)

∂2F

∂V ∂N
= −

(
∂p

∂N

)

T,V

=

(
∂µ

∂V

)

T,N

. (2.227)

2.9.3 Relations deriving from H(S, p, N)

The enthalpy H(S, p,N) satisfies
dH = T dS + V dp+ µdN , (2.228)

which says H = H(S, p,N), with

T =

(
∂H

∂S

)

p,N

, V =

(
∂H

∂p

)

S,N

, µ =

(
∂H

∂N

)

S,p

. (2.229)

Taking the mixed second derivatives, we find

∂2H

∂S ∂p
=

(
∂T

∂p

)

S,N

=

(
∂V

∂S

)

p,N

(2.230)

∂2H

∂S ∂N
=

(
∂T

∂N

)

S,p

=

(
∂µ

∂S

)

p,N

(2.231)

∂2H

∂p ∂N
=

(
∂V

∂N

)

S,p

=

(
∂µ

∂p

)

S,N

. (2.232)

2.9.4 Relations deriving from G(T, p, N)

The Gibbs free energy G(T, p,N) satisfies

dG = −S dT + V dp+ µdN , (2.233)

therefore G = G(T, p,N), with

−S =

(
∂G

∂T

)

p,N

, V =

(
∂G

∂p

)

T,N

, µ =

(
∂G

∂N

)

T,p

. (2.234)
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Taking the mixed second derivatives, we find

∂2G

∂T ∂p
= −

(
∂S

∂p

)

T,N

=

(
∂V

∂T

)

p,N

(2.235)

∂2G

∂T ∂N
= −

(
∂S

∂N

)

T,p

=

(
∂µ

∂T

)

p,N

(2.236)

∂2G

∂p ∂N
=

(
∂V

∂N

)

T,p

=

(
∂µ

∂p

)

T,N

. (2.237)

2.9.5 Relations deriving from Ω(T, V, µ)

The grand potential Ω(T, V, µ) satisfied

dΩ = −S dT − p dV −N dµ , (2.238)

hence

−S =

(
∂Ω

∂T

)

V,µ

, −p =

(
∂Ω

∂V

)

T,µ

, −N =

(
∂Ω

∂µ

)

T,V

. (2.239)

Taking the mixed second derivatives, we find

∂2Ω

∂T ∂V
= −

(
∂S

∂V

)

T,µ

= −
(
∂p

∂T

)

V,µ

(2.240)

∂2Ω

∂T ∂µ
= −

(
∂S

∂µ

)

T,V

= −
(
∂N

∂T

)

V,µ

(2.241)

∂2Ω

∂V ∂µ
= −

(
∂p

∂µ

)

T,V

= −
(
∂N

∂V

)

T,µ

. (2.242)

Relations deriving from S(E, V,N)

We can also derive Maxwell relations based on the entropy S(E, V,N) itself. For example, we have

dS =
1

T
dE +

p

T
dV − µ

T
dN . (2.243)

Therefore S = S(E, V,N) and

∂2S

∂E ∂V
=

(
∂(T−1)

∂V

)

E,N

=

(
∂(pT−1)

∂E

)

V,N

, (2.244)

et cetera.
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2.9.6 Generalized thermodynamic potentials

We have up until now assumed a generalized force-displacement pair (y,X) = (−p, V ). But the above results also
generalize to e.g. magnetic systems, where (y,X) = (H,M). In general, we have

THIS SPACE AVAILABLE dE = T dS + y dX + µdN (2.245)

F = E − TS dF = −S dT + y dX + µdN (2.246)

H = E − yX dH = T dS −X dy + µdN (2.247)

G = E − TS − yX dG = −S dT −X dy + µdN (2.248)

Ω = E − TS − µN dΩ = −S dT + y dX −N dµ . (2.249)

Generalizing (−p, V ) → (y,X), we also obtain, mutatis mutandis, the following Maxwell relations:

(
∂T

∂X

)

S,N

=

(
∂y

∂S

)

X,N

(
∂T

∂N

)

S,X

=

(
∂µ

∂S

)

X,N

(
∂y

∂N

)

S,X

=

(
∂µ

∂X

)

S,N

(
∂T

∂y

)

S,N

= −
(
∂X

∂S

)

y,N

(
∂T

∂N

)

S,y

=

(
∂µ

∂S

)

y,N

(
∂X

∂N

)

S,y

= −
(
∂µ

∂y

)

S,N

(
∂S

∂X

)

T,N

= −
(
∂y

∂T

)

X,N

(
∂S

∂N

)

T,X

= −
(
∂µ

∂T

)

X,N

(
∂y

∂N

)

T,X

=

(
∂µ

∂X

)

T,N

(
∂S

∂y

)

T,N

=

(
∂X

∂T

)

y,N

(
∂S

∂N

)

T,y

= −
(
∂µ

∂T

)

y,N

(
∂X

∂N

)

T,y

= −
(
∂µ

∂y

)

T,N

(
∂S

∂X

)

T,µ

= −
(
∂y

∂T

)

X,µ

(
∂S

∂µ

)

T,X

=

(
∂N

∂T

)

X,µ

(
∂y

∂µ

)

T,X

= −
(
∂N

∂X

)

T,µ

.

2.10 Equilibrium and Stability

Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number, subject
to overall conservation rules

E
A

+ E
B

= E , V
A

+ V
B

= V , N
A

+N
B

= N , (2.250)

where E, V , and N are fixed. Now let us compute the change in the total entropy of the combined systems when
they are allowed to exchange energy, volume, or particle number. We assume that the entropy is additive, i.e.

dS =

[(
∂SA

∂EA

)

VA,NA

−
(
∂SB

∂EB

)

VB,NB

]
dEA +

[(
∂SA

∂VA

)

EA,NA

−
(
∂SB

∂VB

)

EB,NB

]
dVA

+

[(
∂S

A

∂N
A

)

EA,VA

−
(
∂S

B

∂N
B

)

EB,VB

]
dN

A
. (2.251)

Note that we have used dE
B

= −dE
A

, dV
B

= −dV
A

, and dN
B

= −dN
A

. Now we know from the Second Law that
spontaneous processes result in T dS > 0, which means that S tends to a maximum. If S is a maximum, it must
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Figure 2.20: To check for an instability, we compare the energy of a system to its total energy when we reapportion
its energy, volume, and particle number slightly unequally.

be that the coefficients of dEA, dVA, and dNA all vanish, else we could increase the total entropy of the system by
a judicious choice of these three differentials. From T dS = dE + p dV − µ, dN , we have

1

T
=

(
∂S

∂E

)

V,N

,
p

T
=

(
∂S

∂V

)

E,N

,
µ

T
= −

(
∂S

∂N

)

E,V

. (2.252)

Thus, we conclude that in order for the system to be in equilibrium, so that S is maximized and can increase no
further under spontaneous processes, we must have

TA = TB (thermal equilibrium) (2.253)

pA

T
A

=
pB

T
B

(mechanical equilibrium) (2.254)

µA

T
A

=
µB

T
B

(chemical equilibrium) (2.255)

Now consider a uniform system with energy E′ = 2E, volume V ′ = 2V , and particle number N ′ = 2N . We wish
to check that this system is not unstable with respect to spontaneously becoming inhomogeneous. To that end,
we imagine dividing the system in half. Each half would have energy E, volume V , and particle number N . But
suppose we divided up these quantities differently, so that the left half had slightly different energy, volume, and
particle number than the right, as depicted in Fig. 2.20. Does the entropy increase or decrease? We have

∆S = S(E + ∆E, V + ∆V,N + ∆N) + S(E − ∆E, V − ∆V,N − ∆N) − S(2E, 2V, 2N)

=
∂2S

∂E2
(∆E)2 +

∂2S

∂V 2
(∆V )2 +

∂2S

∂N2
(∆N)2 (2.256)

+ 2
∂2S

∂E ∂V
∆E ∆V + 2

∂2S

∂E ∂N
∆E ∆N + 2

∂2S

∂V ∂N
∆V ∆N .

Thus, we can write

∆S =
∑

i,j

Qij Ψi Ψj , (2.257)

where

Q =




∂2S
∂E2

∂2S
∂E ∂V

∂2S
∂E ∂N

∂2S
∂E ∂V

∂2S
∂V 2

∂2S
∂V ∂N

∂2S
∂E ∂N

∂2S
∂V ∂N

∂2S
∂N2




(2.258)

is the matrix of second derivatives, known in mathematical parlance as the Hessian, and Ψ = (∆E,∆V,∆N). Note
that Q is a symmetric matrix.
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Since S must be a maximum in order for the system to be in equilibrium, we are tempted to conclude that the
homogeneous system is stable if and only if all three eigenvalues of Q are negative. If one or more of the eigen-
values is positive, then it is possible to choose a set of variations Ψ such that ∆S > 0, which would contradict
the assumption that the homogeneous state is one of maximum entropy. A matrix with this restriction is said
to be negative definite. While it is true that Q can have no positive eigenvalues, it is clear from homogeneity of
S(E, V,N) that one of the three eigenvalues must be zero, corresponding to the eigenvector Ψ = (E, V,N). Ho-
mogeneity means S(λE, λV, λN) = λS(E, V,N). Now let us take λ = 1 + η, where η is infinitesimal. Then
∆E = ηE, ∆V = ηV , and ∆N = ηN , and homogeneity says S(E ± ∆E, V ± ∆V,N ± ∆N) = (1 ± η)S(E, V,N)
and ∆S = (1+η)S+(1−η)S−2S = 0. We then have a slightly weaker characterization ofQ as negative semidefinite.

However, if we fix one of the components of (∆E,∆V,∆N) to be zero, then Ψ must have some component orthog-
onal to the zero eigenvector, in which case ∆S > 0. Suppose we set ∆N = 0 and we just examine the stability with
respect to inhomogeneities in energy and volume. We then restrict our attention to the upper left 2 × 2 submatrix
of Q. A general symmetric 2 × 2 matrix may be written

Q =

(
a b
b c

)
(2.259)

It is easy to solve for the eigenvalues of Q. One finds

λ± =

(
a+ c

2

)
±

√(
a− c

2

)2
+ b2 . (2.260)

In order for Q to be negative definite, we require λ+ < 0 and λ− < 0. Clearly we must have a + c < 0, or else
λ+ > 0 for sure. If a+ c < 0 then clearly λ− < 0, but there still is a possibility that λ+ > 0, if the radical is larger
than − 1

2 (a+ c). Demanding that λ+ < 0 therefore yields two conditions:

a+ c < 0 and ac > b2 . (2.261)

Clearly both a and c must be negative, else one of the above two conditions is violated. So in the end we have
three conditions which are necessary and sufficient in order that Q be negative definite:

a < 0 , c < 0 , ac > b2 . (2.262)

Going back to thermodynamic variables, this requires

∂2S

∂E2
< 0 ,

∂2S

∂V 2
< 0 ,

∂2S

∂E2
· ∂

2S

∂V 2
>

(
∂2S

∂E ∂V

)2

. (2.263)

Another way to say it: the entropy is a concave function of (E, V ) at fixed N . Had we set ∆E = 0 and considered the
lower right 2 × 2 submatrix of Q, we’d have concluded that S(V,N) is concave at fixed E.

Many thermodynamic systems are held at fixed (T, p,N), which suggests we examine the stability criteria for
G(T, p,N). Suppose our system is in equilibrium with a reservoir at temperature T0 and pressure p0. Then,
suppressing N (which is assumed constant), we have

G(T0, p0) = E − T0 S + p0 V . (2.264)

Now suppose there is a fluctuation in the entropy and the volume of our system. Going to second order in ∆S
and ∆V , we have

∆G =

[(
∂E

∂S

)

V

− T0

]
∆S +

[(
∂E

∂V

)

S

+ p0

]
∆V

+
1

2

[
∂2E

∂S2
(∆S)2 + 2

∂2E

∂S ∂V
∆S∆V +

∂2E

∂V 2
(∆V )2

]
+ . . . .

(2.265)
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The condition for equilibrium is that ∆G > 0 for all (∆S,∆V ). The linear terms vanish by the definition since
T = T0 and p = p0. Stability then requires that the Hessian matrix Q be positive definite, with

Q =




∂2E
∂S2

∂2E
∂S ∂V

∂2E
∂S ∂V

∂2E
∂V 2


 . (2.266)

Thus, we have the following three conditions:

∂2E

∂S2
=

(
∂T

∂S

)

V

=
T

CV

> 0 (2.267)

∂2E

∂V 2
= −

(
∂p

∂V

)

S

=
1

V κS

> 0 (2.268)

∂2E

∂S2
· ∂

2E

∂V 2
−
(

∂2E

∂S ∂V

)2
=

T

V κS CV

−
(
∂T

∂V

)2

S

> 0 . (2.269)

2.11 Applications of Thermodynamics

A discussion of various useful mathematical relations among partial derivatives may be found in the appendix in
§2.17. Some facility with the differential multivariable calculus is extremely useful in the analysis of thermody-
namics problems.

2.11.1 Adiabatic free expansion revisited

Consider once again the adiabatic free expansion of a gas from initial volume Vi to final volume Vf = rVi. Since
the system is not in equilibrium during the free expansion process, the initial and final states do not lie along an
adiabat, i.e. they do not have the same entropy. Rather, as we found, from Q = W = 0, we have that Ei = Ef ,
which means they have the same energy, and, in the case of an ideal gas, the same temperature (assuming N is
constant). Thus, the initial and final states lie along an isotherm. The situation is depicted in Fig. 2.21. Now let us
compute the change in entropy ∆S = Sf − Si by integrating along this isotherm. Note that the actual dynamics
are irreversible and do not quasistatically follow any continuous thermodynamic path. However, we can use what
is a fictitious thermodynamic path as a means of comparing S in the initial and final states.

We have

∆S = Sf − Si =

Vf∫

Vi

dV

(
∂S

∂V

)

T,N

. (2.270)

But from a Maxwell equation deriving from F , we have

(
∂S

∂V

)

T,N

=

(
∂p

∂T

)

V,N

, (2.271)

hence

∆S =

Vf∫

Vi

dV

(
∂p

∂T

)

V,N

. (2.272)
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Figure 2.21: Adiabatic free expansion via a thermal path. The initial and final states do not lie along an adabat!
Rather, for an ideal gas, the initial and final states lie along an isotherm.

For an ideal gas, we can use the equation of state pV = Nk
B
T to obtain

(
∂p

∂T

)

V,N

=
NkB

V
. (2.273)

The integral can now be computed:

∆S =

rVi∫

Vi

dV
Nk

B

V
= Nk

B
ln r , (2.274)

as we found before, in eqn. 2.156 What is different about this derivation? Previously, we derived the entropy
change from the explicit formula for S(E, V,N). Here, we did not need to know this function. The Maxwell
relation allowed us to compute the entropy change using only the equation of state.

2.11.2 Energy and volume

We saw how E(T, V,N) = 1
2fNkBT for an ideal gas, independent of the volume. In general we should have

E(T, V,N) = N φ
(
T, V

N

)
. (2.275)

For the ideal gas, φ
(
T, V

N

)
= 1

2fkB
T is a function of T alone and is independent on the other intensive quantity

V/N . How does energy vary with volume? At fixed temperature and particle number, we have, fromE = F+TS,
(
∂E

∂V

)

T,N

=

(
∂F

∂V

)

T,N

+ T

(
∂S

∂V

)

T,N

= −p+ T

(
∂p

∂T

)

V,N

, (2.276)

where we have used the Maxwell relation
(

∂S
∂V

)
T.N

=
(

∂p
∂T

)
V,N

, derived from the mixed second derivative ∂2F
∂T ∂V .

Another way to derive this result is as follows. Write dE = T dS − p dV + µdN and then express dS in terms of
dT , dV , and dN , resulting in

dE = T

(
∂S

∂T

)

V,N

dT +

[
T

(
∂S

∂V

)

T,N

− p

]
dV −

[
T

(
∂µ

∂T

)

V,N

+ µ

]
dN . (2.277)
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Now read off
(

∂E
∂V

)
V,N

and use the same Maxwell relation as before to recover eqn. 2.276. Applying this result to

the ideal gas law pV = Nk
B
T results in the vanishing of the RHS, hence for any substance obeying the ideal gas

law we must have

E(T, V,N) = ν ε(T ) = Nε(T )/NA . (2.278)

2.11.3 van der Waals equation of state

It is clear that the same conclusion follows for any equation of state of the form p(T, V,N) = T · f(V/N), where
f(V/N) is an arbitrary function of its argument: the ideal gas law remains valid10. This is not true, however, for
the van der Waals equation of state, (

p+
a

v2

)(
v − b) = RT , (2.279)

where v = NAV/N is the molar volume. We then find (always assuming constant N ),

(
∂E

∂V

)

T

=

(
∂ε

∂v

)

T

= T

(
∂p

∂T

)

V

− p =
a

v2
, (2.280)

where E(T, V,N) ≡ ν ε(T, v). We can integrate this to obtain

ε(T, v) = ω(T )− a

v
, (2.281)

where ω(T ) is arbitrary. From eqn. 2.33, we immediately have

cV =

(
∂ε

∂T

)

v

= ω′(T ) . (2.282)

What about cp? This requires a bit of work. We start with eqn. 2.34,

cp =

(
∂ε

∂T

)

p

+ p

(
∂v

∂T

)

p

= ω′(T ) +

(
p+

a

v2

)(
∂v

∂T

)

p

(2.283)

We next take the differential of the equation of state (at constant N ):

RdT =

(
p+

a

v2

)
dv +

(
v − b

)(
dp− 2a

v
dv

)

=

(
p− a

v2
+

2ab

v3

)
dv +

(
v − b

)
dp .

(2.284)

We can now read off the result for the volume expansion coefficient,

αp =
1

v

(
∂v

∂T

)

p

=
1

v
· R

p− a
v2 + 2ab

v3

. (2.285)

10Note V/N = v/NA.
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We now have for cp,

cp = ω′(T ) +

(
p+ a

v2

)
R

p− a
v2 + 2ab

v3

= ω′(T ) +
R2Tv3

RTv3 − 2a(v − b)2
.

(2.286)

where v = V NA/N is the molar volume.

To fix ω(T ), we consider the v → ∞ limit, where the density of the gas vanishes. In this limit, the gas must be
ideal, hence eqn. 2.281 says that ω(T ) = 1

2fRT . Therefore cV (T, v) = 1
2fR, just as in the case of an ideal gas.

However, rather than cp = cV +R, which holds for ideal gases, cp(T, v) is given by eqn. 2.286. Thus,

cVDW

V = 1
2fR (2.287)

cVDW

p = 1
2fR+

R2Tv3

RTv3 − 2a(v − b)2
. (2.288)

Note that cp(a→ 0) = cV +R, which is the ideal gas result.

2.11.4 Thermodynamic response functions

Consider the entropy S expressed as a function of T , V , and N :

dS =

(
∂S

∂T

)

V,N

dT +

(
∂S

∂V

)

T,N

dV +

(
∂S

∂N

)

T,V

dN . (2.289)

Dividing by dT , multiplying by T , and assuming dN = 0 throughout, we have

Cp − CV = T

(
∂S

∂V

)

T

(
∂V

∂T

)

p

. (2.290)

Appealing to a Maxwell relation derived from F (T, V,N), and then appealing to eqn. 2.492, we have

(
∂S

∂V

)

T

=

(
∂p

∂T

)

V

= −
(
∂p

∂V

)

T

(
∂V

∂T

)

p

. (2.291)

This allows us to write

Cp − CV = −T
(
∂p

∂V

)

T

(
∂V

∂T

)2

p

. (2.292)

We define the response functions,

isothermal compressibility: κT = − 1

V

(
∂V

∂p

)

T

= − 1

V

∂2G

∂p2
(2.293)

adiabatic compressibility: κS = − 1

V

(
∂V

∂p

)

S

= − 1

V

∂2H

∂p2
(2.294)

thermal expansivity: αp =
1

V

(
∂V

∂T

)

p

. (2.295)
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Thus,

Cp − CV = V
Tα2

p

κT

, (2.296)

or, in terms of intensive quantities,

cp − cV =
v Tα2

p

κT

, (2.297)

where, as always, v = V NA/N is the molar volume.

This above relation generalizes to any conjugate force-displacement pair (−p, V ) → (y,X):

Cy − CX = −T
(
∂y

∂T

)

X

(
∂X

∂T

)

y

= T

(
∂y

∂X

)

T

(
∂X

∂T

)2

y

.

(2.298)

For example, we could have (y,X) = (Hα,Mα).

A similar relationship can be derived between the compressibilities κT and κS. We then clearly must start with
the volume, writing

dV =

(
∂V

∂p

)

S,N

dp+

(
∂V

∂S

)

p,N

dS +

(
∂V

∂p

)

S,p

dN . (2.299)

Dividing by dp, multiplying by −V −1, and keeping N constant, we have

κT − κS = − 1

V

(
∂V

∂S

)

p

(
∂S

∂p

)

T

. (2.300)

Again we appeal to a Maxwell relation, writing

(
∂S

∂p

)

T

= −
(
∂V

∂T

)

p

, (2.301)

and after invoking the chain rule,

(
∂V

∂S

)

p

=

(
∂V

∂T

)

p

(
∂T

∂S

)

p

=
T

Cp

(
∂V

∂T

)

p

, (2.302)

we obtain

κT − κS =
v Tα2

p

cp
. (2.303)

Comparing eqns. 2.297 and 2.303, we find

(cp − cV )κT = (κT − κS) cp = v Tα2
p . (2.304)

This result entails
cp
cV

=
κT

κS

. (2.305)

The corresponding result for magnetic systems is

(cH − cM )χT = (χT − χ
S) cH = T

(
∂m

∂T

)2

H

, (2.306)
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where m = M/ν is the magnetization per mole of substance, and

isothermal susceptibility: χ
T =

(
∂M

∂H

)

T

= −1

ν

∂2G

∂H2
(2.307)

adiabatic susceptibility: χ
S =

(
∂M

∂H

)

S

= −1

ν

∂2H

∂H2
. (2.308)

Here the enthalpy and Gibbs free energy are

H = E −HM dH = T dS −M dH (2.309)

G = E − TS −HM dG = −S dT −M dH . (2.310)

Remark: The previous discussion has assumed an isotropic magnetic system where M and H are collinear, hence
H ·M = HM .

χαβ
T =

(
∂Mα

∂Hβ

)

T

= −1

ν

∂2G

∂Hα ∂Hβ
(2.311)

χαβ
S =

(
∂Mα

∂Hβ

)

S

= −1

ν

∂2H

∂Hα ∂Hβ
. (2.312)

In this case, the enthalpy and Gibbs free energy are

H = E − H ·M dH = T dS − M ·dH (2.313)

G = E − TS − H ·M dG = −S dT − M ·dH . (2.314)

2.11.5 Joule effect: free expansion of a gas

Previously we considered the adiabatic free expansion of an ideal gas. We found that Q = W = 0 hence ∆E = 0,
which means the process is isothermal, since E = νε(T ) is volume-independent. The entropy changes, however,
since S(E, V,N) = NkB ln(V/N) + 1

2fNkB ln(E/N) +Ns0. Thus,

Sf = Si +Nk
B

ln

(
Vf

Vi

)
. (2.315)

What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where dE = 0 along the
path. We have

0 = dE =

(
∂E

∂V

)

T

dV +

(
∂E

∂T

)

V

dT (2.316)

hence (
∂T

∂V

)

E

= − (∂E/∂V )T

(∂E/∂T )V

= − 1

CV

(
∂E

∂V

)

T

. (2.317)

We also have (
∂E

∂V

)

T

= T

(
∂S

∂V

)

T

− p = T

(
∂p

∂T

)

V

− p . (2.318)

Thus, (
∂T

∂V

)

E

=
1

CV

[
p− T

(
∂p

∂T

)

V

]
. (2.319)
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gas a
(

L2·bar
mol2

)
b
(

L
mol

)
pc (bar) Tc (K) vc (L/mol)

Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

Table 2.3: Van der Waals parameters for some common gases. (Source: Wikipedia.)

Note that the term in square brackets vanishes for any system obeying the ideal gas law. For a nonideal gas,

∆T =

Vf∫

Vi

dV

(
∂T

∂V

)

E

, (2.320)

which is in general nonzero.

Now consider a van der Waals gas, for which

(
p+

a

v2

)
(v − b) = RT .

We then have

p− T

(
∂p

∂T

)

V

= − a

v2
= −aν

2

V 2
. (2.321)

In §2.11.3 we concluded that CV = 1
2fνR for the van der Waals gas, hence

∆T = −2aν

fR

Vf∫

Vi

dV

V 2
=

2a

fR

(
1

vf
− 1

vi

)
. (2.322)

Thus, if Vf > Vi, we have Tf < Ti and the gas cools upon expansion.

Consider O2 gas with an initial specific volume of vi = 22.4 L/mol, which is the STP value for an ideal gas, freely
expanding to a volume vf = ∞ for maximum cooling. According to table 2.3, a = 1.378 L2 · bar/mol2, and we
have ∆T = −2a/fRvi = −0.296 K, which is a pitifully small amount of cooling. Adiabatic free expansion is a
very inefficient way to cool a gas.
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Figure 2.22: In a throttle, a gas is pushed through a porous plug separating regions of different pressure. The
change in energy is the work done, hence enthalpy is conserved during the throttling process.

2.11.6 Throttling: the Joule-Thompson effect

In a throttle, depicted in Fig. 2.22, a gas is forced through a porous plug which separates regions of different
pressures. According to the figure, the work done on a given element of gas is

W =

Vf∫

0

dV pf −
Vi∫

0

dV pi = pfVf − piVi . (2.323)

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its environment, nor
with the plug. Then Q = 0 so ∆E = −W , and

Ei + piVi = Ef + pfVf (2.324)

Hi = Hf , (2.325)

where H is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a fictitious
thermodynamic path along which dH = 0. The, choosing T and p as state variables,

0 = dH =

(
∂H

∂T

)

p

dp +

(
∂H

∂p

)

T

dT (2.326)

hence (
∂T

∂p

)

H

= − (∂H/∂p)T

(∂H/∂T )p

. (2.327)

The numerator on the RHS is computed by writing dH = T dS + V dp and then dividing by dp, to obtain

(
∂H

∂p

)

T

= V + T

(
∂S

∂p

)

T

= V − T

(
∂V

∂T

)

p

. (2.328)

The denominator is
(
∂H

∂T

)

p

=

(
∂H

∂S

)

p

(
∂S

∂T

)

p

= T

(
∂S

∂T

)

p

= Cp .

(2.329)

Thus,

(
∂T

∂p

)

H

=
1

cp

[
T

(
∂v

∂T

)

p

− v

]

=
v

cp

(
Tαp − 1

)
,

(2.330)
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Figure 2.23: Inversion temperature T ∗(p) for the van der Waals gas. Pressure and temperature are given in terms
of pc = a/27b2 and Tc = 8a/27bR, respectively.

where αp = 1
V

(
∂V
∂T

)
p

is the volume expansion coefficient.

From the van der Waals equation of state, we obtain, from eqn. 2.285,

Tαp =
T

v

(
∂v

∂T

)

p

=
RT/v

p− a
v2 + 2ab

v3

=
v − b

v − 2a
RT

(
v−b

v

)2 . (2.331)

Assuming v ≫ a
RT , b, we have (

∂T

∂p

)

H

=
1

cp

(
2a

RT
− b

)
. (2.332)

Thus, for T > T ∗ = 2a
Rb , we have

(
∂T
∂p

)
H

< 0 and the gas heats up upon an isenthalpic pressure decrease. For

T < T ∗, the gas cools under such conditions.

In fact, there are two inversion temperatures T ∗
1,2 for the van der Waals gas. To see this, we set Tαp = 1, which is

the criterion for inversion. From eqn. 2.331 it is easy to derive

b

v
= 1 −

√
bRT

2a
. (2.333)

We insert this into the van der Waals equation of state to derive a relationship T = T ∗(p) at which Tαp = 1 holds.
After a little work, we find

p = −3RT

2b
+

√
8aRT

b3
− a

b2
. (2.334)

This is a quadratic equation for T , the solution of which is

T ∗(p) =
2a

9 bR

(
2 ±

√
1 − 3b2p

a

)2

. (2.335)
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In Fig. 2.23 we plot pressure versus temperature in scaled units, showing the curve along which
(

∂T
∂p

)
H

= 0. The

volume, pressure, and temperature scales defined are

vc = 3b , pc =
a

27 b2
, Tc =

8a

27 bR
. (2.336)

Values for pc, Tc, and vc are provided in table 2.3. If we define v = v/vc, p = p/pc, and T = T/Tc, then the van der
Waals equation of state may be written in dimensionless form:

(
p+

3

v2

)(
3v − 1) = 8T . (2.337)

In terms of the scaled parameters, the equation for the inversion curve
(

∂T
∂p

)
H

= 0 becomes

p = 9 − 36
(
1 −

√
1
3T

)2

⇐⇒ T = 3
(
1 ±

√
1 − 1

9 p
)2

. (2.338)

Thus, there is no inversion for p > 9 pc. We are usually interested in the upper inversion temperature, T ∗
2 ,

corresponding to the upper sign in eqn. 2.335. The maximum inversion temperature occurs for p = 0, where
T ∗

max = 2a
bR = 27

4 Tc. For H2, from the data in table 2.3, we find T ∗
max(H2) = 224 K, which is within 10% of the

experimentally measured value of 205 K.

What happens when H2 gas leaks from a container with T > T ∗
2 ? Since

(
∂T
∂p

)
H

< 0 and ∆p < 0, we have ∆T > 0.

The gas warms up, and the heat facilitates the reaction 2 H2 + O2 −→ 2 H2O, which releases energy, and we have
a nice explosion.

2.12 Phase Transitions and Phase Equilibria

A typical phase diagram of a p-V -T system is shown in the Fig. 2.24(a). The solid lines delineate boundaries
between distinct thermodynamic phases. These lines are called coexistence curves. Along these curves, we can
have coexistence of two phases, and the thermodynamic potentials are singular. The order of the singularity is
often taken as a classification of the phase transition. I.e. if the thermodynamic potentials E, F , G, and H have
discontinuous or divergent mth derivatives, the transition between the respective phases is said to be mth order.
Modern theories of phase transitions generally only recognize two possibilities: first order transitions, where the
order parameter changes discontinuously through the transition, and second order transitions, where the order param-
eter vanishes continuously at the boundary from ordered to disordered phases11. We’ll discuss order parameters
during Physics 140B.

For a more interesting phase diagram, see Fig. 2.24(b,c), which displays the phase diagrams for 3He and 4He. The
only difference between these two atoms is that the former has one fewer neutron: (2p + 1n + 2e) in 3He versus (2p
+ 2n + 2e) in 4He. As we shall learn when we study quantum statistics, this extra neutron makes all the difference,
because 3He is a fermion while 4He is a boson.

2.12.1 p-v-T surfaces

The equation of state for a single component system may be written as

f(p, v, T ) = 0 . (2.339)

11Some exotic phase transitions in quantum matter, which do not quite fit the usual classification schemes, have recently been proposed.
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Figure 2.24: (a) Typical thermodynamic phase diagram of a single component p-V -T system, showing triple point
(three phase coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for 3He (b)
and 4He (c). What a difference a neutron makes! (Source: Brittanica.)

This may in principle be inverted to yield p = p(v, T ) or v = v(T, p) or T = T (p, v). The single constraint f(p, v, T )
on the three state variables defines a surface in {p, v, T } space. An example of such a surface is shown in Fig. 2.25,
for the ideal gas.

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in
which thermodynamic properties are singular or discontinuous along certain curves on the p-v-T surface. An
example is shown in Fig. 2.26. The high temperature isotherms resemble those of the ideal gas, but as one cools
below the critical temperature Tc, the isotherms become singular. Precisely at T = Tc, the isotherm p = p(v, Tc)
becomes perfectly horizontal at v = vc, which is the critical molar volume. This means that the isothermal com-

pressibility, κT = − 1
v

(
∂v
∂p

)
T

diverges at T = Tc. Below Tc, the isotherms have a flat portion, as shown in Fig. 2.28,

corresponding to a two-phase region where liquid and vapor coexist. In the (p, T ) plane, sketched for H2O in Fig. 2.4
and shown for CO2 in Fig. 2.29, this liquid-vapor phase coexistence occurs along a curve, called the vaporization
(or boiling) curve. The density changes discontinuously across this curve; for H2O, the liquid is approximately
1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical point.
Note that one can continuously transform between liquid and vapor phases, without encountering any phase
transitions, by going around the critical point and avoiding the two-phase region.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. 2.26.
The triple point (Tt, pt) lies at the confluence of these three coexistence regions. For H2O, the location of the triple
point and critical point are given by

Tt = 273.16 K Tc = 647 K

pt = 611.7 Pa = 6.037× 10−3 atm pc = 22.06 MPa = 217.7 atm

2.12.2 The Clausius-Clapeyron relation

Recall that the homogeneity ofE(S, V,N) guaranteedE = TS−pV +µN , from Euler’s theorem. It also guarantees
a relation between the intensive variables T , p, and µ, according to eqn. 2.148. Let us define g ≡ G/ν = NAµ, the
Gibbs free energy per mole. Then

dg = −s dT + v dp , (2.340)
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Figure 2.25: The surface p(v, T ) = RT/v corresponding to the ideal gas equation of state, and its projections onto
the (p, T ), (p, v), and (T, v) planes.

where s = S/ν and v = V/ν are the molar entropy and molar volume, respectively. Along a coexistence curve
between phase #1 and phase #2, we must have g1 = g2, since the phases are free to exchange energy and particle
number, i.e. they are in thermal and chemical equilibrium. This means

dg1 = −s1 dT + v1 dp = −s2 dT + v2 dp = dg2 . (2.341)

Therefore, along the coexistence curve we must have
(
dp

dT

)

coex

=
s2 − s1
v2 − v1

=
ℓ

T ∆v
, (2.342)

where
ℓ ≡ T ∆s = T (s2 − s1) (2.343)

is the molar latent heat of transition. A heat ℓ must be supplied in order to change from phase #1 to phase #2, even

without changing p or T . If ℓ is the latent heat per mole, then we write ℓ̃ as the latent heat per gram: ℓ̃ = ℓ/M ,
where M is the molar mass.

Along the liquid-gas coexistence curve, we typically have vgas ≫ vliquid, and assuming the vapor is ideal, we may
write ∆v ≈ vgas ≈ RT/p. Thus, (

dp

dT

)

liq−gas

=
ℓ

T ∆v
≈ p ℓ

RT 2
. (2.344)

If ℓ remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above equation
to get

dp

p
=

ℓ

R

dT

T 2
=⇒ p(T ) = p(T0) e

ℓ/RT0 e−ℓ/RT . (2.345)
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Figure 2.26: A p-v-T surface for a substance which contracts upon freezing. The red dot is the critical point and the
red dashed line is the critical isotherm. The yellow dot is the triple point at which there is three phase coexistence of
solid, liquid, and vapor.

2.12.3 Liquid-solid line in H2O

Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense than the
liquid along the coexistence curve. For example at T = 273.1 K and p = 1 atm,

ṽwater = 1.00013 cm3/g , ṽice = 1.0907 cm3/g . (2.346)

The latent heat of the transition is ℓ̃ = 333 J/g = 79.5 cal/g. Thus,

(
dp

dT

)

liq−sol

=
ℓ̃

T ∆ṽ
=

333 J/g

(273.1 K) (−9.05× 10−2 cm3/g)

= −1.35× 108 dyn

cm2 K
= −134

atm
◦C

.

(2.347)

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide down
a rocky slope, they generate enormous pressure at obstacles12 Due to this pressure, the story goes, the melting
temperature decreases, and the glacier melts around the obstacle, so it can flow past it, after which it refreezes.
But it is not the case that the bottom of the glacier melts under the pressure, for consider a glacier of height
h = 1 km. The pressure at the bottom is p ∼ gh/ṽ ∼ 107 Pa, which is only about 100 atmospheres. Such a pressure
can produce only a small shift in the melting temperature of about ∆Tmelt = −0.75◦ C.

Does the Clausius-Clapeyron relation explain how we can skate on ice? My seven year old daughter has a mass
of about M = 20 kg. Her ice skates have blades of width about 5 mm and length about 10 cm. Thus, even on one

12The melting curve has a negative slope at relatively low pressures, where the solid has the so-called Ih hexagonal crystal structure. At
pressures above about 2500 atmospheres, the crystal structure changes, and the slope of the melting curve becomes positive.
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Figure 2.27: Equation of state for a substance which expands upon freezing, projected to the (v, T ) and (v, p) and
(T, p) planes.

foot, she only imparts an additional pressure of

∆p =
Mg

A
≈ 20 kg × 9.8 m/s2

(5 × 10−3 m) × (10−1 m)
= 3.9 × 105 Pa = 3.9 atm . (2.348)

The change in the melting temperature is thus minuscule: ∆Tmelt ≈ −0.03◦ C.

So why can my daughter skate so nicely? The answer isn’t so clear!13 There seem to be two relevant issues in play.
First, friction generates heat which can locally melt the surface of the ice. Second, the surface of ice, and of many
solids, is naturally slippery. Indeed, this is the case for ice even if one is standing still, generating no frictional
forces. Why is this so? It turns out that the Gibbs free energy of the ice-air interface is larger than the sum of free
energies of ice-water and water-air interfaces. That is to say, ice, as well as many simple solids, prefers to have a
thin layer of liquid on its surface, even at temperatures well below its bulk melting point. If the intermolecular
interactions are not short-ranged14, theory predicts a surface melt thickness d ∝ (Tm − T )−1/3. In Fig. 2.30 we
show measurements by Gilpin (1980) of the surface melt on ice, down to about −50◦ C. Near 0◦ C the melt layer
thickness is about 40 nm, but this decreases to ∼ 1 nm at T = −35◦ C. At very low temperatures, skates stick
rather than glide. Of course, the skate material is also important, since that will affect the energetics of the second
interface. The 19th century novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the
poor but stereotypically decent and hardworking Dutch boy Hans Brinker, who dreams of winning an upcoming
ice skating race, along with the top prize: a pair of silver skates. All he has are some lousy wooden skates, which
won’t do him any good in the race. He has money saved to buy steel skates, but of course his father desperately
needs an operation because – I am not making this up – he fell off a dike and lost his mind. The family has no
other way to pay for the doctor. What a story! At this point, I imagine the suspense must be too much for you to
bear, but this isn’t an American Literature class, so you can use Google to find out what happens (or rent the 1958

13For a recent discussion, see R. Rosenberg, Physics Today 58, 50 (2005).
14For example, they could be of the van der Waals form, due to virtual dipole fluctuations, with an attractive 1/r6 tail.
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Figure 2.28: Projection of the p-v-T surface of Fig. 2.26 onto the (v, p) plane.

movie, directed by Sidney Lumet). My point here is that Hans’ crappy wooden skates can’t compare to the metal
ones, even though the surface melt between the ice and the air is the same. The skate blade material also makes a
difference, both for the interface energy and, perhaps more importantly, for the generation of friction as well.

2.12.4 Slow melting of ice : a quasistatic but irreversible process

Suppose we have an ice cube initially at temperature T0 < Θ ≡ 273.15 K (i.e. Θ = 0◦ C) and we toss it into a pond
of water. We regard the pond as a heat bath at some temperature T1 > Θ. Let the mass of the ice beM . How much
heat Q is absorbed by the ice in order to raise its temperature to T1? Clearly

Q = Mc̃S(Θ − T0) +Mℓ̃+Mc̃L(T1 −Θ) , (2.349)

where c̃S and c̃L are the specific heats of ice (solid) and water (liquid), respectively15, and ℓ̃ is the latent heat
of melting per unit mass. The pond must give up this much heat to the ice, hence the entropy of the pond,
discounting the new water which will come from the melted ice, must decrease:

∆Spond = −Q

T1

. (2.350)

Now we ask what is the entropy change of the H2O in the ice. We have

∆Sice =

∫
d̄Q

T
=

Θ∫

T0

dT
Mc̃S
T

+
Mℓ̃

Θ
+

T1∫

Θ

dT
Mc̃L
T

= Mc̃S ln

(
Θ

T0

)
+
Mℓ̃

Θ
+Mc̃L ln

(
T1

Θ

)
.

(2.351)

15We assume c̃S(T ) and c̃L(T ) have no appreciable temperature dependence, and we regard them both as constants.
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Figure 2.29: Phase diagram for CO2 in the (p, T ) plane. (Source: www.scifun.org.)

The total entropy change of the system is then

∆Stotal = ∆Spond + ∆Sice

= Mc̃
S
ln

(
Θ

T0

)
−Mc̃

S

(
Θ − T0

T1

)
+Mℓ̃

(
1

Θ
− 1

T1

)
+Mc̃

L
ln

(
T1

Θ

)
−Mc̃

L

(
T1 −Θ

T1

)
(2.352)

Now since T0 < Θ < T1, we have

Mc̃
S

(
Θ − T0

T1

)
< Mc̃

S

(
Θ − T0

Θ

)
. (2.353)

Therefore,

∆S > Mℓ̃

(
1

Θ
− 1

T1

)
+Mc̃S f

(
T0/Θ

)
+Mc̃L f

(
Θ/T1

)
, (2.354)

where f(x) = x−1−lnx. Clearly f ′(x) = 1−x−1 is negative on the interval (0, 1), which means that the maximum
of f(x) occurs at x = 0 and the minimum at x = 1. But f(0) = ∞ and f(1) = 0, which means that f(x) ≥ 0 for
x ∈ [0, 1]. Since T0 < Θ < T1 , we conclude ∆Stotal > 0.

2.12.5 Gibbs phase rule

Equilibrium between two phases means that p, T , and µ(p, T ) are identical. From

µ1(p, T ) = µ2(p, T ) , (2.355)

we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that we have
one equation in two unknowns (T, p), so the solution set is a curve. For three phase coexistence, we have

µ1(p, T ) = µ2(p, T ) = µ3(p, T ) , (2.356)

which gives us two equations in two unknowns. The solution is then a point (or a set of points). A critical point
also is a solution of two simultaneous equations:

critical point =⇒ v1(p, T ) = v2(p, T ) , µ1(p, T ) = µ2(p, T ) . (2.357)
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Figure 2.30: Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing measured thickness
of the surface melt on ice at temperatures below 0◦C. The straight line has slope − 1

3 , as predicted by theory. Right
panel: phase diagram of H2O, showing various high pressure solid phases. (Source : Physics Today, December
2005).

Recall v = NA

(
∂µ
∂p

)
T

. Note that there can be no four phase coexistence for a simple p-V -T system.

Now for the general result. Suppose we have σ species, with particle numbers Na, where a = 1, . . . , σ. It is
useful to briefly recapitulate the derivation of the Gibbs-Duhem relation. The energy E(S, V,N1, . . . , Nσ) is a
homogeneous function of degree one:

E(λS, λV, λN1, . . . , λNσ) = λE(S, V,N1, . . . , Nσ) . (2.358)

From Euler’s theorem for homogeneous functions (just differentiate with respect to λ and then set λ = 1), we have

E = TS − p V +

σ∑

a=1

µaNa . (2.359)

Taking the differential, and invoking the First Law,

dE = T dS − p dV +

σ∑

a=1

µa dNa , (2.360)

we arrive at the relation

S dT − V dp+

σ∑

a=1

Na dµa = 0 , (2.361)

of which eqn. 2.147 is a generalization to additional internal ‘work’ variables. This says that the σ + 2 quantities
(T, p, µ1, . . . , µσ) are not all independent. We can therefore write

µσ = µσ

(
T, p, µ1, . . . , µσ−1

)
. (2.362)

If there are ϕ different phases, then in each phase j, with j = 1, . . . , ϕ, there is a chemical potential µ
(j)
a for each

species a. We then have

µ(j)
σ = µ(j)

σ

(
T, p, µ

(j)
1 , . . . , µ

(j)
σ−1

)
. (2.363)
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Here µ
(j)
a is the chemical potential of the ath species in the jth phase. Thus, there are ϕ such equations relating the

2+ϕσ variables
(
T, p,

{
µ

(j)
a

})
, meaning that only 2+ϕ (σ−1) of them may be chosen as independent. This, then,

is the dimension of ‘thermodynamic space’ containing a maximal number of intensive variables:

dTD(σ, ϕ) = 2 + ϕ (σ − 1) . (2.364)

To completely specify the state of our system, we of course introduce a single extensive variable, such as the total
volume V . Note that the total particle number N =

∑σ
a=1Na may not be conserved in the presence of chemical

reactions!

Now suppose we have equilibrium among ϕ phases. We have implicitly assumed thermal and mechanical equi-
librium among all the phases, meaning that p and T are constant. Chemical equilibrium applies on a species-by-
species basis. This means

µ(j)
a = µ(j′)

a (2.365)

where j, j′ ∈ {1, . . . , ϕ}. This gives σ(ϕ − 1) independent equations equations16. Thus, we can have phase equilib-
rium among the ϕ phases of σ species over a region of dimension

dPE(σ, ϕ) = 2 + ϕ (σ − 1) − σ (ϕ− 1)

= 2 + σ − ϕ .
(2.366)

Since dPE ≥ 0, we must have ϕ ≤ σ + 2. Thus, with two species (σ = 2), we could have at most four phase
coexistence.

If the various species can undergo ρ distinct chemical reactions of the form

ζ
(r)
1 A1 + ζ

(r)
2 A2 + · · · + ζ(r)

σ Aσ = 0 , (2.367)

where Aa is the chemical formula for species a, and ζ
(r)
a is the stoichiometric coefficient for the ath species in the

rth reaction, with r = 1, . . . , ρ, then we have an additional ρ constraints of the form

σ∑

a=1

ζ(r)
a µ(j)

a = 0 . (2.368)

Therefore,
d

PE
(σ, ϕ, ρ) = 2 + σ − ϕ− ρ . (2.369)

One might ask what value of j are we to use in eqn. 2.368, or do we in fact have ϕ such equations for each r? The
answer is that eqn. 2.365 guarantees that the chemical potential of species a is the same in all the phases, hence it
doesn’t matter what value one chooses for j in eqn. 2.368.

Let us assume that no reactions take place, i.e. ρ = 0, so the total number of particles
∑σ

b=1Nb is conserved.

Instead of choosing (T, p, µ1, . . . , µ
(j)
σ−1) as d

TD
intensive variables, we could have chosen (T, p, µ1, . . . , x

(j)
σ−1), where

xa = Na/N is the concentration of species a.

Why do phase diagrams in the (p, v) and (T, v) plane look different than those in the (p, T ) plane?17 For example,
Fig. 2.27 shows projections of the p-v-T surface of a typical single component substance onto the (T, v), (p, v), and
(p, T ) planes. Coexistence takes place along curves in the (p, T ) plane, but in extended two-dimensional regions
in the (T, v) and (p, v) planes. The reason that p and T are special is that temperature, pressure, and chemical
potential must be equal throughout an equilibrium phase if it is truly in thermal, mechanical, and chemical equi-
librium. This is not the case for an intensive variable such as specific volume v = NAV/N or chemical concentration
xa = Na/N .

16Set j = 1 and let j′ range over the ϕ − 1 values 2, . . . , ϕ.
17The same can be said for multicomponent systems: the phase diagram in the (T, x) plane at constant p looks different than the phase

diagram in the (T, µ) plane at constant p.
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2.13 Entropy of Mixing and the Gibbs Paradox

2.13.1 Computing the entropy of mixing

Entropy is widely understood as a measure of disorder. Of course, such a definition should be supplemented by
a more precise definition of disorder – after all, one man’s trash is another man’s treasure. To gain some intuition
about entropy, let us explore the mixing of a multicomponent ideal gas. Let N =

∑
aNa be the total number of

particles of all species, and let xa = Na/N be the concentration of species a. Note that
∑

a xa = 1.

For any substance obeying the ideal gas law pV = Nk
B
T , the entropy is

S(T, V,N) = NkB ln(V/N) +Nφ(T ) , (2.370)

since
(

∂S
∂V

)
T,N

=
(

∂p
∂T

)
V,N

=
NkB

V . Note that in eqn. 2.370 we have divided V by N before taking the logarithm.

This is essential if the entropy is to be an extensive function (see §2.7.5). One might think that the configurational
entropy of an ideal gas should scale as ln(V N ) = N lnV , since each particle can be anywhere in the volume
V . However, if the particles are indistinguishable, then permuting the particle labels does not result in a distinct
configuration, and so the configurational entropy is proportional to ln(V N/N !) ∼ N ln(V/N) − N . The origin
of this indistinguishability factor will become clear when we discuss the quantum mechanical formulation of
statistical mechanics. For now, note that such a correction is necessary in order that the entropy be an extensive
function.

If we did not include this factor and instead wrote S∗(T, V,N) = NkB lnV+Nφ(T ), then we would find S∗(T, V,N)−
2S∗(T, 1

2V,
1
2N) = Nk

B
ln 2, i.e. the total entropy of two identical systems of particles separated by a barrier will in-

crease if the barrier is removed and they are allowed to mix. This seems absurd, though, because we could just as
well regard the barriers as invisible. This is known as the Gibbs paradox. The resolution of the Gibbs paradox is to
include the indistinguishability correction, which renders S extensive, in which case S(T, V,N) = 2S(T, 1

2V,
1
2N).

Consider now the situation in Fig. 2.31, where we have separated the different components into their own volumes
Va. Let the pressure and temperature be the same everywhere, so pVa = NakB

T . The entropy of the unmixed
system is then

Sunmixed =
∑

a

Sa =
∑

a

[
Na kB ln(Va/Na) +Na φa(T )

]
. (2.371)

Now let us imagine removing all the barriers separating the different gases and letting the particles mix thor-
oughly. The result is that each component gas occupies the full volume V , so the entropy is

Smixed =
∑

a

Sa =
∑

a

[
Na kB

ln(V/Na) +Na φa(T )
]
. (2.372)

Thus, the entropy of mixing is

∆Smix = Smixed − Sunmixed

=
∑

a

Na kB ln(V/Va) = −NkB

∑

a

xa lnxa ,
(2.373)

where xa = Na

N = Va

V is the fraction of species a. Note that ∆Smix = 0.

What if all the components were initially identical? It seems absurd that the entropy should increase simply by
removing some invisible barriers. This is again the Gibbs paradox. In this case, the resolution of the paradox is to
note that the sum in the expression for Smixed is a sum over distinct species. Hence if the particles are all identical,
we have Smixed = Nk

B
ln(V/N) +Nφ(T ) = Sunmixed, hence ∆Smix = 0.
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Figure 2.31: A multicomponent system consisting of isolated gases, each at temperature T and pressure p. Then
system entropy increases when all the walls between the different subsystems are removed.

2.13.2 Entropy and combinatorics

As we shall learn when we study statistical mechanics, the entropy may be interpreted in terms of the number of
ways W (E, V,N) a system at fixed energy and volume can arrange itself. One has

S(E, V,N) = k
B

lnW (E, V,N) . (2.374)

Consider a system consisting of σ different species of particles. Now let it be that for each species label a, Na

particles of that species are confined among Qa little boxes such that at most one particle can fit in a box (see Fig.
2.32). How many ways W are there to configure N identical particles among Q boxes? Clearly

W =

(
Q

N

)
=

Q!

N ! (Q−N)!
. (2.375)

Were the particles distinct, we’d have Wdistinct = Q!
(Q−N)! , which is N ! times greater. This is because permuting

distinct particles results in a different configuration, and there are N ! ways to permute N particles.

The entropy for species a is then Sa = k
B

lnWa = k
B

ln
(

Qa

Na

)
. We then use Stirling’s approximation,

ln(K!) = K lnK −K + 1
2 lnK + 1

2 ln(2π) + O(K−1) , (2.376)

which is an asymptotic expansion valid for K ≫ 1. One then finds for Q,N ≫ 1, with x = N/Q ∈ [0, 1],

ln

(
Q

N

)
=
(
Q lnQ−Q

)
−
(
xQ ln(xQ) − xQ

)
−
(
(1 − x)Q ln

(
(1 − x)Q

)
− (1 − x)Q

)

= −Q
[
x lnx+ (1 − x) ln(1 − x)

]
. (2.377)

This is valid up to terms of order Q in Stirling’s expansion. Since lnQ≪ Q, the next term is small and we are safe
to stop here. Summing up the contributions from all the species, we get

Sunmixed = k
B

σ∑

a=1

lnWa = −k
B

σ∑

a=1

Qa

[
xa lnxa + (1 − xa) ln(1 − xa)

]
, (2.378)
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Figure 2.32: Mixing among three different species of particles. The mixed configuration has an additional entropy,
∆Smix.

where xa = Na/Qa is the initial dimensionless density of species a.

Now let’s remove all the partitions between the different species so that each of the particles is free to explore all
of the boxes. There are Q =

∑
aQa boxes in all. The total number of ways of placing N1 particles of species a = 1

through Nσ particles of species σ is

Wmixed =
Q!

N0!N1! · · ·Nσ!
, (2.379)

where N0 = Q−∑σ
a=1Na is the number of vacant boxes. Again using Stirling’s rule, we find

Smixed = −kBQ

σ∑

a=0

x̃a ln x̃a , (2.380)

where x̃a = Na/Q is the fraction of all boxes containing a particle of species a, and N0 is the number of empty
boxes. Note that

x̃a =
Na

Q
=
Na

Qa

· Qa

Q
= xa fa , (2.381)

where fa ≡ Qa/Q. Note that
∑σ

a=1 fa = 1.

Let’s assume all the densities are initially the same, so xa = x∀a, so x̃a = x fa. In this case, fa =
Qa

Q =
Na

N is the

fraction of species a among all the particles. We then have x̃0 = 1 − x, and

Smixed = −k
B
Q

σ∑

a=1

xfa ln(xfa) − k
B
Q x̃0 ln x̃0

= −kBQ
[
x lnx+ (1 − x) ln(1 − x)

]
− kB xQ

σ∑

a=1

fa ln fa .

(2.382)

Thus, the entropy of mixing is

∆Smix = −NkB

σ∑

a=1

fa ln fa , (2.383)

where N =
∑σ

a=1Na is the total number of particles among all species (excluding vacancies) and fa = Na/(N +
N0)is the fraction of all boxes occupied by species a.
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2.13.3 Weak solutions and osmotic pressure

Suppose one of the species is much more plentiful than all the others, and label it with a = 0. We will call this the
solvent. The entropy of mixing is then

∆Smix = −kB

[
N0 ln

(
N0

N0 +N ′

)
+

σ∑

a=1

Na ln

(
Na

N0 +N ′

)]
, (2.384)

where N ′ =
∑σ

a=1Na is the total number of solvent molecules, summed over all species. We assume the solution
is weak, which means Na ≤ N ′ ≪ N0. Expanding in powers of N ′/N0 and Na/N0, we find

∆Smix = −k
B

σ∑

a=1

[
Na ln

(
Na

N0

)
−Na

]
+ O

(
N ′2/N0

)
. (2.385)

Consider now a solution consisting of N0 molecules of a solvent and Na molecules of species a of solute, where
a = 1, . . . , σ. We begin by expanding the Gibbs free energy G(T, p,N0, N1, . . . , Nσ), where there are σ species of
solutes, as a power series in the small quantities Na. We have

G
(
T, p,N0, {Na}

)
= N0 g0(T, p) + kBT

∑

a

Na ln

(
Na

eN0

)

+
∑

a

Na ψa(T, p) +
1

2N0

∑

a,b

Aab(T, p)NaNb .
(2.386)

The first term on the RHS corresponds to the Gibbs free energy of the solvent. The second term is due to the
entropy of mixing. The third term is the contribution to the total free energy from the individual species. Note
the factor of e in the denominator inside the logarithm, which accounts for the second term in the brackets on the
RHS of eqn. 2.385. The last term is due to interactions between the species; it is truncated at second order in the
solute numbers.

The chemical potential for the solvent is

µ0(T, p) =
∂G

∂N0

= g0(T, p) − kBT
∑

a

xa − 1
2

∑

a,b

Aab(T, p)xa xb , (2.387)

and the chemical potential for species a is

µa(T, p) =
∂G

∂Na

= k
B
T lnxa + ψa(T, p) +

∑

b

Aab(T, p)xb , (2.388)

where xa = Na/N0 is the concentrations of solute species a. By assumption, the last term on the RHS of each of
these equations is small, since Nsolute ≪ N0, where Nsolute =

∑σ
a=1Na is the total number of solute molecules. To

lowest order, then, we have

µ0(T, p) = g0(T, p) − xkBT (2.389)

µa(T, p) = k
B
T lnxa + ψa(T, p) , (2.390)

where x =
∑

a xa is the total solute concentration.

If we add sugar to a solution confined by a semipermeable membrane18, the pressure increases! To see why,
consider a situation where a rigid semipermeable membrane separates a solution (solvent plus solutes) from a

18‘Semipermeable’ in this context means permeable to the solvent but not the solute(s).
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Figure 2.33: Osmotic pressure causes the column on the right side of the U-tube to rise higher than the column on
the left by an amount ∆h = π/̺ g.

pure solvent. There is energy exchange through the membrane, so the temperature is T throughout. There is no
volume exchange, however: dV = dV ′ = 0, hence the pressure need not be the same. Since the membrane is
permeable to the solvent, we have that the chemical potential µ0 is the same on each side. This means

g0(T, pR
) − xk

B
T = g0(T, pL

) , (2.391)

where pL,R is the pressure on the left and right sides of the membrane, and x = N/N0 is again the total solute
concentration. This equation once again tells us that the pressure p cannot be the same on both sides of the
membrane. If the pressure difference is small, we can expand in powers of the osmotic pressure, π ≡ pR − pL , and
we find

π = xk
B
T

/(
∂µ0

∂p

)

T

. (2.392)

But a Maxwell relation (§2.9) guarantees
(
∂µ

∂p

)

T,N

=

(
∂V

∂N

)

T,p

= v(T, p)/NA , (2.393)

where v(T, p) is the molar volume of the solvent.

πv = xRT , (2.394)

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’) solutions! The
resulting pressure has a demonstrable effect, as sketched in Fig. 2.33. Consider a solution containing ν moles of
sucrose (C12H22O11) per kilogram (55.52 mol) of water at 30◦ C. We find π = 2.5 atm when ν = 0.1.

One might worry about the expansion in powers of π when π is much larger than the ambient pressure. But in
fact the next term in the expansion is smaller than the first term by a factor of πκT , where κT is the isothermal
compressibility. For water one has κT ≈ 4.4 × 10−5 (atm)−1, hence we can safely ignore the higher order terms in
the Taylor expansion.

2.13.4 Effect of impurities on boiling and freezing points

Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two phases are
identical:

µ0
L
(T, p) = µ0

V
(T, p) . (2.395)
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Latent Heat Melting Latent Heat of Boiling

Substance of Fusion ℓ̃f Point Vaporization ℓ̃v Point
J/g ◦C J/g ◦C

C2H5OH 108 -114 855 78.3
NH3 339 -75 1369 -33.34
CO2 184 -57 574 -78
He – – 21 -268.93
H 58 -259 455 -253
Pb 24.5 372.3 871 1750
N2 25.7 -210 200 -196
O2 13.9 -219 213 -183

H2O 334 0 2270 100

Table 2.4: Latent heats of fusion and vaporization at p = 1 atm.

Here we write µ0 for µ to emphasize that we are talking about a phase with no impurities present. This equation
provides a single constraint on the two variables T and p, hence one can, in principle, solve to obtain T = T ∗

0 (p),
which is the equation of the liquid-vapor coexistence curve in the (T, p) plane. Now suppose there is a solute
present in the liquid. We then have

µL(T, p, x) = µ0
L(T, p) − xkBT , (2.396)

where x is the dimensionless solute concentration, summed over all species. The condition for liquid-vapor coex-
istence now becomes

µ0
L
(T, p) − xk

B
T = µ0

V
(T, p) . (2.397)

This will lead to a shift in the boiling temperature at fixed p. Assuming this shift is small, let us expand to lowest
order in

(
T − T ∗

0 (p)
)
, writing

µ0
L(T

∗
0 , p) +

(
∂µ0

L

∂T

)

p

(
T − T ∗

0

)
− xkBT = µ0

V(T ∗
0 , p) +

(
∂µ0

V

∂T

)

p

(
T − T ∗

0

)
. (2.398)

Note that (
∂µ

∂T

)

p,N

= −
(
∂S

∂N

)

T,p

(2.399)

from a Maxwell relation deriving from exactness of dG. Since S is extensive, we can write S = (N/NA) s(T, p),
where s(T, p) is the molar entropy. Solving for T , we obtain

T ∗(p, x) = T ∗
0 (p) +

xR
[
T ∗

0 (p)
]2

ℓv(p)
, (2.400)

where ℓv = T ∗
0 · (sV − sL) is the latent heat of the liquid-vapor transition19. The shift ∆T ∗ = T ∗ − T ∗

0 is called the
boiling point elevation.

As an example, consider seawater, which contains approximately 35 g of dissolved Na+Cl− per kilogram of H2O.
The atomic masses of Na and Cl are 23.0 and 35.4, respectively, hence the total ionic concentration in seawater
(neglecting everything but sodium and chlorine) is given by

x =
2 · 35

23.0 + 35.4

/
1000

18
≈ 0.022 . (2.401)

19We shall discuss latent heat again in §2.12.2 below.



2.13. ENTROPY OF MIXING AND THE GIBBS PARADOX 69

The latent heat of vaporization of H2O at atmospheric pressure is ℓ = 40.7 kJ/mol, hence

∆T ∗ =
(0.022)(8.3 J/molK)(373 K)2

4.1 × 104 J/mol
≈ 0.6 K . (2.402)

Put another way, the boiling point elevation of H2O at atmospheric pressure is about 0.28◦C per percent solute.
We can express this as ∆T ∗ = Km, where the molality m is the number of moles of solute per kilogram of solvent.
For H2O, we find K = 0.51◦C kg/mol.

Similar considerations apply at the freezing point, when we equate the chemical potential of the solvent plus
solute to that of the pure solid. The latent heat of fusion for H2O is about ℓf = T 0

f · (sLIQUID − sSOLID) = 6.01 kJ/mol20

We thus predict a freezing point depression of ∆T ∗ = −xR
[
T ∗

0

]2
/ℓf = 1.03◦C · x[%]. This can be expressed once

again as ∆T ∗ = −Km, with K = 1.86◦C kg/mol21.

2.13.5 Binary solutions

Consider a binary solution, and write the Gibbs free energy G(T, p,N
A
, N

B
) as

G(T, p,NA, NB) = NA µ
0
A(T, p) +NB µ

0
B(T, p) +NAkBT ln

(
N

A

N
A

+N
B

)

+N
B
k

B
T ln

(
N

B

N
A

+N
B

)
+ λ

N
A
N

B

N
A

+N
B

.

(2.403)

The first four terms on the RHS represent the free energy of the individual component fluids and the entropy of
mixing. The last term is an interaction contribution. With λ > 0, the interaction term prefers that the system be
either fully A or fully B. The entropy contribution prefers a mixture, so there is a competition. What is the stable
thermodynamic state?

It is useful to write the Gibbs free energy per particle, g(T, p, x) = G/(N
A

+N
B
), in terms of T , p, and the concen-

tration x ≡ x
B

= N
B
/(N

A
+N

B
) of species B (hence x

A
= 1 − x is the concentration of species A). Then

g(T, p, x) = (1 − x)µ0
A + xµ0

B + kBT
[
x lnx+ (1 − x) ln(1 − x)

]
+ λx (1 − x) . (2.404)

In order for the system to be stable against phase separation into relatively A-rich and B-rich regions, we must have
that g(T, p, x) be a convex function of x. Our first check should be for a local instability, i.e. spinodal decomposition.
We have

∂g

∂x
= µ0

B − µ0
A + kBT ln

(
x

1 − x

)
+ λ (1 − 2x) (2.405)

and
∂2g

∂x2
=
k

B
T

x
+

k
B
T

1 − x
− 2λ . (2.406)

The spinodal is given by the solution to the equation ∂2g
∂x2 = 0, which is

T ∗(x) =
2λ

kB

x (1 − x) . (2.407)

Since x (1 − x) achieves its maximum value of 1
4 at x = 1

2 , we have T ∗ ≤ k
B
/2λ.

20See table 2.4, and recall M = 18 g is the molar mass of H2O.
21It is more customary to write ∆T ∗ = T ∗

pure solvent
− T ∗

solution
in the case of the freezing point depression, in which case ∆T ∗ is positive.
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Figure 2.34: Gibbs free energy per particle for a binary solution as a function of concentration x = xB of the B
species (pure A at the left end x = 0 ; pure B at the right end x = 1), in units of the interaction parameter λ. Dark
red curve: T = 0.65λ/kB > Tc ; green curve: T = λ/2kB = Tc ; blue curve: T = 0.40λ/kB < Tc. We have chosen
µ0

A
= 0.60λ − 0.50 kBT and µ0

B
= 0.50λ − 0. 50 kBT . Note that the free energy g(T, p, x) is not convex in x for

T < Tc, indicating an instability and necessitating a Maxwell construction.

In Fig. 2.34 we sketch the free energy g(T, p, x) versus x for three representative temperatures. For T > λ/2k
B

, the
free energy is everywhere convex in λ. When T < λ/2kB, there free energy resembles the blue curve in Fig. 2.34,
and the system is unstable to phase separation. The two phases are said to be immiscible, or, equivalently, there
exists a solubility gap. To determine the coexistence curve, we perform a Maxwell construction, writing

g(x2) − g(x1)

x2 − x1

=
∂g

∂x

∣∣∣∣
x1

=
∂g

∂x

∣∣∣∣
x2

. (2.408)

Here, x1 and x2 are the boundaries of the two phase region. These equations admit a symmetry of x ↔ 1 − x,
hence we can set x = x1 and x2 = 1 − x. We find

g(1 − x) − g(x) = (1 − 2x)
(
µ0

B − µ0
A

)
, (2.409)

and invoking eqns. 2.408 and 2.405 we obtain the solution

Tcoex(x) =
λ

k
B

· 1 − 2x

ln
(

1−x
x

) . (2.410)

The phase diagram for the binary system is shown in Fig. 2.36. For T < T ∗(x), the system is unstable, and
spinodal decomposition occurs. For T ∗(x) < T < Tcoex(x), the system is metastable, just like the van der Waals gas
in its corresponding regime. Real binary solutions behave qualitatively like the model discussed here, although
the coexistence curve is generally not symmetric under x ↔ 1 − x, and the single phase region extends down to
low temperatures for x ≈ 0 and x ≈ 1. If λ itself is temperature-dependent, there can be multiple solutions to
eqns. 2.407 and 2.410. For example, one could take

λ(T ) =
λ0 T

2

T 2 + T 2
0

. (2.411)
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Figure 2.35: Upper panels: chemical potential shifts ∆µ± = ∆µA ± ∆µB versus concentration x = xB. The dashed
black line is the spinodal, and the solid black line the coexistence boundary. Temperatures range from T = 0 (dark
blue) to T = 0.6λ/kB (red) in units of 0.1λ/kB. Lower panels: phase diagram in the (T,∆µ±) planes. The black
dot is the critical point.

In this case, kBT > λ at both high and low temperatures, and we expect the single phase region to be reentrant.
Such a phenomenon occurs in water-nicotine mixtures, for example.

It is instructive to consider the phase diagram in the (T, µ) plane. We define the chemical potential shifts,

∆µA ≡ µA − µ0
A = kBT ln(1 − x) + λx2 (2.412)

∆µB ≡ µB − µ0
B = kBT lnx+ λ (1 − x)2 , (2.413)

and their sum and difference, ∆µ± ≡ ∆µ
A
±∆µ

B
. From the Gibbs-Duhem relation, we know that we can write µ

B

as a function of T , p, and µ
A

. Alternately, we could write ∆µ± in terms of T , p, and ∆µ∓, so we can choose which
among ∆µ+ and ∆µ− we wish to use in our phase diagram. The results are plotted in Fig. 2.35. It is perhaps
easiest to understand the phase diagram in the (T,∆µ−) plane. At low temperatures, below T = Tc = λ/2kB,
there is a first order phase transition at ∆µ− = 0. For T < Tc = λ/2kB and ∆µ− = 0+, i.e. infinitesimally positive,
the system is in the A-rich phase, but for ∆µ− = 0−, i.e. infinitesimally negative, it is B-rich. The concentration
x = x

B
changes discontinuously across the phase boundary. The critical point lies at (T,∆µ−) = (λ/2kB , 0).

If we choose N = N
A

+N
B

to be the extensive variable, then fixing N means dN
A

+ dN
B

= 0. So st fixed T and p,

dG
∣∣
T,p

= µ
A
dN

A
+ µ

B
dN

B
⇒ dg

∣∣
T,p

= −∆µ− dx . (2.414)
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Figure 2.36: Phase diagram for the binary system. The black curve is the coexistence curve, and the dark red curve
is the spinodal. A-rich material is to the left and B-rich to the right.

Since ∆µ−(x, T ) = ϕ(x, T ) − ϕ(1 − x, T ) = −∆µ−(1 − x, T ), where ϕ(x, T ) = λx − kBT lnx, we have that the

coexistence boundary in the (x,∆−) plane is simply the line ∆µ− = 0, because
1−x∫
x

dx′ ∆µ−(x′, T ) = 0.

Note also that there is no two-phase region in the (T,∆µ) plane; the phase boundary in this plane is a curve
which terminates at a critical point. As we saw in §2.12, the same situation pertains in single component (p, v, T )
systems. That is, the phase diagram in the (p, v) or (T, v) plane contains two-phase regions, but in the (p, T ) plane
the boundaries between phases are one-dimensional curves. Any two-phase behavior is confined to these curves,
where the thermodynamic potentials are singular.

The phase separation can be seen in a number of systems. A popular example involves mixtures of water and
ouzo or other anise-based liqueurs, such as arak and absinthe. Starting with the pure liqueur (x = 1), and at a
temperature below the coexistence curve maximum, the concentration is diluted by adding water. Follow along
on Fig. 2.36 by starting at the point (x = 1 , kBT/λ = 0.4) and move to the left. Eventually, one hits the boundary
of the two-phase region. At this point, the mixture turns milky, due to the formation of large droplets of the pure
phases on either side of coexistence region which scatter light, a process known as spontaneous emulsification22. As
one continues to dilute the solution with more water, eventually one passes all the way through the coexistence
region, at which point the solution becomes clear once again, and described as a single phase.

What happens if λ < 0? In this case, both the entropy and the interaction energy prefer a mixed phase, and there is
no instability to phase separation. The two fluids are said to be completely miscible. An example would be benzene,
C6H6, and toluene, C7H8 (i.e. C6H5CH3). The phase diagram would be blank, with no phase boundaries below
the boiling transition, because the fluid could exist as a mixture in any proportion.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the boiling points
of our A and B fluids are T ∗

A,B, and without loss of generality let us take T ∗
A
< T ∗

B
at some given fixed pressure23.

This means µL

A
(T ∗

A
, p) = µV

A
(T ∗

A
, p) and µL

B
(T ∗

B
, p) = µV

B
(T ∗

B
, p). What happens to the mixture? We begin by writing

22An emulsion is a mixture of two or more immiscible liquids.
23We assume the boiling temperatures are not exactly equal!
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Figure 2.37: Gibbs free energy per particle g for an ideal binary solution for temperatures T ∈ [T ∗
A
, T ∗

B
]. The

Maxwell construction is shown for the case T ∗
A
< T < T ∗

B
. Right: phase diagram, showing two-phase region and

distillation sequence in (x, T ) space.

the free energies of the mixed liquid and mixed vapor phases as

gL(T, p, x) = (1 − x)µL

A(T, p) + xµL

B(T, p) + kBT
[
x lnx+ (1 − x) ln(1 − x)

]
+ λL x(1 − x) (2.415)

g
V
(T, p, x) = (1 − x)µV

A
(T, p) + xµV

B
(T, p) + k

B
T
[
x ln x+ (1 − x) ln(1 − x)

]
+ λ

V
x(1 − x) . (2.416)

Typically λV ≈ 0. Consider these two free energies as functions of the concentration x, at fixed T and p. If the
curves never cross, and g

L
(x) < g

V
(x) for all x ∈ [0, 1], then the liquid is always the state of lowest free energy.

This is the situation in the first panel of Fig. 2.37. Similarly, if gV(x) < gL(x) over this range, then the mixture is in
the vapor phase throughout. What happens if the two curves cross at some value of x? This situation is depicted
in the second panel of Fig. 2.37. In this case, there is always a Maxwell construction which lowers the free energy
throughout some range of concentration, i.e. the system undergoes phase separation.

In an ideal fluid, we have λL = λV = 0, and setting gL = gV requires

(1 − x)∆µ
A
(T, p) + x∆µ

B
(T, p) = 0 , (2.417)

where ∆µ
A/B

(T, p) = µL

A/B
(T, p) − µV

A/B
(T, p). Expanding the chemical potential about a given temperature T ∗,

µ(T, p) = µ(T ∗, p) − s(T ∗, p) (T − T ∗) −
cp(T

∗, p)

2T
(T − T ∗)2 + . . . , (2.418)

where we have used
(

∂µ
∂T

)
p,N

= −
(

∂S
∂N

)
T,p

= −s(T, p), the entropy per particle, and
(

∂s
∂T

)
p,N

= cp/T . Thus,

expanding ∆µ
A/B

about T ∗
A/B

, we have

∆µA ≡ µL

A − µV

A = (sV

A − sL

A)(T − T ∗
A) +

cVpA
− cLpA

2T ∗
A

(T − T ∗
A)2 + . . .

∆µB ≡ µL

B − µV

B = (sV

B − sL

B)(T − T ∗
B) +

cVpB
− cLpB

2T ∗
B

(T − T ∗
B)2 + . . .

(2.419)
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Figure 2.38: Negative (left) and positive (right) azeotrope phase diagrams. From Wikipedia.

We assume sV

A/B
> sL

A/B
, i.e. the vapor phase has greater entropy per particle. Thus, ∆µ

A/B
(T ) changes sign from

negative to positive as T rises through T ∗
A/B

. If we assume that these are the only sign changes for ∆µ
A/B

(T ) at

fixed p, then eqn. 2.417 can only be solved for T ∈ [T ∗
A
, T ∗

B
]. This immediately leads to the phase diagram in the

rightmost panel of Fig. 2.37.

According to the Gibbs phase rule, with σ = 2, two-phase equilibrium (ϕ = 2) occurs along a subspace of dimen-
sion d

PE
= 2 + σ − ϕ = 2. Thus, if we fix the pressure p and the concentration x = x

B
, liquid-gas equilibrium

occurs at a particular temperature T ∗, known as the boiling point. Since the liquid and the vapor with which it
is in equilibrium at T ∗ may have different composition, i.e. different values of x, one may distill the mixture to
separate the two pure substances, as follows. First, given a liquid mixture of A and B, we bring it to boiling, as
shown in the rightmost panel of Fig. 2.37. The vapor is at a different concentration x than the liquid (a lower value
of x if the boiling point of pure A is less than that of pure B, as shown). If we collect the vapor, the remaining fluid
is at a higher value of x. The collected vapor is then captured and then condensed, forming a liquid at the lower
x value. This is then brought to a boil, and the resulting vapor is drawn off and condensed, etc The result is a
purified A state. The remaining liquid is then at a higher B concentration. By repeated boiling and condensation,
A and B can be separated. For liquid-vapor transitions, the upper curve, representing the lowest temperature at a
given concentration for which the mixture is a homogeneous vapor, is called the dew point curve. The lower curve,
representing the highest temperature at a given concentration for which the mixture is a homogeneous liquid,
is called the bubble point curve. The same phase diagram applies to liquid-solid mixtures where both phases are
completely miscible. In that case, the upper curve is called the liquidus, and the lower curve the solidus.

When a homogeneous liquid or vapor at concentration x is heated or cooled to a temperature T such that (x, T )
lies within the two-phase region, the mixture phase separates into the the two end components (x∗L, T ) and (x∗V, T ),
which lie on opposite sides of the boundary of the two-phase region, at the same temperature. The locus of points
at constant T joining these two points is called the tie line. To determine how much of each of these two homo-
geneous phases separates out, we use particle number conservation. If ηL,V is the fraction of the homogeneous
liquid and homogeneous vapor phases present, then η

L
x∗

L
+ η

V
x∗

V
= x, which says η

L
= (x − x∗

V
)/(x∗

L
− x∗

V
) and

η
V

= (x − x∗
L
)/(x∗

V
− x∗

L
). This is known as the lever rule.
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Figure 2.39: Free energies before Maxwell constructions for a binary fluid mixture in equilibrium with a vapor
(λV = 0). Panels show (a) λL = 0 (ideal fluid), (b) λL < 0 (miscible fluid; negative azeotrope), (c) λL

AB
> 0

(positive azeotrope), (d) λL
AB > 0 (heteroazeotrope). Thick blue and red lines correspond to temperatures T ∗

A
and

T ∗
B

, respectively, with T ∗
A
< T ∗

B
. Thin blue and red curves are for temperatures outside the range [T ∗

A
, T ∗

B
]. The

black curves show the locus of points where g is discontinuous, i.e. where the liquid and vapor free energy curves
cross. The yellow curve in (d) corresponds to the coexistence temperature for the fluid mixture. In this case the
azeotrope forms within the coexistence region.

For many binary mixtures, the boiling point curve is as shown in Fig. 2.38. Such cases are called azeotropes. For
negative azeotropes, the maximum of the boiling curve lies above both T ∗

A,B. The free energy curves for this case
are shown in panel (b) of Fig. 2.39. For x < x∗, where x∗ is the azeotropic composition, one can distill A but
not B. Similarly, for x > x∗ one can distill B but not A. The situation is different for positive azeotropes, where the
minimum of the boiling curve lies below both T ∗

A,B , corresponding to the free energy curves in panel (c) of Fig.
2.39. In this case, distillation (i.e. condensing and reboiling the collected vapor) from either side of x∗ results in
the azeotrope. One can of course collect the fluid instead of the vapor. In general, for both positive and negative
azeotropes, starting from a given concentration x, one can only arrive at pure A plus azeotrope (if x < x∗) or
pure B plus azeotrope (if x > x∗). Ethanol (C2H5OH) and water (H2O) form a positive azeotrope which is 95.6%
ethanol and 4.4% water by weight. The individual boiling points are T ∗

C2H5OH = 78.4◦C , T ∗
H2O

= 100◦C, while
the azeotrope boils at T ∗

AZ = 78.2◦C. No amount of distillation of this mixture can purify ethanol beyond the
95.6% level. To go beyond this level of purity, one must resort to azeotropic distillation, which involved introducing
another component, such as benzene (or a less carcinogenic additive), which alters the molecular interactions.
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Figure 2.40: Phase diagram for a eutectic mixture in which a liquid L is in equilibrium with two solid phases α and
β. The same phase diagram holds for heteroazeotropes, where a vapor is in equilibrium with two liquid phases.

To model the azeotrope system, we need to take λL 6= 0, in which case one can find two solutions to the energy
crossing condition g

V
(x) = g

L
(x). With two such crossings come two Maxwell constructions, hence the phase dia-

grams in Fig. 2.38. Generally, negative azeotropes are found in systems with λL < 0 , whereas positive azeotropes
are found when λ

L
> 0. As we’ve seen, such repulsive interactions between the A and B components in general

lead to a phase separation below a coexistence temperature T
COEX

(x) given by eqn. 2.410. What happens if the
minimum boiling point lies within the coexistence region? This is the situation depicted in panel (d) of Fig. 2.39.
The system is then a liquid/vapor version of the solid/liquid eutectic (see Fig. 2.40), and the minimum boiling
point mixture is called a heteroazeotrope.

2.14 Some Concepts in Thermochemistry

2.14.1 Chemical reactions and the law of mass action

Suppose we have a chemical reaction among σ species, written as

ζ1 A1 + ζ2 A2 + · · · + ζσ Aσ = 0 , (2.420)

where

Aa = chemical formula

ζa = stoichiometric coefficient .

For example, we could have

−3 H2 − N2 + 2 NH3 = 0 (3 H2 + N2 ⇋ 2 NH3) (2.421)

for which
ζ(H2) = −3 , ζ(N2) = −1 , ζ(NH3) = 2 . (2.422)
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When ζa > 0, the corresponding Aa is a product; when ζa < 0, the corresponding Aa is a reactant. The bookkeeping
of the coefficients ζa which ensures conservation of each individual species of atom in the reaction(s) is known as
stoichiometry24

Now we ask: what are the conditions for equilibrium? At constant T and p, which is typical for many chemical
reactions, the conditions are that G

(
T, p, {Na}

)
be a minimum. Now

dG = −S dT + V dp+
∑

i

µa dNa , (2.423)

so if we let the reaction go forward, we have dNa = ζa, and if it runs in reverse we have dNa = −ζa. Thus, setting
dT = dp = 0, we have the equilibrium condition

σ∑

a=1

ζa µa = 0 . (2.424)

Let us investigate the consequences of this relation for ideal gases. The chemical potential of the ath species is

µa(T, p) = k
B
T φa(T ) + k

B
T ln pa . (2.425)

Here pa = p xa is the partial pressure of species a, where xa = Na/
∑

bNb the dimensionless concentration of
species a. Chemists sometimes write xa = [Aa] for the concentration of species a. In equilibrium we must have

∑

a

ζa

[
ln p+ lnxa + φa(T )

]
= 0 , (2.426)

which says ∑

a

ζa lnxa = −
∑

a

ζa ln p−
∑

a

ζa φa(T ) . (2.427)

Exponentiating, we obtain the law of mass action:

∏

a

x
ζa
a = p−

P

a
ζa exp

(
−
∑

a

ζa φa(T )

)
≡ κ(p, T ) . (2.428)

The quantity κ(p, T ) is called the equilibrium constant. When κ is large, the LHS of the above equation is large.
This favors maximal concentration xa for the products (ζa > 0) and minimal concentration xa for the reactants
(ζa < 0). This means that the equation REACTANTS ⇋ PRODUCTS is shifted to the right, i.e. the products are
plentiful and the reactants are scarce. When κ is small, the LHS is small and the reaction is shifted to the left, i.e.
the reactants are plentiful and the products are scarce. Remember we are describing equilibrium conditions here.
Now we observe that reactions for which

∑
a ζa > 0 shift to the left with increasing pressure and shift to the right

24Antoine Lavoisier, the ”father of modern chemistry”, made pioneering contributions in both chemistry and biology. In particular, he is
often credited as the progenitor of stoichiometry. An aristocrat by birth, Lavoisier was an administrator of the Ferme générale, an organization
in pre-revolutionary France which collected taxes on behalf of the king. At the age of 28, Lavoisier married Marie-Anne Pierette Paulze, the
13-year-old daughter of one of his business partners. She would later join her husband in his research, and she played a role in his disproof of
the phlogiston theory of combustion. The phlogiston theory was superseded by Lavoisier’s work, where, based on contemporary experiments
by Joseph Priestley, he correctly identified the pivotal role played by oxygen in both chemical and biological processes (i.e. respiration). Despite
his fame as a scientist, Lavoisier succumbed to the Reign of Terror. His association with the Ferme générale, which collected taxes from the poor
and the downtrodden, was a significant liability in revolutionary France (think Mitt Romney vis-a-vis Bain Capital). Furthermore – and let
this be a lesson to all of us – Lavoisier had unwisely ridiculed a worthless pseudoscientific pamphlet, ostensibly on the physics of fire, and
its author, Jean-Paul Marat. Marat was a journalist with scientific pretensions, but apparently little in the way of scientific talent or acumen.
Lavoisier effectively blackballed Marat’s candidacy to the French Academy of Sciences, and the time came when Marat sought revenge. Marat
was instrumental in getting Lavoisier and other members of the Ferme générale arrested on charges of counterrevolutionary activities, and on
May 8, 1794, after a trial lasting less than a day, Lavoisier was guillotined. Along with Fourier and Carnot, Lavoisier’s name is one of the 72
engraved on the Eiffel Tower. Source: http://www.vigyanprasar.gov.in/scientists/ALLavoisier.htm.
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with decreasing pressure, while reactions for which
∑

a ζa > 0 the situation is reversed: they shift to the right with
increasing pressure and to the left with decreasing pressure. When

∑
a ζa = 0 there is no shift upon increasing or

decreasing pressure.

The rate at which the equilibrium constant changes with temperature is given by

(
∂ lnκ

∂T

)

p

= −
∑

a

ζa φ
′
a(T ) . (2.429)

Now from eqn. 2.425 we have that the enthalpy per particle for species i is

ha = µa − T

(
∂µa

∂T

)

p

, (2.430)

since H = G+ TS and S = −
(

∂G
∂T

)
p
. We find

ha = −kBT
2 φ′a(T ) , (2.431)

and thus (
∂ lnκ

∂T

)

p

=

∑
i ζa ha

k
B
T 2

=
∆h

k
B
T 2

, (2.432)

where ∆h is the enthalpy of the reaction, which is the heat absorbed or emitted as a result of the reaction.

When ∆h > 0 the reaction is endothermic and the yield increases with increasing T . When ∆h < 0 the reaction is
exothermic and the yield decreases with increasing T .

As an example, consider the reaction H2 + I2 ⇋ 2 HI. We have

ζ(H2) = −1 , ζ(I2) = −1 ζ(HI) = 2 . (2.433)

Suppose our initial system consists of ν0
1 moles of H2, ν0

2 = 0 moles of I2, and ν0
3 moles of undissociated HI . These

mole numbers determine the initial concentrations x0
a, where xa = νa/

∑
b νb. Define

α ≡ x0
3 − x3

x3

, (2.434)

in which case we have

x1 = x0
1 + 1

2αx
0
3 , x2 = 1

2αx
0
3 , x3 = (1 − α)x0

3 . (2.435)

Then the law of mass action gives
4 (1 − α)2

α(α+ 2r)
= κ . (2.436)

where r ≡ x0
1/x

0
3 = ν0

1/ν
0
3 . This yields a quadratic equation, which can be solved to find α(κ, r). Note that

κ = κ(T ) for this reaction since
∑

a ζa = 0. The enthalpy of this reaction is positive: ∆h > 0.

2.14.2 Enthalpy of formation

Most chemical reactions take place under constant pressure. The heat Qif associated with a given isobaric process
is

Qif =

f∫

i

dE +

f∫

i

p dV = (Ef − Ei) + p (Vf − Vi) = Hf − Hi , (2.437)
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∆H0
f ∆H0

f

Formula Name State kJ/mol Formula Name State kJ/mol

Ag Silver crystal 0.0 NiSO4 Nickel sulfate crystal -872.9
C Graphite crystal 0.0 Al2O3 Aluminum oxide crystal -1657.7
C Diamond crystal 1.9 Ca3P2O8 Calcium phosphate gas -4120.8
O3 Ozone gas 142.7 HCN Hydrogen cyanide liquid 108.9
H2O Water liquid -285.8 SF6 Sulfur hexafluoride gas -1220.5
H3BO3 Boric acid crystal -1094.3 CaF2 Calcium fluoride crystal -1228.0
ZnSO4 Zinc sulfate crystal -982.8 CaCl2 Calcium chloride crystal -795.4

Table 2.5: Enthalpies of formation of some common substances.

where H is the enthalpy,
H = E + pV . (2.438)

Note that the enthalpy H is a state function, since E is a state function and p and V are state variables. Hence,
we can meaningfully speak of changes in enthalpy: ∆H = Hf − Hi. If ∆H < 0 for a given reaction, we call
it exothermic – this is the case when Qif < 0 and thus heat is transferred to the surroundings. Such reactions
can occur spontaneously, and, in really fun cases, can produce explosions. The combustion of fuels is always
exothermic. If ∆H > 0, the reaction is called endothermic. Endothermic reactions require that heat be supplied in
order for the reaction to proceed. Photosynthesis is an example of an endothermic reaction.

Suppose we have two reactions
A+B

(∆H)1−−−−−→ C (2.439)

and
C +D

(∆H)2−−−−−→ E . (2.440)

Then we may write
A+B +D

(∆H)3−−−−−→ E , (2.441)

with
(∆H)1 + (∆H)2 = (∆H)3 . (2.442)

We can use this additivity of reaction enthalpies to define a standard molar enthalpy of formation. We first define the
standard state of a pure substance at a given temperature to be its state (gas, liquid, or solid) at a pressure p = 1 bar.
The standard reaction enthalpies at a given temperature are then defined to be the reaction enthalpies when the
reactants and products are all in their standard states. Finally, we define the standard molar enthalpy of formation
∆H0

f (X) of a compound X at temperature T as the reaction enthalpy for the compound X to be produced by its
constituents when they are in their standard state. For example, if X = SO2, then we write

S + O2

∆H
0
f [SO2]−−−−−−−−−→ SO2 . (2.443)

The enthalpy of formation of any substance in its standard state is zero at all temperatures, by definition: ∆H0
f [O2] =

∆H0
f [He] = ∆H0

f [K] = ∆H0
f [Mn] = 0, etc.

Suppose now we have a reaction
aA+ bB

∆H−−−−−→ cC + dD . (2.444)

To compute the reaction enthalpy ∆H, we can imagine forming the components A andB from their standard state
constituents. Similarly, we can imagine doing the same for C and D. Since the number of atoms of a given kind is
conserved in the process, the constituents of the reactants must be the same as those of the products, we have

∆H = −a∆H0
f (A) − b∆H0

f (B) + c∆H0
f (C) + d∆H0

f (D) . (2.445)
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Figure 2.41: Left panel: reaction enthalpy and activation energy (exothermic case shown). Right panel: reaction
enthalpy as a difference between enthalpy of formation of reactants and products.

A list of a few enthalpies of formation is provided in table 2.5. Note that the reaction enthalpy is independent of
the actual reaction path. That is, the difference in enthalpy between A and B is the same whether the reaction is
A −→ B or A −→ X −→ (Y + Z) −→ B. This statement is known as Hess’s Law.

Note that
dH = dE + p dV + V dp = d̄Q+ V dp , (2.446)

hence

Cp =

(
d̄Q

dT

)

p

=

(
∂H

∂T

)

p

. (2.447)

We therefore have

H(T, p, ν) = H(T0, p, ν) + ν

T∫

T0

dT ′ cp(T
′) . (2.448)

For ideal gases, we have cp(T ) = (1+ 1
2f)R. For real gases, over a range of temperatures, there are small variations:

cp(T ) = α+ β T + γ T 2 . (2.449)

Two examples (300 K < T < 1500 K, p = 1 atm):

O2 : α = 25.503
J

mol K
, β = 13.612× 10−3 J

mol K2
, γ = −42.553× 10−7 J

mol K3

H2O : α = 30.206
J

mol K
, β = 9.936 × 10−3 J

mol K2
, γ = 11.14× 10−7 J

mol K3

If all the gaseous components in a reaction can be approximated as ideal, then we may write

(∆H)rxn = (∆E)rxn +
∑

a

ζaRT , (2.450)

where the subscript ‘rxn’ stands for ‘reaction’. Here (∆E)rxn is the change in energy from reactants to products.
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enthalpy enthalpy enthalpy enthalpy
bond (kJ/mol) bond (kJ/mol) bond (kJ/mol) bond (kJ/mol)

H − H 436 C − C 348 C − S 259 F − F 155
H − C 412 C = C 612 N − N 163 F − Cl 254
H − N 388 C ≡ C 811 N = N 409 Cl − Br 219
H − O 463 C − N 305 N ≡ N 945 Cl − I 210
H − F 565 C = N 613 N − O 157 Cl − S 250
H − Cl 431 C ≡ N 890 N − F 270 Br − Br 193
H − Br 366 C − O 360 N − Cl 200 Br − I 178
H − I 299 C = O 743 N − Si 374 Br − S 212
H − S 338 C − F 484 O − O 146 I − I 151
H − P 322 C − Cl 338 O = O 497 S − S 264
H − Si 318 C − Br 276 O − F 185 P − P 172

C − I 238 O − Cl 203 Si − Si 176

Table 2.6: Average bond enthalpies for some common bonds. (Source: L. Pauling, The Nature of the Chemical Bond
(Cornell Univ. Press, NY, 1960).)

2.14.3 Bond enthalpies

The enthalpy needed to break a chemical bond is called the bond enthalpy, h[ • ]. The bond enthalpy is the energy
required to dissociate one mole of gaseous bonds to form gaseous atoms. A table of bond enthalpies is given in
Tab. 2.6. Bond enthalpies are endothermic, since energy is required to break chemical bonds. Of course, the actual
bond energies can depend on the location of a bond in a given molecule, and the values listed in the table reflect
averages over the possible bond environment.

The bond enthalpies in Tab. 2.6 may be used to compute reaction enthalpies. Consider, for example, the reaction
2 H2(g) + O2(g) −→ 2 H2O(l). We then have, from the table,

(∆H)rxn = 2 h[H−H] + h[O=O]− 4 h[H−O]

= −483 kJ/mol O2 .
(2.451)

Thus, 483 kJ of heat would be released for every two moles of H2O produced, if the H2O were in the gaseous phase.
Since H2O is liquid at STP, we should also include the condensation energy of the gaseous water vapor into liquid

water. At T = 100◦C the latent heat of vaporization is ℓ̃ = 2270 J/g, but at T = 20◦C, one has ℓ̃ = 2450 J/g, hence
with M = 18 we have ℓ = 44.1 kJ/mol. Therefore, the heat produced by the reaction 2 H2(g) + O2(g) −⇀↽− 2 H2O(l)
is (∆H)rxn = −571.2 kJ/mol O2. Since the reaction produces two moles of water, we conclude that the enthalpy
of formation of liquid water at STP is half this value: ∆H0

f [H2O] = 285.6 kJ/mol.

Consider next the hydrogenation of ethene (ethylene): C2H4 + H2
−⇀↽− C2H6. The product is known as ethane.

The energy accounting is shown in Fig. 2.42. To compute the enthalpies of formation of ethene and ethane from
the bond enthalpies, we need one more bit of information, which is the standard enthalpy of formation of C(g)
from C(s), since the solid is the standard state at STP. This value is ∆H0

f [C(g)] = 718 kJ/mol. We may now write

2 C(g) + 4 H(g)
−2260 kJ−−−−−−−−−→ C2H4(g)

2 C(s)
1436 kJ−−−−−−−−−→ 2 C(g)

2 H2(g)
872 kJ−−−−−−−−−→ 4 H(g) .

Thus, using Hess’s law, i.e. adding up these reaction equations, we have

2 C(s) + 2 H2(g)
48 kJ−−−−−−−−−→ C2H4(g) .
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Figure 2.42: Calculation of reaction enthalpy for the hydrogenation of ethene (ethylene), C2H4.

Thus, the formation of ethene is endothermic. For ethane,

2 C(g) + 6 H(g)
−2820 kJ−−−−−−−−−→ C2H6(g)

2 C(s)
1436 kJ−−−−−−−−−→ 2 C(g)

3 H2(g)
1306 kJ−−−−−−−−−→ 6 H(g)

For ethane,
2 C(s) + 3 H2(g)

−76 kJ−−−−−−−−−→ C2H6(g) ,

which is exothermic.

2.15 Appendix I : Integrating factors

Suppose we have an inexact differential
d̄W = Ai dxi . (2.452)

Here I am adopting the ‘Einstein convention’ where we sum over repeated indices unless otherwise explicitly
stated; Ai dxi =

∑
i Ai dxi. An integrating factor eL(~x) is a function which, when divided into d̄F , yields an exact

differential:

dU = e−L d̄W =
∂U

∂xi

dxi . (2.453)

Clearly we must have
∂2U

∂xi ∂xj

=
∂

∂xi

(
e−LAj

)
=

∂

∂xj

(
e−LAi

)
. (2.454)

Applying the Leibniz rule and then multiplying by eL yields

∂Aj

∂xi

−Aj

∂L

∂xi

=
∂Ai

∂xj

−Ai

∂L

∂xj

. (2.455)
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If there are K independent variables {x1, . . . , xK}, then there are 1
2K(K − 1) independent equations of the above

form – one for each distinct (i, j) pair. These equations can be written compactly as

Ωijk

∂L

∂xk

= Fij , (2.456)

where

Ωijk = Aj δik −Ai δjk (2.457)

Fij =
∂Aj

∂xi

− ∂Ai

∂xj

. (2.458)

Note that Fij is antisymmetric, and resembles a field strength tensor, and that Ωijk = −Ωjik is antisymmetric in
the first two indices (but is not totally antisymmetric in all three).

Can we solve these 1
2K(K − 1) coupled equations to find an integrating factor L? In general the answer is no.

However, whenK = 2 we can always find an integrating factor. To see why, let’s call x ≡ x1 and y ≡ x2. Consider
now the ODE

dy

dx
= −Ax(x, y)

Ay(x, y)
. (2.459)

This equation can be integrated to yield a one-parameter set of integral curves, indexed by an initial condition.
The equation for these curves may be written as Uc(x, y) = 0, where c labels the curves. Then along each curve
we have

0 =
dUc

dx
=
∂Ux

∂x
+
∂Uc

∂y

dy

dx

=
∂Uc

∂x
− Ax

Ay

∂Uc

∂y
.

(2.460)

Thus,
∂Uc

∂x
Ay =

∂Uc

∂y
Ax ≡ e−LAxAy . (2.461)

This equation defines the integrating factor L :

L = − ln

(
1

Ax

∂Uc

∂x

)
= − ln

(
1

Ay

∂Uc

∂y

)
. (2.462)

We now have that

Ax = eL ∂Uc

∂x
, Ay = eL ∂Uc

∂y
, (2.463)

and hence

e−L d̄W =
∂Uc

∂x
dx+

∂Uc

∂y
dy = dUc . (2.464)

2.16 Appendix II : Legendre Transformations

A convex function of a single variable f(x) is one for which f ′′(x) > 0 everywhere. The Legendre transform of a
convex function f(x) is a function g(p) defined as follows. Let p be a real number, and consider the line y = px,
as shown in Fig. 2.43. We define the point x(p) as the value of x for which the difference F (x, p) = px − f(x) is
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Figure 2.43: Construction for the Legendre transformation of a function f(x).

greatest. Then define g(p) = F
(
x(p), p

)
.25 The value x(p) is unique if f(x) is convex, since x(p) is determined by

the equation
f ′
(
x(p)

)
= p . (2.465)

Note that from p = f ′
(
x(p)

)
we have, according to the chain rule,

d

dp
f ′
(
x(p)

)
= f ′′

(
x(p)

)
x′(p) =⇒ x′(p) =

[
f ′′
(
x(p)

)]−1

. (2.466)

From this, we can prove that g(p) is itself convex:

g′(p) =
d

dp

[
p x(p) − f

(
x(p)

)]

= p x′(p) + x(p) − f ′
(
x(p)

)
x′(p) = x(p) ,

(2.467)

hence

g′′(p) = x′(p) =
[
f ′′
(
x(p)

)]−1

> 0 . (2.468)

In higher dimensions, the generalization of the definition f ′′(x) > 0 is that a function F (x1, . . . , xn) is convex if
the matrix of second derivatives, called the Hessian,

Hij(x) =
∂2F

∂xi ∂xj

(2.469)

is positive definite. That is, all the eigenvalues ofHij(x) must be positive for every x. We then define the Legendre
transform G(p) as

G(p) = p · x − F (x) (2.470)

where
p = ∇F . (2.471)

25Note that g(p) may be a negative number, if the line y = px lies everywhere below f(x).
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Note that

dG = x · dp + p · dx − ∇F · dx = x · dp , (2.472)

which establishes that G is a function of p and that

∂G

∂pj

= xj . (2.473)

Note also that the Legendre transformation is self dual, which is to say that the Legendre transform ofG(p) is F (x):
F → G→ F under successive Legendre transformations.

We can also define a partial Legendre transformation as follows. Consider a function of q variables F (x,y), where
x = {x1, . . . , xm} and y = {y1, . . . , yn}, with q = m+ n. Define p = {p1, . . . , pm}, and

G(p,y) = p · x − F (x,y) , (2.474)

where

pa =
∂F

∂xa

(a = 1, . . . ,m) . (2.475)

These equations are then to be inverted to yield

xa = xa(p,y) =
∂G

∂pa

. (2.476)

Note that

pa =
∂F

∂xa

(
x(p,y),y

)
. (2.477)

Thus, from the chain rule,

δab =
∂pa

∂pb

=
∂2F

∂xa ∂xc

∂xc

∂pb

=
∂2F

∂xa ∂xc

∂2G

∂pc ∂pb

, (2.478)

which says

∂2G

∂pa ∂pb

=
∂xa

∂pb

= K−1
ab , (2.479)

where the m×m partial Hessian is

∂2F

∂xa ∂xb

=
∂pa

∂xb

= Kab . (2.480)

Note that Kab = Kba is symmetric. And with respect to the y coordinates,

∂2G

∂yµ ∂yν

= − ∂2F

∂yµ ∂yν

= −Lµν , (2.481)

where

Lµν =
∂2F

∂yµ ∂yν

(2.482)

is the partial Hessian in the y coordinates. Now it is easy to see that if the full q × q Hessian matrix Hij is positive
definite, then any submatrix such as Kab or Lµν must also be positive definite. In this case, the partial Legendre
transform is convex in {p1, . . . , pm} and concave in {y1, . . . , yn}.
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2.17 Appendix III : Useful Mathematical Relations

Consider a set of n independent variables {x1, . . . , xn}, which can be thought of as a point in n-dimensional space.
Let {y1, . . . , yn} and {z1, . . . , zn} be other choices of coordinates. Then

∂xi

∂zk

=
∂xi

∂yj

∂yj

∂zk

. (2.483)

Note that this entails a matrix multiplication: Aik = Bij Cjk , where Aik = ∂xi/∂zk, Bij = ∂xi/∂yj , and Cjk =
∂yj/∂zk. We define the determinant

det

(
∂xi

∂zk

)
≡ ∂(x1, . . . , xn)

∂(z1, . . . , zn)
. (2.484)

Such a determinant is called a Jacobean. Now if A = BC, then det(A) = det(B) · det(C). Thus,

∂(x1, . . . , xn)

∂(z1, . . . , zn)
=
∂(x1, . . . , xn)

∂(y1, . . . , yn)
· ∂(y1, . . . , yn)

∂(z1, . . . , zn)
. (2.485)

Recall also that
∂xi

∂xk

= δik . (2.486)

Consider the case n = 2. We have

∂(x, y)

∂(u, v)
= det




(
∂x
∂u

)
v

(
∂x
∂v

)
u

(
∂y
∂u

)
v

(
∂y
∂v

)
u


 =

(
∂x

∂u

)

v

(
∂y

∂v

)

u

−
(
∂x

∂v

)

u

(
∂y

∂u

)

v

. (2.487)

We also have
∂(x, y)

∂(u, v)
· ∂(u, v)

∂(r, s)
=
∂(x, y)

∂(r, s)
. (2.488)

From this simple mathematics follows several very useful results.

1) First, write

∂(x, y)

∂(u, v)
=

[
∂(u, v)

∂(x, y)

]−1

. (2.489)

Now let y = v:
∂(x, y)

∂(u, y)
=

(
∂x

∂u

)

y

=
1(

∂u
∂x

)
y

. (2.490)

Thus, (
∂x

∂u

)

y

= 1
/(∂u

∂x

)

y

(2.491)

2) Second, we have
∂(x, y)

∂(u, y)
=

(
∂x

∂u

)

y

=
∂(x, y)

∂(x, u)
· ∂(x, u)

∂(u, y)
= −

(
∂y

∂u

)

x

(
∂x

∂y

)

u

,

which is to say (
∂x

∂y

)

u

(
∂y

∂u

)

x

= −
(
∂x

∂u

)

y

. (2.492)
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Invoking eqn. 2.491, we conclude that

(
∂x

∂y

)

u

(
∂y

∂u

)

x

(
∂u

∂x

)

y

= −1 . (2.493)

3) Third, we have
∂(x, v)

∂(u, v)
=
∂(x, v)

∂(y, v)
· ∂(y, v)

∂(u, v)
, (2.494)

which says (
∂x

∂u

)

v

=

(
∂x

∂y

)

v

(
∂y

∂u

)

v

(2.495)

This is simply the chain rule of partial differentiation.

4) Fourth, we have

(∂x, ∂y)

(∂u, ∂y)
=

(∂x, ∂y)

(∂u, ∂v)
· (∂u, ∂v)

(∂u, ∂y)

=

(
∂x

∂u

)

v

(
∂y

∂v

)

u

(
∂v

∂y

)

u

−
(
∂x

∂v

)

u

(
∂y

∂u

)

v

(
∂v

∂y

)

u

,

(2.496)

which says (
∂x

∂u

)

y

=

(
∂x

∂u

)

v

−
(
∂x

∂y

)

u

(
∂y

∂u

)

v

(2.497)

5) Fifth, whenever we differentiate one extensive quantity with respect to another, holding only intensive quanti-
ties constant, the result is simply the ratio of those extensive quantities. For example,

(
∂S

∂V

)

p,T

=
S

V
. (2.498)

The reason should be obvious. In the above example, S(p, V, T ) = V φ(p, T ), where φ is a function of the two
intensive quantities p and T . Hence differentiating S with respect to V holding p and T constant is the same as
dividing S by V . Note that this implies

(
∂S

∂V

)

p,T

=

(
∂S

∂V

)

p,µ

=

(
∂S

∂V

)

n,T

=
S

V
, (2.499)

where n = N/V is the particle density.

6) Sixth, suppose we have a function E(y, v) and we write

dE = xdy + u dv . (2.500)

That is,

x =

(
∂E

∂y

)

v

≡ Ey , u =

(
∂E

∂v

)

y

≡ Ev . (2.501)

Writing

dx = Eyy dy + Eyv dv (2.502)

du = Evy dy + Evv dv , (2.503)
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and demanding du = 0 yields
(
∂x

∂u

)

v

=
Eyy

Evy

. (2.504)

Note that Evy = Evy . From the equation du = 0 we also derive

(
∂y

∂v

)

u

= −Evv

Evy

. (2.505)

Next, we use eqn. 2.503 with du = 0 to eliminate dy in favor of dv, and then substitute into eqn. 2.502. This yields

(
∂x

∂v

)

u

= Eyv −
Eyy Evv

Evy

. (2.506)

Finally, eqn. 2.503 with dv = 0 yields
(
∂y

∂u

)

v

=
1

Evy

. (2.507)

Combining the results of eqns. 2.504, 2.505, 2.506, and 2.507, we have

∂(x, y)

∂(u, v)
=

(
∂x

∂u

)

v

(
∂y

∂v

)

u

−
(
∂x

∂v

)

u

(
∂y

∂u

)

v

=

(
Eyy

Evy

)(
− Evv

Evy

)
−
(
Eyv −

Eyy Evv

Evy

)(
1

Evy

)
= −1 .

(2.508)

Thus,

∂(T, S)

∂(p, V )
= 1 . (2.509)

Nota bene: It is important to understand what other quantities are kept constant, otherwise we can run into
trouble. For example, it would seem that eqn. 2.508 would also yield

∂(µ,N)

∂(p, V )
= 1 . (2.510)

But then we should have
∂(T, S)

∂(µ,N)
=
∂(T, S)

∂(p, V )
· ∂(p, V )

∂(µ,N)
= 1 (WRONG!)

when according to eqn. 2.508 it should be −1. What has gone wrong?

The problem is that we have not properly specified what else is being held constant. In eqn. 2.509 it is N (or µ)
which is being held constant, while in eqn. 2.510 it is S (or T ) which is being held constant. Therefore a naive
application of the chain rule for determinants yields the wrong result, as we have seen.

Let’s be more careful. Applying the same derivation to dE = xdy+u dv+r ds and holding s constant, we conclude

∂(x, y, s)

∂(u, v, s)
=

(
∂x

∂u

)

v,s

(
∂y

∂v

)

u,s

−
(
∂x

∂v

)

u,s

(
∂y

∂u

)

v,s

= −1 . (2.511)
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Thus, the appropriate thermodynamic relations are

∂(T, S,N)

∂(y,X,N)
= −1

∂(T, S, µ)

∂(y,X, µ)
= −1

∂(T, S,X)

∂(µ,N,X)
= −1

∂(T, S, y)

∂(µ,N, y)
= −1 (2.512)

∂(y,X, S)

∂(µ,N, S)
= −1

∂(y,X, T )

∂(µ,N, T )
= −1

For example, if we add (µ,N) to the mix, we should write

∂(T, S,N)

∂(−p, V,N)
=
∂(−p, V, S)

∂(µ,N, S)
=
∂(µ,N, V )

∂(T, S, V )
= −1 . (2.513)

If we are careful, then the general result in eq. 2.512, where (y,X) = (−p, V ) or (Hα,Mα) or (Eα, Pα), can be
quite handy, especially when used in conjunction with eqn. 2.485. For example, we have

(
∂S

∂V

)

T,N

=
∂(T, S,N)

∂(T, V,N)
=

=1︷ ︸︸ ︷
∂(T, S,N)

∂(p, V,N)
· ∂(p, V,N)

∂(T, V,N)
=

(
∂p

∂T

)

V,N

, (2.514)

which is one of the Maxwell relations derived from the exactness of dF . Some other examples:

(
∂V

∂S

)

p,N

=
∂(V, p,N)

∂(S, p,N)
=
∂(V, p,N)

∂(S, T,N)
· ∂(S, T,N)

∂(S, p,N)
=

(
∂T

∂p

)

S,N

(2.515)

(
∂S

∂N

)

T,p

=
∂(S, T, p)

∂(N,T, p)
=
∂(S, T, p)

∂(µ,N, p)
· ∂(µ,N, p)

∂(N,T, p)
= −

(
∂µ

∂T

)

p,N

. (2.516)

Note that due to the alternating nature of the determinant – it is antisymmetric under interchange of any two rows
or columns – we have

∂(x, y, z)

∂(u, v, w)
= − ∂(y, x, z)

∂(u, v, w)
=
∂(y, x, z)

∂(w, v, u)
= . . . . (2.517)

In general, it is usually advisable to eliminate S from a Jacobean. If we have a Jacobean involving T , S, and N , we
can write

∂(T, S,N)

∂( • , • , N)
=
∂(T, S,N)

∂(p, V,N)

∂(p, V,N)

∂( • , • , N)
=

∂(p, V,N)

∂( • , • , N)
, (2.518)

where each • is a distinct arbitrary state variable other than N .

If our Jacobean involves the S, V , and N , we write

∂(S, V,N)

∂( • , • , N)
=
∂(S, V,N)

∂(T, V,N)
· ∂(T, V,N)

∂( • , • , N)
=
CV

T
· ∂(T, V,N)

∂( • , • , N)
. (2.519)

If our Jacobean involves the S, p, and N , we write

∂(S, p,N)

∂( • , • , N)
=
∂(S, p,N)

∂(T, p,N)
· ∂(T, p,N)

∂( • , • , N)
=
Cp

T
· ∂(T, p,N)

∂( • , • , N)
. (2.520)
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For example,

(
∂T

∂p

)

S,N

=
∂(T, S,N)

∂(p, S,N)
=
∂(T, S,N)

∂(p, V,N)
· ∂(p, V,N)

∂(p, T,N)
· ∂(p, T,N)

∂(p, S,N)
=

T

Cp

(
∂V

∂T

)

p,N

(2.521)

(
∂V

∂p

)

S,N

=
∂(V, S,N)

∂(p, S,N)
=
∂(V, S,N)

∂(V, T,N)
· ∂(V, T,N)

∂(p, T,N)
· ∂(p, T,N)

∂(p, S,N)
=
CV

Cp

(
∂V

∂p

)

T,N

. (2.522)


