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Chapter 3

Ergodicity and the Approach to
Equilibrium

3.1 References

– R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975)
An advanced text with an emphasis on fluids and kinetics.

– R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006)
A very detailed discussion of the fundamental postulates of statistical mechanics and their implications.)
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2 CHAPTER 3. ERGODICITY AND THE APPROACH TO EQUILIBRIUM

3.2 Modeling the Approach to Equilibrium

3.2.1 Equilibrium

A thermodynamic system typically consists of an enormously large number of constituent particles, a typical
‘large number’ being Avogadro’s number, NA = 6.02 × 1023. Nevertheless, in equilibrium, such a system is char-
acterized by a relatively small number of thermodynamic state variables. Thus, while a complete description of a
(classical) system would require us to account for O

(
1023

)
evolving degrees of freedom, with respect to the phys-

ical quantities in which we are interested, the details of the initial conditions are effectively forgotten over some
microscopic time scale τ , called the collision time, and over some microscopic distance scale, ℓ, called the mean
free path1. The equilibrium state is time-independent.

3.2.2 The Master Equation

Relaxation to equilibrium is often modeled with something called the master equation. Let Pi(t) be the probability
that the system is in a quantum or classical state i at time t. Then write

dPi

dt
=
∑

j

(
Wij Pj −Wji Pi

)
. (3.1)

Here, Wij is the rate at which j makes a transition to i. Note that we can write this equation as

dPi

dt
= −

∑

j

Γij Pj , (3.2)

where

Γij =

{

−Wij if i 6= j
∑′

k Wkj if i = j ,
(3.3)

where the prime on the sum indicates that k = j is to be excluded. The constraints on the Wij are that Wij ≥ 0 for
all i, j, and we may take Wii ≡ 0 (no sum on i). Fermi’s Golden Rule of quantum mechanics says that

Wij =
2π

~

∣
∣〈 i | V̂ | j 〉

∣
∣
2
ρ(Ej) , (3.4)

where Ĥ0

∣
∣ i
〉

= Ei

∣
∣ i
〉
, V̂ is an additional potential which leads to transitions, and ρ(Ei) is the density of final

states at energy Ei. The fact that Wij ≥ 0 means that if each Pi(t = 0) ≥ 0, then Pi(t) ≥ 0 for all t ≥ 0. To see this,
suppose that at some time t > 0 one of the probabilities Pi is crossing zero and about to become negative. But

then eqn. 3.1 says that Ṗi(t) =
∑

j WijPj(t) ≥ 0. So Pi(t) can never become negative.

3.2.3 Equilibrium distribution and detailed balance

If the transition rates Wij are themselves time-independent, then we may formally write

Pi(t) =
(
e−Γt

)

ij
Pj(0) . (3.5)

1Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum, and energy. These quantities
relax to equilibrium in a special way called hydrodynamics.
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Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over (in this case,
the j index). Note that

∑

i

Γij = 0 , (3.6)

which says that the total probability
∑

i Pi is conserved:

d

dt

∑

i

Pi = −
∑

i,j

Γij Pj = −
∑

j

(

Pj

∑

i

Γij

)

= 0 . (3.7)

We conclude that ~φ = (1, 1, . . . , 1) is a left eigenvector of Γ with eigenvalue λ = 0. The corresponding right
eigenvector, which we write as P eq

i , satisfies ΓijP
eq
j = 0, and is a stationary (i.e. time independent) solution to the

master equation. Generally, there is only one right/left eigenvector pair corresponding to λ = 0, in which case
any initial probability distribution Pi(0) converges to P eq

i as t→ ∞, as shown in Appendix I (§3.7).

In equilibrium, the net rate of transitions into a state | i 〉 is equal to the rate of transitions out of | i 〉. If, for each
state | j 〉 the transition rate from | i 〉 to | j 〉 is equal to the transition rate from | j 〉 to | i 〉, we say that the rates
satisfy the condition of detailed balance. In other words,

Wij P
eq
j = Wji P

eq
i . (3.8)

Assuming Wij 6= 0 and P eq
j 6= 0, we can divide to obtain

Wji

Wij

=
P eq

j

P eq
i

. (3.9)

Note that detailed balance is a stronger condition than that required for a stationary solution to the master equa-
tion.

If Γ = Γ t is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other, hence
P eq = 1/N , where N is the dimension of Γ . The system then satisfies the conditions of detailed balance. See
Appendix II (§3.8) for an example of this formalism applied to a model of radioactive decay.

3.2.4 Boltzmann’s H-theorem

Suppose for the moment that Γ is a symmetric matrix, i.e. Γij = Γji. Then construct the function

H(t) =
∑

i

Pi(t) lnPi(t) . (3.10)

Then

dH

dt
=
∑

i

dPi

dt

(
1 + lnPi) =

∑

i

dPi

dt
lnPi

= −
∑

i,j

Γij Pj lnPi

=
∑

i,j

Γij Pj

(
lnPj − lnPi

)
,

(3.11)

where we have used
∑

i Γij = 0. Now switch i↔ j in the above sum and add the terms to get

dH

dt
=

1

2

∑

i,j

Γij

(
Pi − Pj

) (
lnPi − lnPj

)
. (3.12)
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Note that the i = j term does not contribute to the sum. For i 6= j we have Γij = −Wij ≤ 0, and using the result

(x− y) (lnx− ln y) ≥ 0 , (3.13)

we conclude
dH

dt
≤ 0 . (3.14)

In equilibrium, P eq
i is a constant, independent of i. We write

P eq
i =

1

Ω
, Ω =

∑

i

1 =⇒ H = − lnΩ . (3.15)

If Γij 6= Γji, we can still prove a version of the H-theorem. Define a new symmetric matrix

W ij ≡Wij P
eq
j = Wji P

eq
i = W ji , (3.16)

and the generalized H-function,

H(t) ≡
∑

i

Pi(t) ln

(
Pi(t)

P eq
i

)

. (3.17)

Then

dH

dt
= −

1

2

∑

i,j

W ij

(
Pi

P eq
i

−
Pj

P eq
j

)[

ln

(
Pi

P eq
i

)

− ln

(
Pj

P eq
j

)]

≤ 0 . (3.18)

3.3 Phase Flows in Classical Mechanics

3.3.1 Hamiltonian evolution

The master equation provides us with a semi-phenomenological description of a dynamical system’s relaxation to
equilibrium. It explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature are (approximately)
time-reversal symmetric. How can a system which obeys Hamilton’s equations of motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the LagrangianL = L(q, q̇, t) =
T − V . The Euler-Lagrange equations of motion for the action S

[
q(t)

]
=
∫
dt L are

ṗσ =
d

dt

(
∂L

∂q̇σ

)

=
∂L

∂qσ
, (3.19)

where pσ is the canonical momentum conjugate to the generalized coordinate qσ :

pσ =
∂L

∂q̇σ
. (3.20)

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

H(q, p) =

r∑

σ=1

pσ q̇σ − L . (3.21)
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Note that

dH =

r∑

σ=1

(

pσ dq̇σ + q̇σ dpσ −
∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)

−
∂L

∂t
dt

=

r∑

σ=1

(

q̇σ dpσ −
∂L

∂qσ
dqσ

)

−
∂L

∂t
dt .

(3.22)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= −

∂L

∂qσ
= −ṗσ (3.23)

and
dH

dt
=
∂H

∂t
= −

∂L

∂t
. (3.24)

Define the rank 2r vector ϕ by its components,

ϕi =







qi if 1 ≤ i ≤ r

pi−r if r ≤ i ≤ 2r .

(3.25)

Then we may write Hamilton’s equations compactly as

ϕ̇i = Jij
∂H

∂ϕj
, (3.26)

where

J =

(
0r×r 1r×r

−1r×r 0r×r

)

(3.27)

is a rank 2r matrix. Note that J t = −J , i.e. J is antisymmetric, and that J2 = −12r×2r.

3.3.2 Dynamical systems and the evolution of phase space volumes

Consider a general dynamical system,
dϕ

dt
= V (ϕ) , (3.28)

where ϕ(t) is a point in an n-dimensional phase space. Consider now a compact2 region R0 in phase space, and
consider its evolution under the dynamics. That is, R0 consists of a set of points

{
ϕ |ϕ ∈ R0

}
, and if we regard

each ϕ ∈ R0 as an initial condition, we can define the time-dependent set R(t) as the set of points ϕ(t) that were
in R0 at time t = 0:

R(t) =
{
ϕ(t)

∣
∣ϕ(0) ∈ R0

}
. (3.29)

Now consider the volume Ω(t) of the set R(t). We have

Ω(t) =

∫

R(t)

dµ (3.30)

2‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.
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where
dµ = dϕ1 dϕ2 · · · dϕn , (3.31)

for an n-dimensional phase space. We then have

Ω(t+ dt) =

∫

R(t+dt)

dµ′ =

∫

R(t)

dµ

∣
∣
∣
∣

∂ϕi(t+ dt)

∂ϕj(t)

∣
∣
∣
∣
, (3.32)

where ∣
∣
∣
∣

∂ϕi(t+ dt)

∂ϕj(t)

∣
∣
∣
∣
≡
∂(ϕ′

1, . . . , ϕ
′
n)

∂(ϕ1, . . . , ϕn)
(3.33)

is a determinant, which is the Jacobean of the transformation from the set of coordinates
{
ϕi = ϕi(t)

}
to the

coordinates
{
ϕ′

i = ϕi(t+ dt)
}

. But according to the dynamics, we have

ϕi(t+ dt) = ϕi(t) + Vi

(
ϕ(t)

)
dt+ O(dt2) (3.34)

and therefore
∂ϕi(t+ dt)

∂ϕj(t)
= δij +

∂Vi

∂ϕj

dt+ O(dt2) . (3.35)

We now make use of the equality
ln detM = Tr lnM , (3.36)

for any matrix M , which gives us3, for small ε,

det
(
1 + εA

)
= exp Tr ln

(
1 + εA

)
= 1 + ε TrA+ 1

2 ε
2
((

TrA
)2

− Tr (A2)
)

+ . . . (3.37)

Thus,

Ω(t+ dt) = Ω(t) +

∫

R(t)

dµ∇·V dt+ O(dt2) , (3.38)

which says
dΩ

dt
=

∫

R(t)

dµ∇·V =

∫

∂R(t)

dS n̂ · V (3.39)

Here, the divergence is the phase space divergence,

∇·V =

n∑

i=1

∂Vi

∂ϕi

, (3.40)

and we have used the divergence theorem to convert the volume integral of the divergence to a surface integral
of n̂ · V , where n̂ is the surface normal and dS is the differential element of surface area, and ∂R denotes the
boundary of the region R. We see that if ∇·V = 0 everywhere in phase space, then Ω(t) is a constant, and phase
space volumes are preserved by the evolution of the system.

For an alternative derivation, consider a function ̺(ϕ, t) which is defined to be the density of some collection of
points in phase space at phase space position ϕ and time t. This must satisfy the continuity equation,

∂̺

∂t
+ ∇·(̺V ) = 0 . (3.41)

3The equality ln det M = Tr ln M is most easily proven by bringing the matrix to diagonal form via a similarity transformation, and
proving the equality for diagonal matrices.
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Figure 3.1: Time evolution of two immiscible fluids. The local density remains constant.

This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of phase space
R, we have

d

dt

∫

R

dµ ̺ = −

∫

R

dµ∇·(̺V ) = −

∫

∂R

dS n̂ · (̺V ) . (3.42)

It is perhaps helpful to think of ̺ as a charge density, in which case J = ̺V is the current density. The above
equation then says

dQR

dt
= −

∫

∂R

dS n̂ · J , (3.43)

where QR is the total charge contained inside the region R. In other words, the rate of increase or decrease of the
charge within the region R is equal to the total integrated current flowing in or out of R at its boundary.

The Leibniz rule lets us write the continuity equation as

∂̺

∂t
+ V ·∇̺ + ̺∇·V = 0 . (3.44)

But now suppose that the phase flow is divergenceless, i.e. ∇·V = 0. Then we have

D̺

Dt
≡

(
∂

∂t
+ V ·∇

)

̺ = 0 . (3.45)

The combination inside the brackets above is known as the convective derivative. It tells us the total rate of change
of ̺ for an observer moving with the phase flow. That is

d

dt
̺
(
ϕ(t), t

)
=

∂̺

∂ϕi

dϕi

dt
+
∂̺

∂t

=

n∑

i=1

Vi

∂ρ

∂ϕi

+
∂̺

∂t
=
D̺

Dt
.

(3.46)
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If D̺/Dt = 0, the local density remains the same during the evolution of the system. If we consider the ‘charac-
teristic function’

̺(ϕ, t = 0) =

{

1 if ϕ ∈ R0

0 otherwise
(3.47)

then the vanishing of the convective derivative means that the image of the set R0 under time evolution will
always have the same volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

q̇i = +
∂H

∂pi
, ṗi = −

∂H

∂qi
(3.48)

A point in phase space is specified by r positions qi and r momenta pi, hence the dimension of phase space is
n = 2r:

ϕ =

(
q

p

)

, V =

(
q̇

ṗ

)

=

(
∂H/∂p

−∂H/∂q

)

. (3.49)

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

∇·V =

r∑

i=1

{
∂q̇i
∂qi

+
∂ṗi

∂pi

}

=

r∑

i=1

{

∂

∂qi

(
∂H

∂pi

)

+
∂

∂pi

(

−
∂H

∂qi

)}

= 0 .

(3.50)

Thus, we have that the convective derivative vanishes, viz.

D̺

Dt
≡
∂̺

∂t
+ V ·∇̺ = 0 , (3.51)

for any distribution ̺(ϕ, t) on phase space. Thus, the value of the density ̺(ϕ(t), t) is constant, which tells us that
the phase flow is incompressible. In particular, phase space volumes are preserved.

3.3.3 Liouville’s equation and the microcanonical distribution

Let ̺(ϕ) = ̺(q,p) be a distribution on phase space. Assuming the evolution is Hamiltonian, we can write

∂̺

∂t
= −ϕ̇ · ∇̺ = −

r∑

k=1

(

q̇k
∂

∂qk
+ ṗk

∂

∂pk

)

̺ = −iL̺̂ , (3.52)

where L̂ is a differential operator known as the Liouvillian:

L̂ = −i
r∑

k=1

{

∂H

∂pk

∂

∂qk
−
∂H

∂qk

∂

∂pk

}

. (3.53)

Eqn. 3.52, known as Liouville’s equation, bears an obvious resemblance to the Schrödinger equation from quantum
mechanics.

Suppose that Λa(ϕ) is conserved by the dynamics of the system. Typical conserved quantities include the com-
ponents of the total linear momentum (if there is translational invariance), the components of the total angular
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momentum (if there is rotational invariance), and the Hamiltonian itself (if the Lagrangian is not explicitly time-
dependent). Now consider a distribution ̺(ϕ, t) = ̺(Λ1, Λ2, . . . , Λk) which is a function only of these various
conserved quantities. Then from the chain rule, we have

ϕ̇ · ∇̺ =
∑

a

∂̺

∂Λa

ϕ̇ · ∇Λa = 0 , (3.54)

since for each a we have
dΛa

dt
=

r∑

σ=1

(
∂Λa

∂qσ
q̇σ +

∂Λa

∂pσ

ṗσ

)

= ϕ̇ · ∇Λa = 0 . (3.55)

We conclude that any distribution ̺(ϕ, t) = ̺(Λ1, Λ2, . . . , Λk) which is a function solely of conserved dynamical
quantities is a stationary solution to Liouville’s equation.

Clearly the microcanonical distribution,

̺E(ϕ) =
δ
(
E −H(ϕ)

)

D(E)
=

δ
(
E −H(ϕ)

)

∫
dµ δ

(
E −H(ϕ)

) , (3.56)

is a fixed point solution of Liouville’s equation.

3.4 Irreversibility and Poincaré Recurrence

The dynamics of the master equation describe an approach to equilibrium. These dynamics are irreversible:
dH/dt ≤ 0, where H is Boltzmann’s H-function. However, the microscopic laws of physics are (almost) time-
reversal invariant4, so how can we understand the emergence of irreversibility? Furthermore, any dynamics
which are deterministic and volume-preserving in a finite phase space exhibits the phenomenon of Poincaré recur-
rence, which guarantees that phase space trajectories are arbitrarily close to periodic if one waits long enough.

3.4.1 Poincaré recurrence theorem

The proof of the recurrence theorem is simple. Let gτ be the ‘τ -advance mapping’ which evolves points in phase
space according to Hamilton’s equations. Assume that gτ is invertible and volume-preserving, as is the case for
Hamiltonian flow. Further assume that phase space volume is finite. Since energy is preserved in the case of
time-independent Hamiltonians, we simply ask that the volume of phase space at fixed total energy E be finite, i.e.

∫

dµ δ
(
E −H(q,p)

)
<∞ , (3.57)

where dµ = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood R0 of phase space there exists a point ϕ0 which will return to R0 after m
applications of gτ , where m is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the set Υ
formed from the union of all sets gk

τ R for all m:

Υ =

∞⋃

k=0

gk
τ R0 (3.58)

4Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the product PCT , where P is
parity, C is charge conjugation, and T is time reversal.
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Figure 3.2: Successive images of a set R0 under the τ -advance mapping gτ , projected onto a two-dimensional
phase plane. The Poincaré recurrence theorem guarantees that if phase space has finite volume, and gτ is invertible
and volume preserving, then for any set R0 there exists an integer m such that R0 ∩ gm

τ R0 6= ∅.

We assume that the set {gk
τ R0 | k ∈ N} is disjoint5. The volume of a union of disjoint sets is the sum of the

individual volumes. Thus,

vol(Υ) =

∞∑

k=0

vol
(
gk

τ R0

)

= vol(R0) ·
∞∑

k=0

1 = ∞ ,

(3.59)

since vol
(
gk

τ R0

)
= vol

(
R0

)
from volume preservation. But clearly Υ is a subset of the entire phase space, hence

we have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set {gk
τ R0 | k∈Z+} is disjoint fails. This means that there exists some pair of integers

k and l, with k 6= l, such that gk
τ R0 ∩ gl

τ R0 6= ∅. Without loss of generality we may assume k < l. Apply the
inverse g−1

τ to this relation k times to get gl−k
τ R0 ∩ R0 6= ∅. Now choose any point ϕ1 ∈ gm

τ R0 ∩ R0, where

m = l − k, and define ϕ0 = g−m
τ ϕ1. Then by construction both ϕ0 and gm

τ ϕ0 lie within R0 and the theorem is
proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in an otherwise
evacuated room, as depicted in fig. 3.3. The perfume molecules evolve according to Hamiltonian evolution.
The positions are bounded because physical space is finite. The momenta are bounded because the total energy is
conserved, hence no single particle can have a momentum such that T (p) > E

TOT
, where T (p) is the single particle

kinetic energy function6. Thus, phase space, however large, is still bounded. Hamiltonian evolution, as we have
seen, is invertible and volume preserving, therefore the system is recurrent. All the molecules must eventually
return to the bottle. What’s more, they all must return with momenta arbitrarily close to their initial momenta!7

5The natural numbers N is the set of non-negative integers {0, 1, 2, . . .}.
6In the nonrelativistic limit, T = p2/2m. For relativistic particles, we have T = (p2c2 + m2c4)1/2 − mc2.
7Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial one which recurs, to within

the same degree of closeness.
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Figure 3.3: Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an otherwise
evacuated room, all the perfume molecules will eventually return to the bottle! (Here H is the Hubble constant.)

In this case, we could define the region R0 as

R0 =
{
(q1, . . . , qr, p1, . . . , pr)

∣
∣ |qi − q0i | ≤ ∆q and |pj − p0

j | ≤ ∆p ∀ i, j
}
, (3.60)

which specifies a hypercube in phase space centered about the point (q0,p0).

Each of the three central assumptions – finite phase space, invertibility, and volume preservation – is crucial. If
any one of these assumptions does not hold, the proof fails. Obviously if phase space is infinite the flow needn’t
be recurrent since it can keep moving off in a particular direction. Consider next a volume-preserving map which
is not invertible. An example might be a mapping f : R → R which takes any real number to its fractional part.
Thus, f(π) = 0.14159265 . . .. Let us restrict our attention to intervals of width less than unity. Clearly f is then
volume preserving. The action of f on the interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed
under the action of f , so no point within the interval [2, 3) will ever return under repeated iterations of f . Thus, f
does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract. For a one-
dimensional oscillator obeying ẍ + 2βẋ + Ω2

0 x = 0 one has ∇·V = −2β < 0, since β > 0 for physical damping.
Thus the convective derivative is Dt̺ = −(∇·V )̺ = 2β̺ which says that the density increases exponentially in
the comoving frame, as ̺(t) = e2βt ̺(0). Thus, phase space volumes collapse: Ω(t) = e−2β2 Ω(0), and are not
preserved by the dynamics. The proof of recurrence therefore fails. In this case, it is possible for the set Υ to be of
finite volume, even if it is the union of an infinite number of sets gk

τ R0, because the volumes of these component
sets themselves decrease exponentially, as vol(gn

τ R0) = e−2nβτ vol(R0). A damped pendulum, released from rest

at some small angle θ0, will not return arbitrarily close to these initial conditions.

3.4.2 Kac ring model

The implications of the Poincaré recurrence theorem are surprising – even shocking. If one takes a bottle of
perfume in a sealed, evacuated room and opens it, the perfume molecules will diffuse throughout the room. The
recurrence theorem guarantees that after some finite time T all the molecules will go back inside the bottle (and
arbitrarily close to their initial velocities as well). The hitch is that this could take a very long time, e.g. much much
longer than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But how can a
system both exhibit equilibration and Poincaré recurrence? The two concepts seem utterly incompatible!
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Figure 3.4: Left: A configuration of the Kac ring with N = 16 sites and F = 4 flippers. The flippers, which live
on the links, are represented by blue dots. Right: The ring system after one time step. Evolution proceeds by
clockwise rotation. Spins passing through flippers are flipped.

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of equilibra-
tion. Consider a ring with N sites. On each site, place a ‘spin’ which can be in one of two states: up or down.
Along the N links of the system, F of them contain ‘flippers’. The configuration of the flippers is set at the outset
and never changes. The dynamics of the system are as follows: during each time step, every spin moves clockwise
a distance of one lattice spacing. Spins which pass through flippers reverse their orientation: up becomes down,
and down becomes up.

The ‘phase space’ for this system consists of 2N discrete configurations. Since each configuration maps onto a
unique image under the evolution of the system, phase space ‘volume’ is preserved. The evolution is invertible;
the inverse is obtained simply by rotating the spins counterclockwise. Figure 3.4 depicts an example configuration
for the system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single spin and
determine its configuration probabilistically. Let pn be the probability that a given spin is in the up configuration
at time n. The probability that it is up at time (n+ 1) is then

pn+1 = (1 − x) pn + x (1 − pn) , (3.61)

where x = F/N is the fraction of flippers in the system. In words: a spin will be up at time (n+ 1) if it was up at
time n and did not pass through a flipper, or if it was down at time n and did pass through a flipper. If the flipper
locations are randomized at each time step, then the probability of flipping is simply x = F/N . Equation 3.61 can
be solved immediately:

pn = 1
2 + (1 − 2x)n (p0 −

1
2 ) , (3.62)

which decays exponentially to the equilibrium value of peq = 1
2 with time scale

τ(x) = −
1

ln |1 − 2x|
. (3.63)

We identify τ(x) as the microscopic relaxation time over which local equilibrium is established. If we define the

magnetization m ≡ (N↑ − N↓)/N , then m = 2p − 1, so mn = (1 − 2x)n m0. The equilibrium magnetization is

meq = 0. Note that for 1
2 < x < 1 that the magnetization reverses sign each time step, as well as decreasing

exponentially in magnitude.



3.4. IRREVERSIBILITY AND POINCARÉ RECURRENCE 13

Figure 3.5: Three simulations of the Kac ring model with N = 2500 sites and three different concentrations of
flippers. The red line shows the magnetization as a function of time, starting from an initial configuration in which
100% of the spins are up. The blue line shows the prediction of the Stosszahlansatz, which yields an exponentially
decaying magnetization with time constant τ .

The assumption that leads to equation 3.61 is called the Stosszahlansatz8, a long German word meaning, approx-
imately, ‘assumption on the counting of hits’. The resulting dynamics are irreversible: the magnetization inex-
orably decays to zero. However, the Kac ring model is purely deterministic, and the Stosszahlansatz can at best
be an approximation to the true dynamics. Clearly the Stosszahlansatz fails to account for correlations such as the
following: if spin i is flipped at time n, then spin i+ 1 will have been flipped at time n− 1. Also if spin i is flipped
at time n, then it also will be flipped at time n+N . Indeed, since the dynamics of the Kac ring model are invertible
and volume preserving, it must exhibit Poincaré recurrence. We see this most vividly in figs. 3.5 and 3.6.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.5 for a ring of N = 1000
sites, with F = 100 and F = 24 flippers. Note how the magnetization decays and fluctuates about the equilibrium

value meq = 0, but that after N iterations m recovers its initial value: mN = m0. The recurrence time for this
system is simply N if F is even, and 2N if F is odd, since every spin will then have flipped an even number of

8Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like Gedankenexperi-
ment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat, etc.
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Figure 3.6: Simulations of the Kac ring model. Top: N = 2500 sites with F = 201 flippers. After 2500 iterations,
each spin has flipped an odd number of times, so the recurrence time is 2N . Middle: N = 2500 with F = 2400,
resulting in a near-complete reversal of the population with every iteration. Bottom: N = 25000 with N = 1000,
showing long time equilibration and dramatic resurgence of the spin population.

times.

In figure 3.6 we plot two other simulations. The top panel shows what happens when x > 1
2 , so that the magneti-

zation wants to reverse its sign with every iteration. The bottom panel shows a simulation for a larger ring, with
N = 25000 sites. Note that the fluctuations in m about equilibrium are smaller than in the cases with N = 1000
sites. Why?

3.5 Remarks on Ergodic Theory

3.5.1 Definition of ergodicity

A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a system is
recurrent in the sense of Poincaré.
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There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals [0, T ] with
T → ∞ may be replaced by phase space averages. The time average of a function f(ϕ) is defined as

〈
f(ϕ)

〉

T
= lim

T→∞

1

T

T∫

0

dt f
(
ϕ(t)

)
. (3.64)

For a Hamiltonian system, the phase space average of the same function is defined by

〈
f(ϕ)

〉

S
=

∫

dµ f(ϕ) δ
(
E −H(ϕ)

)
/∫

dµ δ
(
E −H(ϕ)

)
, (3.65)

where H(ϕ) = H(q,p) is the Hamiltonian, and where δ(x) is the Dirac δ-function. Thus,

ergodicity ⇐⇒
〈
f(ϕ)

〉

T
=
〈
f(ϕ)

〉

S
, (3.66)

for all smooth functions f(ϕ) for which
〈
f(ϕ)

〉

S
exists and is finite. Note that we do not average over all of phase

space. Rather, we average only over a hypersurface along which H(ϕ) = E is fixed, i.e. over one of the level
sets of the Hamiltonian function. This is because the dynamics preserves the energy. Ergodicity means that almost
all points ϕ will, upon Hamiltonian evolution, move in such a way as to eventually pass through every finite
neighborhood on the energy surface, and will spend equal time in equal regions of phase space.

Let χR(ϕ) be the characteristic function of a region R:

χ
R(ϕ) =

{

1 if ϕ ∈ R

0 otherwise,
(3.67)

where H(ϕ) = E for all ϕ ∈ R. Then

〈
χ
R(ϕ)

〉

T
= lim

T→∞

(
time spent in R

T

)

. (3.68)

If the system is ergodic, then
〈
χ
R(ϕ)

〉

T
= P (R) =

DR(E)

D(E)
, (3.69)

where P (R) is the a priori probability to find ϕ ∈ R, based solely on the relative volumes of R and of the entire
phase space. The latter is given by

D(E) =

∫

dµ δ
(
E −H(ϕ)

)
, (3.70)

called the density of states, is the surface area of phase space at energy E, and

DR(E) =

∫

R

dµ δ
(
E −H(ϕ)

)
. (3.71)

is the density of states for the phase space subset R. Note that

D(E) ≡

∫

dµ δ
(
E −H(ϕ)

)
=

∫

S
E

dS

|∇H |
(3.72)

=
d

dE

∫

dµΘ
(
E −H(ϕ)

)
=
dΩ(E)

dE
. (3.73)
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Figure 3.7: Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic, but not
mixing. A circle remains a circle, and a blob remains a blob.

Here, dS is the differential surface element, SE is the constant H hypersurfaceH(ϕ) = E, and Ω(E) is the volume
of phase space over which H(ϕ) < E. Note also that we may write

dµ = dE dΣE , (3.74)

where

dΣE =
dS

|∇H |

∣
∣
∣
∣
H(ϕ)=E

(3.75)

is the the invariant surface element.

3.5.2 The microcanonical ensemble

The distribution,

̺E(ϕ) =
δ
(
E −H(ϕ)

)

D(E)
=

δ
(
E −H(ϕ)

)

∫
dµ δ

(
E −H(ϕ)

) , (3.76)

defines the microcanonical ensemble (µCE) of Gibbs.

We could also write
〈
f(ϕ)

〉

S
=

1

D(E)

∫

S
E

dΣE f(ϕ) , (3.77)

integrating over the hypersurface SE rather than the entire phase space.

3.5.3 Ergodicity and mixing

Just because a system is ergodic, it doesn’t necessarily mean that ̺(ϕ, t) → ̺eq(ϕ), for consider the following
motion on the toroidal space

(
ϕ = (q, p)

∣
∣ 0 ≤ q < 1 , 0 ≤ p < 1

}
, where we identify opposite edges, i.e. we

impose periodic boundary conditions. We also take q and p to be dimensionless, for simplicity of notation. Let the
dynamics be given by

q̇ = 1 , ṗ = α . (3.78)

The solution is
q(t) = q0 + t , p(t) = p0 + αt , (3.79)

hence the phase curves are given by
p = p0 + α(q − q0) . (3.80)
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Figure 3.8: The baker’s transformation is a successive stretching, cutting, and restacking.

Now consider the average of some function f(q, p). We can write f(q, p) in terms of its Fourier transform,

f(q, p) =
∑

m,n

f̂mn e
2πi(mq+np) . (3.81)

We have, then,

f
(
q(t), p(t)

)
=
∑

m,n

f̂mn e
2πi(mq

0
+np

0
) e2πi(m+αn)t . (3.82)

We can now perform the time average of f :

〈
f(q, p)

〉

T
= f̂00 + lim

T→∞

1

T

∑

m,n

′

f̂mn e
2πi(mq

0
+np

0
) e

2πi(m+αn)T − 1

2πi(m+ αn)

= f̂00 if α irrational.

(3.83)

Clearly,

〈
f(q, p)

〉

S
=

1∫

0

dq

1∫

0

dp f(q, p) = f̂00 =
〈
f(q, p)

〉

T
, (3.84)

so the system is ergodic.

The situation is depicted in fig. 3.7. If we start with the characteristic function of a disc,

̺(q, p, t = 0) = Θ
(
a2 − (q − q0)

2 − (p− p0)
2
)
, (3.85)

then it remains the characteristic function of a disc:

̺(q, p, t) = Θ
(
a2 − (q − q0 − t)2 − (p− p0 − αt)2

)
, (3.86)

A stronger condition one could impose is the following. Let A and B be subsets of SE . Define the measure

ν(A) =

∫

dΣE
χ

A(ϕ)

/∫

dΣE =
DA(E)

D(E)
, (3.87)
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Figure 3.9: The multiply iterated baker’s transformation. The set A covers half the phase space and its area is
preserved under the map. Initially, the fraction of B covered by A is zero. After many iterations, the fraction of B
covered by gnA approaches 1

2 .

where χA(ϕ) is the characteristic function of A. The measure of a set A is the fraction of the energy surface SE

covered by A. This means ν(SE) = 1, since SE is the entire phase space at energy E. Now let g be a volume-
preserving map on phase space. Given two measurable sets A and B, we say that a system is mixing if

mixing ⇐⇒ lim
n→∞

ν
(

gnA ∩B
)

= ν(A) ν(B) . (3.88)

In other words, the fraction of B covered by the nth iterate of A, i.e. gnA, is, as n → ∞, simply the fraction of SE

covered by A. The iterated map gn distorts the region A so severely that it eventually spreads out ‘evenly’ over
the entire energy hypersurface. Of course by ‘evenly’ we mean ‘with respect to any finite length scale’, because at
the very smallest scales, the phase space density is still locally constant as one evolves with the dynamics.

Mixing means that

〈
f(ϕ)

〉
=

∫

dµ ̺(ϕ, t) f(ϕ)

−−−−−→
t→∞

∫

dµ f(ϕ) δ
(
E −H(ϕ)

)
/∫

dµ δ
(
E −H(ϕ)

)

≡ Tr

[

f(ϕ) δ
(
E −H(ϕ)

)]/

Tr

[

δ
(
E −H(ϕ)

)]

.

(3.89)

Physically, we can imagine regions of phase space being successively stretched and folded. During the stretching
process, the volume is preserved, so the successive stretch and fold operations map phase space back onto itself.

An example of a mixing system is the baker’s transformation, depicted in fig. 3.8. The baker map is defined by

g(q, p) =







(
2q , 1

2p
)

if 0 ≤ q < 1
2

(
2q − 1 , 1

2p+ 1
2

)
if 1

2 ≤ q < 1 .

(3.90)
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Figure 3.10: The Arnold cat map applied to an image of 150 × 150 pixels. After 300 iterations, the image repeats
itself. (Source: Wikipedia)

Note that g is invertible and volume-preserving. The baker’s transformation consists of an initial stretch in which q
is expanded by a factor of two and p is contracted by a factor of two, which preserves the total volume. The system
is then mapped back onto the original area by cutting and restacking, which we can call a ‘fold’. The inverse
transformation is accomplished by stretching first in the vertical (p) direction and squashing in the horizontal (q)
direction, followed by a slicing and restacking. Explicitly,

g−1(q, p) =







(
1
2q , 2p

)
if 0 ≤ p < 1

2

(
1
2q + 1

2 , 2p− 1
)

if 1
2 ≤ p < 1 .

(3.91)

Another example of a mixing system is Arnold’s ‘cat map’9

g(q, p) =
(
[q + p] , [q + 2p]

)
, (3.92)

where [x] denotes the fractional part of x. One can write this in matrix form as

(
q′

p′

)

=

M
︷ ︸︸ ︷
(

1 1
1 2

) (
q
p

)

mod Z
2 . (3.93)

The matrix M is very special because it has integer entries and its determinant is detM = 1. This means that the
inverse also has integer entries. The inverse transformation is then

(
q
p

)

=

M−1

︷ ︸︸ ︷
(

2 −1
−1 1

) (
q′

p′

)

mod Z
2 . (3.94)

Now for something cool. Suppose that our image consists of a set of discrete points located at (n1/k , n2/k),
where the denominator k ∈ Z is fixed, and where n1 and n2 range over the set {1, . . . , k}. Clearly g and its inverse

9The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.
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Figure 3.11: The hierarchy of dynamical systems.

preserve this set, since the entries of M and M−1 are integers. If there are two possibilities for each pixel (say off

and on, or black and white), then there are 2(k2) possible images, and the cat map will map us invertibly from
one image to another. Therefore it must exhibit Poincaré recurrence! This phenomenon is demonstrated vividly
in fig. 3.10, which shows a k = 150 pixel (square) image of a cat subjected to the iterated cat map. The image is
stretched and folded with each successive application of the cat map, but after 300 iterations the image is restored!
How can this be if the cat map is mixing? The point is that only the discrete set of points (n1/k , n2/k) is periodic.
Points with different denominators will exhibit a different periodicity, and points with irrational coordinates will
in general never return to their exact initial conditions, although recurrence says they will come arbitrarily close,
given enough iterations. The baker’s transformation is also different in this respect, since the denominator of the
p coordinate is doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in fig. 3.11, understanding the
characteristic features of each successive refinement10.

3.6 Thermalization of Quantum Systems

3.6.1 Quantum dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas time evolu-
tion in classical mechanics is in general a nonlinear dynamical system, the Schrödinger equation for time evolution
in quantum mechanics is linear:

i~
∂Ψ

∂t
= ĤΨ , (3.95)

where Ĥ is a many-body Hamiltonian. In classical mechanics, the thermal state is constructed by time evolution
– this is the content of the ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must
be encoded in the eigenstates themselves.

Let us assume an initial condition at t = 0,

|Ψ(0)〉 =
∑

α

Cα |Ψα〉 , (3.96)

10There is something beyond mixing, called a K-system. A K-system has positive Kolmogorov-Sinai entropy. For such a system, closed
orbits separate exponentially in time, and consequently the Liouvillian L has a Lebesgue spectrum with denumerably infinite multiplicity.
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where
{
|Ψα 〉

}
is an orthonormal eigenbasis for Ĥ satisfying Ĥ |Ψα〉 = Eα |Ψα〉Ṫhe expansion coefficients satisfy

Cα = 〈Ψα|Ψ(0)〉 and
∑

α |Cα|
2 = 1. Normalization requires

〈Ψ(0) |Ψ(0) 〉 =
∑

α

|Cα|
2 = 1 . (3.97)

The time evolution of |Ψ〉 is then given by

|Ψ(t)〉 =
∑

α

Cα e
−iEαt/~ |Ψα〉 . (3.98)

The energy is distributed according to the time-independent function

P (E) = 〈Ψ(t) | δ(E − Ĥ) |Ψ(t) 〉 =
∑

α

|Cα|
2 δ(E − Eα) . (3.99)

Thus, the average energy is time-independent and is given by

〈E〉 = 〈Ψ(t) | Ĥ |Ψ(t) 〉 =

∞∫

−∞

dE P (E)E =
∑

α

|Cα|
2 Eα . (3.100)

The root mean square fluctuations of the energy are given by

(∆E)rms =
〈(
E − 〈E〉

)2
〉1/2

=

√
∑

α

|Cα|
2 E2

α −
(∑

α

|Cα|
2Eα

)2

. (3.101)

Typically we assume that the distribution P (E) is narrowly peaked about 〈E〉, such that (∆E)rms ≪ E − E0,

where E0 is the ground state energy. Note that P (E) = 0 for E < E0, i.e. the eigenspectrum of Ĥ is bounded from
below.

Now consider a general quantum observable described by an operator A. We have

〈A(t)〉 = 〈Ψ(t) | A |Ψ(t) 〉 =
∑

α,β

C∗
α Cβ e

i(Eα−Eβ)t/~ Aαβ , (3.102)

where Aαβ = 〈Ψα|A|Ψβ〉. In the limit of large times, we have

〈A〉T ≡ lim
T→∞

1

T

T∫

0

dt 〈A(t)〉 =
∑

α

|Cα|
2 Aαα . (3.103)

Note that this implies that all coherence between different eigenstates is lost in the long time limit, due to dephasing.

3.6.2 Eigenstate thermalization hypothesis

The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently by J. Deutsch
(1991) and by M. Srednicki (1994). The argument goes as follows. If the total energy is the only conserved quan-
tity, and if A is a local, translationally-invariant, few-body operator, then the time average 〈A〉 is given by its
microcanonical value,

〈A〉T =
∑

α

|Cα|
2 Aαα =

∑

α Aαα Θ(Eα ∈ I)
∑

α Θ(Eα ∈ I)
≡ 〈A〉E , (3.104)
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where I =
[
E,E + ∆E

]
is an energy interval of width ∆E. So once again, time averages are micro canonical

averages.

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization in isolated and
bounded quantum systems occurs at the level of individual eigenstates. That is, for all eigenstates |Ψα〉 with Eα ∈ I ,
one has

Aαα = 〈A〉Eα
. (3.105)

This means that thermal information is encoded in each eigenstate. This is called the eigenstate thermalization hypothesis
(ETH).

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely large
quantum system U (the ‘universe’) fixed in an eigenstate |Ψα〉. Then form the projection operator Pα = |Ψα〉〈Ψα|.
Projection operators satisfy P 2 = P and their eigenspectrum consists of one eigenvalue 1 and the rest of the
eigenvalues are zero11. Now consider a partition of U = W ∪ S, where W ≫ S. We imagine S to be the ‘system’
and W the ‘world’. We can always decompose the state |Ψα〉 in a complete product basis for W and S, viz.

|Ψα〉 =

NW∑

p=1

NS∑

j=1

Qα
pj |ψ

W
p 〉 ⊗ |ψS

j 〉 . (3.106)

Here NW/S is the size of the basis for W/S. The reduced density matrix for S is defined as

ρS = Tr
W
Pα =

NS∑

j,j′=1

(NW∑

p=1

Qα
pj Q

α∗
pj′

)

|ψS
j 〉〈ψ

S
j′ | . (3.107)

The claim is that ρS is a thermal density matrix on S, i.e.

ρS =
1

ZS

e−βĤS , (3.108)

where ĤS is the Hamiltonian restricted to S, and ZS = Tr e−βĤS , so that Tr ρS = 1 and ρS is properly normalized.

Here β = 1/k
B
T with T the temperature. The temperature is fixed by the requirement that Tr (ρS ĤS) = Eα ·

(VS/VU ), where the last factor is a ratio of volumes.

3.6.3 When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable Hamilto-
nian weakly perturbed by a single Gaussian random matrix. Horoi et al. (1995) showed that nuclear shell model
wavefunctions reproduce thermodynamic predictions. Recent numerical work by M. Rigol and collaborators has
verified the applicability of the ETH in small interacting boson systems. ETH fails for so-called integrable models,
where there are a large number of conserved quantities, which commute with the Hamiltonian. Integrable models
are, however, quite special, and as Deutsch showed, integrability is spoiled by weak perturbations, in which case
ETH then applies.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the thermal state.
Rather, it reveals the thermal distribution which is encoded in all eigenstates after sufficient time for dephasing to
occur, so that correlations between all the wavefunction expansion coefficients {Cα} for α 6= α′ are all lost.

11More generally, we could project onto a K-dimensional subspace, in which case there would be K eigenvalues of +1 and N − K eigen-
values of 0, where N is the dimension of the entire vector space.
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3.7 Appendix I : Formal Solution of the Master Equation

Recall the master equation Ṗi = −Γij Pj . The matrix Γij is real but not necessarily symmetric. For such a matrix,

the left eigenvectors φα
i and the right eigenvectors ψβ

j are not the same: general different:

φα
i Γij = λα φ

α
j

Γij ψ
β
j = λβ ψ

β
i .

(3.109)

Note that the eigenvalue equation for the right eigenvectors is Γψ = λψ while that for the left eigenvectors is
Γ tφ = λφ. The characteristic polynomial is the same in both cases:

F (λ) ≡ det (λ− Γ ) = det (λ− Γ t) , (3.110)

which means that the left and right eigenvalues are the same. Note also that
[
F (λ)

]∗
= F (λ∗), hence the eigenval-

ues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation for φα on the right

by ψβ
j and summing over j, and multiplying the eigenvector equation for ψβ on the left by φα

i and summing over
i, and subtracting the two results yields

(
λα − λβ

) 〈
φα
∣
∣ψβ

〉
= 0 , (3.111)

where the inner product is
〈
φ
∣
∣ψ
〉

=
∑

i

φi ψi . (3.112)

We can now demand
〈
φα
∣
∣ψβ

〉
= δαβ , (3.113)

in which case we can write

Γ =
∑

α

λα

∣
∣ψα

〉〈
φα
∣
∣ ⇐⇒ Γij =

∑

α

λα ψ
α
i φ

α
j . (3.114)

We have seen that ~φ = (1, 1, . . . , 1) is a left eigenvector with eigenvalue λ = 0, since
∑

i Γij = 0. We do not know
a priori the corresponding right eigenvector, which depends on other details of Γij . Now let’s expand Pi(t) in the
right eigenvectors of Γ , writing

Pi(t) =
∑

α

Cα(t)ψα
i . (3.115)

Then

dPi

dt
=
∑

α

dCα

dt
ψα

i

= −Γij Pj = −
∑

α

Cα Γij ψ
α
j

= −
∑

α

λα Cα ψ
α
i .

(3.116)

This allows us to write
dCα

dt
= −λα Cα =⇒ Cα(t) = Cα(0) e−λαt . (3.117)

Hence, we can write

Pi(t) =
∑

α

Cα(0) e−λαt ψα
i . (3.118)
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It is now easy to see that Re (λα) ≥ 0 for all λ, or else the probabilities will become negative. For suppose
Re (λα) < 0 for some α. Then as t → ∞, the sum in eqn. 3.118 will be dominated by the term for which λα has
the largest negative real part; all other contributions will be subleading. But we must have

∑

i ψ
α
i = 0 since

∣
∣ψα

〉

must be orthogonal to the left eigenvector ~φα=0 = (1, 1, . . . , 1). Therefore, at least one component of ψα
i (i.e. for

some value of i) must have a negative real part, which means a negative probability!12 As we have already proven
that an initial nonnegative distribution {Pi(t = 0)} will remain nonnegative under the evolution of the master
equation, we conclude that Pi(t) → P eq

i as t→ ∞, relaxing to the λ = 0 right eigenvector, with Re (λα) ≥ 0 for all
α.

3.8 Appendix II : Radioactive Decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let Pn(t) be
the probability that n atoms are excited at some time t. We then model the decay dynamics by

Wmn =







0 if m ≥ n

nγ if m = n− 1

0 if m < n− 1 .

(3.119)

Here, γ is the decay rate of an individual atom, which can be determined from quantum mechanics. The master
equation then tells us

dPn

dt
= (n+ 1) γ Pn+1 − n γ Pn . (3.120)

The interpretation here is as follows: let
∣
∣n
〉

denote a state in which n atoms are excited. ThenPn(t) =
∣
∣〈ψ(t) |n 〉

∣
∣
2
.

Then Pn(t) will increase due to spontaneous transitions from |n+1 〉 to |n 〉, and will decrease due to spontaneous
transitions from |n 〉 to |n−1 〉.

The average number of particles in the system is

N(t) =

∞∑

n=0

nPn(t) . (3.121)

Note that

dN

dt
=

∞∑

n=0

n
[

(n+ 1) γ Pn+1 − n γ Pn

]

= γ

∞∑

n=0

[

n(n− 1)Pn − n2Pn

]

= −γ
∞∑

n=0

nPn = −γ N .

(3.122)

Thus,
N(t) = N(0) e−γt . (3.123)

The relaxation time is τ = γ−1, and the equilibrium distribution is

P eq
n = δn,0 . (3.124)

12Since the probability Pi(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex, there will be a corresponding
complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for Pi(t).
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Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

P (z, t) ≡
∞∑

n=0

zn Pn(t) . (3.125)

This is sometimes called a generating function. Then

∂P

∂t
= γ

∞∑

n=0

zn
[

(n+ 1)Pn+1 − nPn

]

= γ
∂P

∂z
− γz

∂P

∂z
.

(3.126)

Thus,
1

γ

∂P

∂t
− (1 − z)

∂P

∂z
= 0 . (3.127)

We now see that any function f(ξ) satisfies the above equation, where ξ = γt− ln(1 − z). Thus, we can write

P (z, t) = f
(
γt− ln(1 − z)

)
. (3.128)

Setting t = 0 we have P (z, 0) = f
(
−ln(1 − z)

)
, and inverting this result we obtain f(u) = P (1 − e−u, 0), i.e.

P (z, t) = P
(
1 + (z − 1) e−γt , 0

)
. (3.129)

The total probability is P (z=1, t) =
∑∞

n=0 Pn, which clearly is conserved: P (1, t) = P (1, 0). The average particle
number is

N(t) =
∞∑

n=0

nPn(t) =
∂P

∂z

∣
∣
∣
∣
z=1

= e−γt P (1, 0) = N(0) e−γt . (3.130)

3.9 Appendix III : Canonical Transformations in Hamiltonian Mechanics

The Euler-Lagrange equations of motion of classical mechanics are invariant under a redefinition of generalized
coordinates,

Qσ = Qσ(q1, . . . , qr, t) , (3.131)

called a point transformation. That is, if we express the new Lagrangian in terms of the new coordinates and their
time derivatives, viz.

L̃
(
Q, Q̇, t) = L

(
q(Q, t) , q̇(Q, Q̇, t) , t

)
, (3.132)

then the equations of motion remain of the form

∂L̃

∂Qσ
=

d

dt

(
∂L̃

∂Q̇σ

)

. (3.133)

Hamilton’s equations13,

q̇σ =
∂H

∂pσ

, ṗσ = −
∂H

∂qσ
(3.134)

13We revert to using H for the Hamiltonian in this section, rather than Ĥ as before.
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are invariant under a much broader class of transformations which mix all the q′s and p′s, called canonical trans-
formations. The general form for a canonical transformation is

qσ = qσ
(
Q1 , . . . , Qr , P1 , . . . , Pr , t

)
(3.135)

pσ = pσ

(
Q1 , . . . , Qr , P1 , . . . , Pr , t

)
, (3.136)

with σ ∈ {1, . . . , r}. We may also write

ξi = ξi
(
Ξ1 , . . . , Ξ2r , t

)
, (3.137)

with i ∈ {1, . . . , 2r}. Here we have

ξi =

{

qi if 1 ≤ i ≤ r

pi−r if n ≤ i ≤ 2r
, Ξi =

{

Qi if 1 ≤ i ≤ r

Pi−r if r ≤ i ≤ 2r .
(3.138)

The transformed Hamiltonian is H̃(Q,P, t).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain invariant, then

Q̇σ =
∂H̃

∂Pσ
, Ṗσ = −

∂H̃

∂Qσ
, (3.139)

which gives

∂Q̇σ

∂Qσ
+
∂Ṗσ

∂Pσ
= 0 =

∂Ξ̇i

∂Ξi
. (3.140)

I.e. the flow remains incompressible in the new (Q,P ) variables. We will also require that phase space volumes
are preserved by the transformation, i.e.

det

(
∂Ξi

∂ξj

)

=

∣
∣
∣
∣

∣
∣
∣
∣

∂(Q,P )

∂(q, p)

∣
∣
∣
∣

∣
∣
∣
∣
= 1 . (3.141)

This last condition guarantees the invariance of the phase space measure

dµ = h−r
r∏

σ=1

dqσ dpσ , (3.142)

where h in the normalization prefactor is Planck’s constant.


