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Chapter 4

Statistical Ensembles

4.1 References

– F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and with good
reason.

– A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

– D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I’ve come across, but only 40% of the book treats
statistical mechanics.

– C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key concepts and
examples. Published by Dover, so you can’t beat the price.

– M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts.

– M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rd edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of the subject.
Good discussion of mean field theory.

– E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3rd edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated, it still
contains a wealth of information and physical insight.
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2 CHAPTER 4. STATISTICAL ENSEMBLES

4.2 Microcanonical Ensemble (µCE)

4.2.1 The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space averages:

ergodicity ⇐⇒
〈
f(ϕ)

〉
T

=
〈
f(ϕ)

〉
S
, (4.1)

where

〈
f(ϕ)

〉
T

= lim
T→∞

1

T

T∫

0

dt f
(
ϕ(t)

)
. (4.2)

and
〈
f(ϕ)

〉
S

=

∫
dµ f(ϕ) δ

(
E − Ĥ(ϕ)

)/∫
dµ δ

(
E − Ĥ(ϕ)

)
. (4.3)

Here Ĥ(ϕ) = Ĥ(q,p) is the Hamiltonian, and where δ(x) is the Dirac δ-function1. Thus, averages are taken over
a constant energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution ̺(Λ1, . . . , Λk) which is a function of conserved quantitied Λa(ϕ)
is automatically a stationary (time-independent) solution to Liouville’s equation. Note that the microcanonical
distribution,

̺E(ϕ) = δ
(
E − Ĥ(ϕ)

)/∫
dµ δ

(
E − Ĥ(ϕ)

)
, (4.4)

is of this form, since Ĥ(ϕ) is conserved by the dynamics. Linear and angular momentum conservation generally
are broken by elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

〈
A
〉

=
Tr Aδ(E − Ĥ)

Tr δ(E − Ĥ)
, (4.5)

where Tr means ‘trace’, which entails an integration over all phase space:

Tr A(q, p) ≡ 1

N !

N∏

i=1

∫
ddpi d

dqi
(2π~)d

A(q, p) . (4.6)

Here N is the total number of particles and d is the dimension of physical space in which each particle moves.
The factor of 1/N !, which cancels in the ratio between numerator and denominator, is present for indistinguishable
particles. The normalization factor (2π~)−Nd renders the trace dimensionless. Again, this cancels between numer-
ator and denominator. These factors may then seem arbitrary in the definition of the trace, but we’ll see how they
in fact are required from quantum mechanical considerations. So we now adopt the following metric for classical
phase space integration:

dµ =
1

N !

N∏

i=1

ddpi d
dqi

(2π~)d
. (4.7)

1We write the Hamiltonian as Ĥ (classical or quantum) in order to distinguish it from magnetic field (H) or enthalpy (H).
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4.2.2 Density of states

The denominator,
D(E) = Tr δ(E − Ĥ) , (4.8)

is called the density of states. It has dimensions of inverse energy, such that

D(E)∆E =

E+∆E∫

E

dE′

∫
dµ δ(E′ − Ĥ) =

∫

E<Ĥ<E+∆E

dµ (4.9)

= # of states with energies between E and E + ∆E .

Let us now compute D(E) for the nonrelativistic ideal gas. The Hamiltonian is

Ĥ(q, p) =

N∑

i=1

p2
i

2m
. (4.10)

We assume that the gas is enclosed in a region of volume V , and we’ll do a purely classical calculation, neglecting
discreteness of its quantum spectrum. We must compute

D(E) =
1

N !

∫ N∏

i=1

ddpi d
dqi

(2π~)d
δ

(
E −

N∑

i=1

p2
i

2m

)
. (4.11)

We’ll do this calculation in two ways. First, let’s rescale pα
i ≡

√
2mE uα

i . We then have

D(E) =
V N

N !

(√
2mE

h

)Nd
1

E

∫
dMu δ

(
u2

1 + u2
2 + . . .+ u2

M − 1
)
. (4.12)

Here we have written u = (u1, u2, . . . , uM ) with M = Nd as a M -dimensional vector. We’ve also used the rule
δ(Ex) = E−1δ(x) for δ-functions. We can now write

dMu = uM−1 du dΩM , (4.13)

where dΩM is the M -dimensional differential solid angle. We now have our answer:2

D(E) =
V N

N !

(√
2m

h

)Nd

E
1
2
Nd−1 · 1

2 ΩNd . (4.14)

What remains is for us to compute ΩM , the total solid angle in M dimensions. We do this by a nifty mathematical
trick. Consider the integral

IM =

∫
dMu e−u2

= ΩM

∞∫

0

du uM−1 e−u2

= 1
2ΩM

∞∫

0

ds s
1
2
M−1

e−s = 1
2ΩM Γ

(
1
2M

)
,

(4.15)

2The factor of 1
2

preceding Ω
M

in eqn. 4.14 appears because δ(u2 − 1) = 1
2

δ(u − 1) + 1
2

δ(u + 1). Since u = |u| ≥ 0, the second term can
be dropped.
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where s = u2, and where

Γ(z) =

∞∫

0

dt tz−1 e−t (4.16)

is the Gamma function, which satisfies z Γ(z) = Γ(z + 1).3 On the other hand, we can compute IM in Cartesian
coordinates, writing

IM =




∞∫

−∞

du1 e
−u2

1




M

=
(√
π
)M

. (4.17)

Therefore

ΩM =
2πM/2

Γ(M/2)
. (4.18)

We thereby obtain Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, etc., the first two of which are familiar.

Our final result, then, is

D(E, V,N) =
V N

N !

(
m

2π~2

)Nd/2 E
1
2
Nd−1

Γ(Nd/2)
. (4.19)

Here we have emphasized that the density of states is a function of E, V , and N . Using Stirling’s approximation,

lnN ! = N lnN −N + 1
2 lnN + 1

2 ln(2π) + O
(
N−1

)
, (4.20)

we may define the statistical entropy,

S(E, V,N) ≡ k
B

lnD(E, V,N) = Nk
B
φ

(
E

N
,
V

N

)
+ O(lnN) , (4.21)

where

φ

(
E

N
,
V

N

)
=
d

2
ln

(
E

N

)
+ ln

(
V

N

)
+
d

2
ln

(
m

dπ~2

)
+
(
1 + 1

2d
)
. (4.22)

Recall k
B

= 1.3806503× 10−16 erg/K is Boltzmann’s constant.

The second way to calculate D(E) is to first compute its Laplace transform, Z(β):

Z(β) = L
[
D(E)

]
≡

∞∫

0

dE e−βE D(E) = Tr e−βĤ . (4.23)

The inverse Laplace transform is then

D(E) = L−1
[
Z(β)

]
≡

c+i∞∫

c−i∞

dβ

2πi
eβE Z(β) , (4.24)

where c is such that the integration contour is to the right of any singularities of Z(β) in the complex β-plane. We

3Note that for integer argument, Γ(k) = (k − 1)!
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Figure 4.1: Complex integration contours C for inverse Laplace transform L−1
[
Z(β)

]
= D(E). When the product

dN is odd, there is a branch cut along the negative Re β axis.

then have

Z(β) =
1

N !

N∏

i=1

∫
ddxi d

dpi

(2π~)d
e−βp2

i /2m

=
V N

N !




∞∫

−∞

dp

2π~
e−βp2/2m




Nd

=
V N

N !

(
m

2π~2

)Nd/2

β−Nd/2 .

(4.25)

The inverse Laplace transform is then

D(E) =
V N

N !

(
m

2π~2

)Nd/2 ∮

C

dβ

2πi
eβE β−Nd/2

=
V N

N !

(
m

2π~2

)Nd/2 E
1
2
Nd−1

Γ(Nd/2)
,

(4.26)

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite semicircle in
the left half β-plane. When Nd is even, the function β−Nd/2 has a simple pole of order Nd/2 at the origin. When
Nd is odd, there is a branch cut extending along the negative Reβ axis, and the integration contour must avoid
the cut, as shown in fig. 4.1.

For a general system, the Laplace transform, Z(β) = L
[
D(E)

]
also is called the partition function. We shall again

meet up with Z(β) when we discuss the ordinary canonical ensemble.

4.2.3 Arbitrariness in the definition of S(E)

Note that D(E) has dimensions of inverse energy, so one might ask how we are to take the logarithm of a di-
mensionful quantity in eqn. 4.21. We must introduce an energy scale, such as ∆E in eqn. 4.9, and define
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D̃(E; ∆E) = D(E)∆E and S(E; ∆E) ≡ k
B

ln D̃(E; ∆E). The definition of statistical entropy then involves the
arbitrary parameter ∆E, however this only affects S(E) in an additive way. That is,

S(E, V,N ; ∆E1) = S(E, V,N ; ∆E2) + k
B

ln

(
∆E1

∆E2

)
. (4.27)

Note that the difference between the two definitions of S depends only on the ratio ∆E1/∆E2, and is independent
of E, V , and N .

4.2.4 Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion ε(p) = cp. We then have

Z(β) =
V N

N !

ΩN
d

hNd




∞∫

0

dp pd−1 e−βcp




N

=
V N

N !

(
Γ(d)Ωd

cd hd βd

)N
.

(4.28)

The statistical entropy is S(E, V,N) = k
B

lnD(E, V,N) = Nk
B
φ
(

E
N ,

V
N

)
, with

φ

(
E

N
,
V

N

)
= d ln

(
E

N

)
+ ln

(
V

N

)
+ ln

(
Ωd Γ(d)

(dhc)d

)
+ (d+ 1) (4.29)

4.2.5 Discrete systems

For classical systems where the energy levels are discrete, the states of the system |σ 〉 are labeled by a set of
discrete quantities {σ1, σ2, . . .}, where each variable σi takes discrete values. The number of ways of configuring
the system at fixed energy E is then

Ω(E,N) =
∑

σ

δ
Ĥ(σ),E

, (4.30)

where the sum is over all possible configurations. Here N labels the total number of particles. For example, if
we have N spin- 1

2 particles on a lattice which are placed in a magnetic field H , so the individual particle energy
is εi = −µ0Hσ, where σ = ±1, then in a configuration in which N↑ particles have σi = +1 and N↓ = N − N↑

particles have σi = −1, the energy is E = (N↓ −N↑)µ0H . The number of configurations at fixed energy E is

Ω(E,N) =

(
N

N↑

)
=

N !(
N
2 − E

2µ0H

)
!
(

N
2 + E

2µ0H

)
!
, (4.31)

since N↑/↓ = N
2 ∓ E

2µ0H . The statistical entropy is S(E,N) = k
B

ln Ω(E,N).

4.3 The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamiltonian flow
which is ergodic is one in which time averages can be replaced by phase space averages using the microcanonical
ensemble. What happens, though, if our system is quantum mechanical, as all systems ultimately are?
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4.3.1 The density matrix

First, let us consider that our system S will in general be in contact with a world W . We call the union of S and
W the universe, U = W ∪ S. Let

∣∣N
〉

denote a quantum mechanical state of W , and let
∣∣n
〉

denote a quantum
mechanical state of S. Then the most general wavefunction we can write is of the form

∣∣Ψ
〉

=
∑

N,n

ΨN,n

∣∣N
〉
⊗
∣∣n
〉
. (4.32)

Now let us compute the expectation value of some operator Â which acts as the identity within W , meaning〈
N
∣∣ Â
∣∣N ′

〉
= Â δNN ′ , where Â is the ‘reduced’ operator which acts within S alone. We then have

〈
Ψ
∣∣ Â
∣∣Ψ
〉

=
∑

N,N ′

∑

n,n′

Ψ∗
N,n ΨN ′,n′ δNN ′

〈
n
∣∣ Â
∣∣n′
〉

= Tr
(
ˆ̺Â
)
,

(4.33)

where
ˆ̺ =

∑

N

∑

n,n′

Ψ∗
N,n ΨN,n′

∣∣n′
〉 〈
n
∣∣ (4.34)

is the density matrix. The time-dependence of ˆ̺ is easily found:

ˆ̺(t) =
∑

N

∑

n,n′

Ψ∗
N,n ΨN,n′

∣∣n′(t)
〉 〈
n(t)

∣∣

= e−iĤt/~ ˆ̺ e+iĤt/~ ,

(4.35)

where Ĥ is the Hamiltonian for the system S. Thus, we find

i~
∂ ˆ̺

∂t
=
[
Ĥ, ˆ̺

]
. (4.36)

Note that the density matrix evolves according to a slightly different equation than an operator in the Heisenberg
picture, for which

Â(t) = e+iHt/~ Ae−iĤt/~ =⇒ i~
∂Â

∂t
=
[
Â, Ĥ

]
= −

[
Ĥ, Â

]
. (4.37)

For Hamiltonian systems, we found that the phase space distribution ̺(q, p, t) evolved according to the Liouville
equation,

i
∂̺

∂t
= L̺ , (4.38)

where the Liouvillian L is the differential operator

L = −i
Nd∑

j=1

{
∂Ĥ

∂pj

∂

∂qj
− ∂Ĥ

∂qj

∂

∂pj

}
. (4.39)

Accordingly, any distribution ̺(Λ1, . . . , Λk) which is a function of constants of the motion Λa(q, p) is a station-
ary solution to the Liouville equation: ∂t ̺(Λ1, . . . , Λk) = 0. Similarly, any quantum mechanical density matrix
which commutes with the Hamiltonian is a stationary solution to eqn. 4.36. The corresponding microcanonical
distribution is

ˆ̺E = δ
(
E − Ĥ

)
. (4.40)
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Figure 4.2: A system S in contact with a ‘world’ W . The union of the two, universe U = W ∪ S, is said to be the
‘universe’.

4.3.2 Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather than
continuous, and the density of states (DOS) will be of the form

D(E) = Tr δ
(
E − Ĥ

)
=
∑

l

δ(E − El) , (4.41)

where {El} are the eigenvalues of the Hamiltonian Ĥ . In the thermodynamic limit, V → ∞, and the discrete
spectrum of kinetic energies remains discrete for all finite V but must approach the continuum result. To recover
the continuum result, we average the DOS over a window of width ∆E:

D(E) =
1

∆E

E+∆E∫

E

dE′D(E′) . (4.42)

If we take the limit ∆E → 0 but with ∆E ≫ δE, where δE is the spacing between successive quantized levels, we
recover a smooth function, as shown in fig. 4.3. We will in general drop the bar and refer to this function as D(E).
Note that δE ∼ 1/D(E) = e−Nφ(ε,v) is (typically) exponentially small in the size of the system, hence if we took
∆E ∝ V −1 which vanishes in the thermodynamic limit, there are still exponentially many energy levels within an
interval of width ∆E.

4.3.3 Coherent states

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-dimensional
harmonic oscillator Hamiltonian may be written

Ĥ0 =
p2

2m
+ 1

2mω2
0 q

2

= ~ω0

(
a†a+ 1

2

)
,

(4.43)

where a and a† are ladder operators satisfying
[
a, a†

]
= 1, which can be taken to be

a = ℓ
∂

∂q
+

q

2ℓ
, a† = −ℓ ∂

∂q
+

q

2ℓ
, (4.44)
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Figure 4.3: Averaging the quantum mechanical discrete density of states yields a continuous curve.

with ℓ =
√

~/2mω0 . Note that

q = ℓ
(
a+ a†

)
, p =

~

2iℓ

(
a− a†

)
. (4.45)

The ground state satisfies aψ0(q) = 0, which yields

ψ0(q) = (2πℓ2)−1/4 e−q2/4ℓ2 . (4.46)

The normalized coherent state | z 〉 is defined as

| z 〉 = e−
1
2 |z|2 eza† | 0 〉 = e−

1
2 |z|2

∞∑

n=0

zn

√
n!

|n 〉 . (4.47)

The overlap of coherent states is given by

〈 z1 | z2 〉 = e−
1
2 |z1|

2

e−
1
2 |z2|

2

ez̄1z2 , (4.48)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states allow a
simple resolution of the identity,

1 =

∫
d2z

2πi
| z 〉〈 z | ;

d2z

2πi
≡ dRez d Imz

π
(4.49)

which is straightforward to establish.

To gain some physical intuition about the coherent states, define

z ≡ Q

2ℓ
+
iℓP

~
(4.50)

and write | z 〉 ≡ |Q,P 〉. One finds (exercise!)

ψQ,P (q) = 〈 q | z 〉 = (2πℓ2)−1/4 e−iPQ/2~ eiPq/~ e−(q−Q)2/4ℓ2 , (4.51)

hence the coherent state ψQ,P (q) is a wavepacket Gaussianly localized about q = Q, but oscillating with average
momentum P .
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For example, we can compute

〈
Q,P

∣∣ q
∣∣Q,P

〉
=
〈
z
∣∣ ℓ (a+ a†)

∣∣ z
〉

= 2ℓ Re z = Q (4.52)

〈
Q,P

∣∣ p
∣∣Q,P

〉
=
〈
z
∣∣ ~

2iℓ
(a− a†)

∣∣ z
〉

=
~

ℓ
Im z = P (4.53)

as well as

〈
Q,P

∣∣ q2
∣∣Q,P

〉
=
〈
z
∣∣ ℓ2 (a+ a†)2

∣∣ z
〉

= Q2 + ℓ2 (4.54)

〈
Q,P

∣∣ p2
∣∣Q,P

〉
= −

〈
z
∣∣ ~

2

4ℓ2
(a− a†)2

∣∣ z
〉

= P 2 +
~

2

4ℓ2
. (4.55)

Thus, the root mean square fluctuations in the coherent state |Q,P 〉 are

∆q = ℓ =

√
~

2mω0

, ∆p =
~

2ℓ
=

√
m~ω0

2
, (4.56)

and ∆q · ∆p = 1
2 ~. Thus we learn that the coherent state ψQ,P (q) is localized in phase space, i.e. in both position

and momentum. If we have a general operator Â(q, p), we can then write

〈
Q,P

∣∣ Â(q, p)
∣∣Q,P

〉
= A(Q,P ) + O(~) , (4.57)

where A(Q,P ) is formed from Â(q, p) by replacing q → Q and p→ P .

Since
d2z

2πi
≡ dRez d Imz

π
=
dQdP

2π~
, (4.58)

we can write the trace using coherent states as

Tr Â =
1

2π~

∞∫

−∞

dQ

∞∫

−∞

dP
〈
Q,P

∣∣ Â
∣∣Q,P

〉
. (4.59)

We now can understand the origin of the factor 2π~ in the denominator of each (qi, pi) integral over classical phase
space in eqn. 4.6.

Note that ω0 is arbitrary in our discussion. By increasing ω0, the states become more localized in q and more plane
wave like in p. However, so long as ω0 is finite, the width of the coherent state in each direction is proportional to
~

1/2, and thus vanishes in the classical limit.

4.4 Thermal Equilibrium

Consider two systems in thermal contact, as depicted in fig. 4.4. The two subsystems #1 and #2 are free to exchange
energy, but their respective volumes and particle numbers remain fixed. We assume the contact is made over a
surface, and that the energy associated with that surface is negligible when compared with the bulk energies E1

and E2. Let the total energy be E = E1 + E2. Then the density of states D(E) for the combined system is

D(E) =

∫
dE1D1(E1)D2(E − E1) . (4.60)
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Figure 4.4: Two systems in thermal contact.

The probability density for system #1 to have energy E1 is then

P1(E1) =
D1(E1)D2(E − E1)

D(E)
. (4.61)

Note that P1(E1) is normalized:
∫
dE1 P1(E1) = 1. We now ask: what is the most probable value of E1? We find

out by differentiating P1(E1) with respect to E1 and setting the result to zero. This requires

0 =
1

P1(E1)

dP1(E1)

dE1

=
∂

∂E1

lnP1(E1)

=
∂

∂E1

lnD1(E1) +
∂

∂E1

lnD2(E − E1) .

(4.62)

Thus, we conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

∂S1

∂E1

=
∂S2

∂E2

. (4.63)

This guarantees that
S(E,E1) = S1(E1) + S2(E − E1) (4.64)

is a maximum with respect to the energy E1, at fixed total energy E.

The temperature T is defined as
1

T
=

(
∂S

∂E

)

V,N

, (4.65)

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the entropy.
When the total entropy S is maximized, we have that T1 = T2. Once again, two systems in thermal contact and
can exchange energy will in equilibrium have equal temperatures.

According to eqns. 4.22 and 4.29, the entropies of nonrelativistic and ultrarelativistic ideal gases in d space dimen-
sions are given by

S
NR

= 1
2NdkB

ln

(
E

N

)
+Nk

B
ln

(
V

N

)
+ const. (4.66)

S
UR

= Ndk
B

ln

(
E

N

)
+Nk

B
ln

(
V

N

)
+ const. . (4.67)

Invoking eqn. 4.65, we then have

E
NR

= 1
2NdkB

T , E
UR

= Ndk
B
T . (4.68)
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We saw that the probability distribution P1(E1) is maximized when T1 = T2, but how sharp is the peak in the
distribution? Let us write E1 = E∗

1 + ∆E1, where E∗
1 is the solution to eqn. 4.62. We then have

lnP1(E
∗
1 + ∆E1) = lnP1(E

∗
1 ) +

1

2k
B

∂2S1

∂E2
1

∣∣∣∣
E∗

1

(∆E1)
2 +

1

2k
B

∂2S2

∂E2
2

∣∣∣∣
E∗

2

(∆E1)
2 + . . . , (4.69)

where E∗
2 = E − E∗

1 . We must now evaluate

∂2S

∂E2
=

∂

∂E

(
1

T

)
= − 1

T 2

(
∂T

∂E

)

V,N

= − 1

T 2CV

, (4.70)

where CV =
(
∂E/∂T

)
V,N

is the heat capacity. Thus,

P1 = P ∗
1 e

−(∆E1)
2/2kBT 2C̄V , (4.71)

where

C̄V =
CV,1 CV,2

CV,1 + CV,2

. (4.72)

The distribution is therefore a Gaussian, and the fluctuations in ∆E1 can now be computed:

〈
(∆E1)

2
〉

= k
B
T 2 C̄V =⇒ (∆E1)RMS

= k
B
T
√
C̄V /kB

. (4.73)

The individual heat capacities CV,1 and CV,2 scale with the volumes V1 and V2, respectively. If V2 ≫ V1, then

CV,2 ≫ CV,1, in which case C̄V ≈ CV,1. Therefore the RMS fluctuations in ∆E1 are proportional to the square

root of the system size, whereas E1 itself is extensive. Thus, the ratio (∆E1)RMS
/E1 ∝ V −1/2 scales as the inverse

square root of the volume. The distribution P1(E1) is thus extremely sharp.

4.5 Ordinary Canonical Ensemble (OCE)

4.5.1 Canonical distribution and partition function

Consider a system S in contact with a world W , and let their union U = W ∪ S be called the ‘universe’. The
situation is depicted in fig. 4.2. The volume V

S
and particle number N

S
of the system are held fixed, but the

energy is allowed to fluctuate by exchange with the world W . We are interested in the limit N
S
→ ∞, N

W
→ ∞,

with N
S
≪ N

W
, with similar relations holding for the respective volumes and energies. We now ask what is the

probability that S is in a state |n 〉 with energy En. This is given by the ratio

Pn = lim
∆E→0

D
W

(E
U
− En)∆E

D
U
(E

U
)∆E

=
# of states accessible to W given that E

S
= En

total # of states in U
.

(4.74)

Then

lnPn = lnD
W

(E
U
− En) − lnD

U
(E

U
)

= lnD
W

(E
U
) − lnD

U
(E

U
) − En

∂ lnD
W

(E)

∂E

∣∣∣∣
E=E

U

+ . . .

≡ −α− βEn .

(4.75)
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The constant β is given by

β =
∂ lnD

W
(E)

∂E

∣∣∣∣
E=E

U

=
1

k
B
T
. (4.76)

Thus, we find Pn = e−α e−βEn . The constant α is fixed by the requirement that
∑

n Pn = 1:

Pn =
1

Z
e−βEn , Z(T, V,N) =

∑

n

e−βEn = Tr e−βĤ . (4.77)

We’ve already met Z(β) in eqn. 4.23 – it is the Laplace transform of the density of states. It is also called the
partition function of the system S. Quantum mechanically, we can write the ordinary canonical density matrix as

ˆ̺ =
e−βĤ

Tr e−βĤ
. (4.78)

Note that
[
ˆ̺, Ĥ

]
= 0, hence the ordinary canonical distribution is a stationary solution to the evolution equation

for the density matrix. Note that the OCE is specified by three parameters: T , V , and N .

4.5.2 The difference between P (En) and Pn

Let the total energy of the Universe be fixed at E
U

. The joint probability density P (E
S
, E

W
) for the system to have

energy ES and the world to have energy E
W

is

P (E
S
, E

W
) = D

S
(E

S
)D

W
(E

W
) δ(E

U
− E

S
− E

W
)
/
D

U
(E

U
) , (4.79)

where

D
U
(E

U
) =

∞∫

−∞

dE
S
D

S
(E

S
)D

W
(E

U
− E

S
) , (4.80)

which ensures that
∫
dE

S

∫
dE

W
P (E

S
, E

W
) = 1. The probability density P (E

S
) is defined such that P (E

S
) dE

S
is

the (differential) probability for the system to have an energy in the range [E
S
, E

S
+ dE

S
]. The units of P (E

S
) are

E−1. To obtain P (E
S
), we simply integrate the joint probability density P (E

S
, E

W
) over all possible values of E

W
,

obtaining

P (E
S
) =

D
S
(E

S
)D

W
(E

U
− E

S
)

D
U
(E

U
)

, (4.81)

as we have in eqn. 4.74.

Now suppose we wish to know the probability Pn that the system is in a particular state |n 〉 with energy En.
Clearly

Pn = lim
∆E→0

probability that E
S
∈ [En, En + ∆E]

# of S states with E
S
∈ [En, En + ∆E]

=
P (En)∆E

D
S
(En)∆E

=
D

W
(E

U
− En)

D
U
(E

U
)

. (4.82)

4.5.3 Averages within the OCE

To compute averages within the OCE,

〈
Â
〉

= Tr
(
ˆ̺Â
)

=

∑
n 〈n|Â|n〉 e−βEn

∑
n e

−βEn

, (4.83)
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where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we have

̺(ϕ) =
1

Z
e−βĤ(ϕ) , Z = Tr e−βĤ =

∫
dµ e−βĤ(ϕ) , (4.84)

with dµ = 1
N !

∏N
j=1(d

dqj d
dpj/h

d) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

〈A〉 = Tr (̺A) =

∫
dµ A(ϕ) e−βĤ(ϕ)

∫
dµ e−βĤ(ϕ)

. (4.85)

4.5.4 Entropy and free energy

The Boltzmann entropy is defined by

S = −k
B

Tr
(
ˆ̺ ln ˆ̺) = −k

B

∑

n

Pn lnPn . (4.86)

The Boltzmann entropy and the statistical entropy S = k
B

lnD(E) are identical in the thermodynamic limit.

We define the Helmholtz free energy F (T, V,N) as

F (T, V,N) = −k
B
T lnZ(T, V,N) , (4.87)

hence
Pn = eβF e−βEn , lnPn = βF − βEn . (4.88)

Therefore the entropy is

S = −k
B

∑

n

Pn

(
βF − βEn

)

= −F
T

+
〈 Ĥ 〉
T

,

(4.89)

which is to say
F = E − TS , (4.90)

where

E =
∑

n

PnEn =
Tr Ĥ e−βĤ

Tr e−βĤ
(4.91)

is the average energy. We also see that

Z = Tr e−βĤ =
∑

n

e−βEn =⇒ E =

∑
nEn e

−βEn

∑
n e

−βEn

= − ∂

∂β
lnZ =

∂

∂β

(
βF
)
. (4.92)

Thus, F (T, V,N) is a Legendre transform of E(S, V,N), with

dF = −S dT − p dV + µdN , (4.93)

which means

S = −
(
∂F

∂T

)

V,N

, p = −
(
∂F

∂V

)

T,N

, µ = +

(
∂F

∂N

)

T,V

. (4.94)
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4.5.5 Fluctuations in the OCE

In the OCE, the energy is not fixed. It therefore fluctuates about its average value E = 〈Ĥ〉. Note that

−∂E
∂β

= k
B
T 2 ∂E

∂T
=
∂2 lnZ

∂β2

=
Tr Ĥ2 e−βĤ

Tr e−βĤ
−
(

Tr Ĥ e−βĤ

Tr e−βĤ

)2

=
〈
Ĥ2
〉
−
〈
Ĥ
〉2
.

(4.95)

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4.4:

CV =

(
∂E

∂T

)

V,N

=
1

k
B
T 2

(〈
Ĥ2
〉
−
〈
Ĥ
〉2)

(4.96)

For the nonrelativistic ideal gas, we found CV = d
2 NkB

, hence the ratio of RMS fluctuations in the energy to the
energy itself is √〈

(∆Ĥ)2
〉

〈Ĥ〉
=

√
k

B
T 2CV

d
2NkB

T
=

√
2

Nd
, (4.97)

and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.

The full distribution function for the energy is

P (E) =
〈
δ(E − Ĥ)

〉
=

Tr δ(E − Ĥ) e−βĤ

Tr e−βĤ
=

1

Z
D(E) e−βE . (4.98)

Thus,

P (E) =
e−β[E−TS(E)]

∫
dẼ e−β[Ẽ−TS(Ẽ)]

, (4.99)

where S(E) = k
B

lnD(E) is the statistical entropy. Let’s write E = E + δE , where E extremizes the combination
E − T S(E), i.e. the solution to T S′(E) = 1, where the energy derivative of S is performed at fixed volume V and
particle number N . We now expand S(E + δE) to second order in δE , obtaining

S(E + δE) = S(E) +
δE
T

−
(
δE
)2

2T 2CV

+ . . . (4.100)

Recall that S′′(E) = ∂
∂E

(
1
T

)
= − 1

T 2C
V

. Thus,

E − T S(E) = E − T S(E) +
(δE)2

2T CV

+ O
(
(δE)2

)
. (4.101)

Applying this to both numerator and denominator of eqn. 4.99, we obtain4

P (E) = N exp

[
− (δE)2

2k
B
T 2CV

]
, (4.102)

where N = (2πk
B
T 2CV )−1/2 is a normalization constant which guarantees

∫
dE P (E) = 1. Once again, we see that

the distribution is a Gaussian centered at 〈E〉 = E, and of width (∆E)RMS =
√
k

B
T 2CV . This is a consequence of

the Central Limit Theorem.
4In applying eqn. 4.101 to the denominator of eqn. 4.99, we shift Ẽ by E and integrate over the difference δẼ ≡ Ẽ − E, retaining terms up

to quadratic order in δẼ in the argument of the exponent.
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Figure 4.5: Microscopic, statistical interpretation of the First Law of Thermodynamics.

4.5.6 Thermodynamics revisited

The average energy within the OCE is

E =
∑

n

EnPn , (4.103)

and therefore

dE =
∑

n

En dPn +
∑

n

Pn dEn

= d̄Q− d̄W ,

(4.104)

where

d̄W = −
∑

n

Pn dEn (4.105)

d̄Q =
∑

n

En dPn . (4.106)

Finally, from Pn = Z−1 e−En/kBT , we can write

En = −k
B
T lnZ − k

B
T lnPn , (4.107)
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with which we obtain

d̄Q =
∑

n

En dPn

= −k
B
T lnZ

∑

n

dPn − k
B
T
∑

n

lnPn dPn

= T d
(
− k

B

∑

n

Pn lnPn

)
= T dS .

(4.108)

Note also that

d̄W = −
∑

n

Pn dEn

= −
∑

n

Pn

(
∑

i

∂En

∂Xi

dXi

)

= −
∑

n,i

Pn

〈
n
∣∣ ∂Ĥ
∂Xi

∣∣n
〉
dXi ≡

∑

i

Fi dXi ,

(4.109)

so the generalized force Fi conjugate to the generalized displacement dXi is

Fi = −
∑

n

Pn

∂En

∂Xi

= −
〈
∂Ĥ

∂Xi

〉
. (4.110)

This is the force acting on the system5. In the chapter on thermodynamics, we defined the generalized force
conjugate to Xi as yi ≡ −Fi.

Thus we see from eqn. 4.104 that there are two ways that the average energy can change; these are depicted in
the sketch of fig. 4.5. Starting from a set of energy levels {En} and probabilities {Pn}, we can shift the energies
to {E′

n}. The resulting change in energy (∆E)
I
= −W is identified with the work done on the system. We could

also modify the probabilities to {P ′
n} without changing the energies. The energy change in this case is the heat

absorbed by the system: (∆E)
II

= Q. This provides us with a statistical and microscopic interpretation of the First
Law of Thermodynamics.

4.5.7 Generalized susceptibilities

Suppose our Hamiltonian is of the form

Ĥ = Ĥ(λ) = Ĥ0 − λ Q̂ , (4.111)

where λ is an intensive parameter, such as magnetic field. Then

Z(λ) = Tr e−β(Ĥ0−λQ̂) (4.112)

and
1

Z

∂Z

∂λ
= β · 1

Z
Tr

(
Q̂ e−βĤ(λ)

)
= β 〈Q̂〉 . (4.113)

But then from Z = e−βF we have

Q(λ, T ) = 〈 Q̂ 〉 = −
(
∂F

∂λ

)

T

. (4.114)

5In deriving eqn. 4.110, we have used the so-called Feynman-Hellman theorem of quantum mechanics: d〈n|Ĥ|n〉 = 〈n| dĤ |n〉, if |n〉 is an
energy eigenstate.
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Typically we will take Q to be an extensive quantity. We can now define the susceptibility χ as

χ =
1

V

∂Q

∂λ
= − 1

V

∂2F

∂λ2
. (4.115)

The volume factor in the denominator ensures that χ is intensive.

It is important to realize that we have assumed here that
[
Ĥ0 , Q̂

]
= 0, i.e. the ‘bare’ Hamiltonian Ĥ0 and the

operator Q̂ commute. If they do not commute, then the response functions must be computed within a proper
quantum mechanical formalism, which we shall not discuss here.

Note also that we can imagine an entire family of observables
{
Q̂k

}
satisfying

[
Q̂k , Q̂k′

]
= 0 and

[
Ĥ0 , Q̂k

]
= 0,

for all k and k′. Then for the Hamiltonian

Ĥ (~λ) = Ĥ0 −
∑

k

λk Q̂k , (4.116)

we have that

Qk(~λ, T ) = 〈 Q̂k 〉 = −
(
∂F

∂λk

)

T, Na, λ
k′ 6=k

(4.117)

and we may define an entire matrix of susceptibilities,

χ
kl =

1

V

∂Qk

∂λl

= − 1

V

∂2F

∂λk ∂λl

. (4.118)

4.6 Grand Canonical Ensemble (GCE)

4.6.1 Grand canonical distribution and partition function

Consider once again the situation depicted in fig. 4.2, where a system S is in contact with a world W , their union
U = W ∪S being called the ‘universe’. We assume that the system’s volume V

S
is fixed, but otherwise it is allowed

to exchange energy and particle number with W . Hence, the system’s energy E
S

and particle number N
S

will
fluctuate. We ask what is the probability that S is in a state |n 〉 with energy En and particle number Nn. This is
given by the ratio

Pn = lim
∆E→0

D
W

(E
U
− En , NU

−Nn)∆E

D
U
(E

U
, N

U
)∆E

=
# of states accessible to W given that E

S
= En and N

S
= Nn

total # of states in U
.

(4.119)

Then

lnPn = lnD
W

(E
U
− En , NU

−Nn) − lnD
U
(E

U
, N

U
)

= lnD
W

(E
U
, N

U
) − lnD

U
(E

U
, N

U
)

− En

∂ lnD
W

(E,N)

∂E

∣∣∣∣
E=E

U
N=N

U

−Nn

∂ lnD
W

(E,N)

∂N

∣∣∣∣
E=E

U
N=N

U

+ . . .

≡ −α− βEn + βµNn .

(4.120)
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The constants β and µ are given by

β =
∂ lnD

W
(E,N)

∂E

∣∣∣∣ E=E
U

N=N
U

=
1

k
B
T

(4.121)

µ = −k
B
T
∂ lnD

W
(E,N)

∂N

∣∣∣∣ E=E
U

N=N
U

. (4.122)

The quantity µ has dimensions of energy and is called the chemical potential. Nota bene: Some texts define the

‘grand canonical Hamiltonian’ K̂ as

K̂ ≡ Ĥ − µN̂ . (4.123)

Thus, Pn = e−α e−β(En−µNn). Once again, the constant α is fixed by the requirement that
∑

n Pn = 1:

Pn =
1

Ξ
e−β(En−µNn) , Ξ(β, V, µ) =

∑

n

e−β(En−µNn) = Tr e−β(Ĥ−µN̂) = Tr e−βK̂ . (4.124)

Thus, the quantum mechanical grand canonical density matrix is given by

ˆ̺ =
e−βK̂

Tr e−βK̂
. (4.125)

Note that
[
ˆ̺, K̂

]
= 0.

The quantity Ξ(T, V, µ) is called the grand partition function. It stands in relation to a corresponding free energy in
the usual way:

Ξ(T, V, µ) ≡ e−βΩ(T,V,µ) ⇐⇒ Ω = −k
B
T ln Ξ , (4.126)

where Ω(T, V, µ) is the grand potential, also known as the Landau free energy. The dimensionless quantity z ≡ eβµ

is called the fugacity.

If
[
Ĥ, N̂

]
= 0, the grand potential may be expressed as a sum over contributions from each N sector, viz.

Ξ(T, V, µ) =
∑

N

eβµN Z(T, V,N) . (4.127)

When there is more than one species, we have several chemical potentials {µa}, and accordingly we define

K̂ = Ĥ −
∑

a

µa N̂a , (4.128)

with Ξ = Tr e−βK̂ as before.

4.6.2 Entropy and Gibbs-Duhem relation

In the GCE, the Boltzmann entropy is

S = −k
B

∑

n

Pn lnPn

= −k
B

∑

n

Pn

(
βΩ − βEn + βµNn

)

= −Ω
T

+
〈Ĥ〉
T

− µ 〈N̂〉
T

,

(4.129)



20 CHAPTER 4. STATISTICAL ENSEMBLES

which says
Ω = E − TS − µN , (4.130)

where

E =
∑

n

En Pn = Tr
(
ˆ̺Ĥ
)

(4.131)

N =
∑

n

Nn Pn = Tr
(
ˆ̺N̂
)
. (4.132)

Therefore, Ω(T, V, µ) is a double Legendre transform of E(S, V,N), with

dΩ = −S dT − p dV −N dµ , (4.133)

which entails

S = −
(
∂Ω

∂T

)

V,µ

, p = −
(
∂Ω

∂V

)

T,µ

, N = −
(
∂Ω

∂µ

)

T,V

. (4.134)

Since Ω(T, V, µ) is an extensive quantity, we must be able to write Ω = V ω(T, µ). We identify the function ω(T, µ)
as the negative of the pressure:

∂Ω

∂V
= −kB

T

Ξ

(
∂Ξ

∂V

)

T,µ

=
1

Ξ

∑

n

∂En

∂V
e−β(En−µNn)

=

(
∂E

∂V

)

T,µ

= −p(T, µ) .

(4.135)

Therefore,
Ω = −pV , p = p(T, µ) (equation of state) . (4.136)

This is consistent with the result from thermodynamics that G = E − TS + pV = µN . Taking the differential, we
obtain the Gibbs-Duhem relation,

dΩ = −S dT − p dV −N dµ = −p dV − V dp ⇒ S dT − V dp+N dµ = 0 . (4.137)

4.6.3 Generalized susceptibilities in the GCE

We can appropriate the results from §4.5.7 and apply them, mutatis mutandis, to the GCE. Suppose we have a

family of observables
{
Q̂k

}
satisfying

[
Q̂k , Q̂k′

]
= 0 and

[
Ĥ0 , Q̂k

]
= 0 and

[
N̂a , Q̂k

]
= 0 for all k, k′, and a.

Then for the grand canonical Hamiltonian

K̂ (~λ) = Ĥ0 −
∑

a

µa N̂a −
∑

k

λk Q̂k , (4.138)

we have that

Qk(~λ, T ) = 〈 Q̂k 〉 = −
(
∂Ω

∂λk

)

T,µa, λ
k′ 6=k

(4.139)

and we may define the matrix of generalized susceptibilities,

χ
kl =

1

V

∂Qk

∂λl

= − 1

V

∂2Ω

∂λk ∂λl

. (4.140)
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4.6.4 Fluctuations in the GCE

Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle number. We
have

N = 〈 N̂ 〉 =
Tr N̂ e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
=

1

β

∂

∂µ
ln Ξ . (4.141)

Therefore,

1

β

∂N

∂µ
=

Tr N̂2 e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
−
(

Tr N̂ e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)

)2

=
〈
N̂2
〉
−
〈
N̂
〉2
.

(4.142)

Note now that 〈
N̂2
〉
−
〈
N̂
〉2

〈
N̂
〉2 =

k
B
T

N2

(
∂N

∂µ

)

T,V

=
k

B
T

V
κT , (4.143)

where κT is the isothermal compressibility. Note:
(
∂N

∂µ

)

T,V

=
∂(N,T, V )

∂(µ, T, V )

=
∂(N,T, V )

∂(N,T, p)
· ∂(N,T, p)

∂(V, T, p)
·

1︷ ︸︸ ︷
∂(V, T, p)

∂(N,T, µ)
·∂(N,T, µ)

∂(V, T, µ)

= −N
2

V 2

(
∂V

∂p

)

T,N

=
N2

V
κT .

(4.144)

Thus,
(∆N)

RMS

N
=

√
k

B
T κT

V
, (4.145)

which again scales as V −1/2.

4.6.5 Gibbs ensemble

Let the system’s particle number N be fixed, but let it exchange energy and volume with the world W . Mutatis
mutandis, we have

Pn = lim
∆E→0

lim
∆V →0

D
W

(E
U
− En , VU

− Vn)∆E∆V

D
U
(E

U
, V

U
)∆E∆V

. (4.146)

Then

lnPn = lnD
W

(E
U
− En , VU

− Vn) − lnD
U
(E

U
, V

U
)

= lnD
W

(E
U
, V

U
) − lnD

U
(E

U
, V

U
)

− En

∂ lnD
W

(E, V )

∂E

∣∣∣∣
E=E

U
V =V

U

− Vn
∂ lnD

W
(E, V )

∂V

∣∣∣∣
E=E

U
V =V

U

+ . . .

≡ −α− βEn − βp Vn .

(4.147)
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The constants β and p are given by

β =
∂ lnD

W
(E, V )

∂E

∣∣∣∣E=E
U

V =V
U

=
1

k
B
T

(4.148)

p = k
B
T
∂ lnD

W
(E, V )

∂V

∣∣∣∣
E=E

U
V =V

U

. (4.149)

The corresponding partition function is

Y (T, p,N) = Tr e−β(Ĥ+pV ) =
1

V0

∞∫

0

dV e−βpV Z(T, V,N) ≡ e−βG(T,p,N) , (4.150)

where V0 is a constant which has dimensions of volume. The factor V −1
0 in front of the integral renders Y di-

mensionless. Note that G(V ′
0) = G(V0) + k

B
T ln(V ′

0/V0), so the difference is not extensive and can be neglected
in the thermodynamic limit. In other words, it doesn’t matter what constant we choose for V0 since it contributes
subextensively to G. Moreover, in computing averages, the constant V0 divides out in the ratio of numerator
and denominator. Like the Helmholtz free energy, the Gibbs free energy G(T, p,N) is also a double Legendre
transform of the energy E(S, V,N), viz.

G = E − TS + pV

dG = −S dT + V dp+ µdN ,
(4.151)

which entails

S = −
(
∂G

∂T

)

p,N

, V = +

(
∂G

∂p

)

T,N

, µ = +

(
∂G

∂N

)

T,p

. (4.152)

4.7 Statistical Ensembles from Maximum Entropy

The basic principle: maximize the entropy,

S = −k
B

∑

n

Pn lnPn . (4.153)

4.7.1 µCE

We maximize S subject to the single constraint

C =
∑

n

Pn − 1 = 0 . (4.154)

We implement the constraint C = 0 with a Lagrange multiplier, λ̄ ≡ k
B
λ, writing

S∗ = S − k
B
λC , (4.155)

and freely extremizing over the distribution {Pn} and the Lagrange multiplier λ. Thus,

δS∗ = δS − k
B
λ δC − k

B
C δλ

= −k
B

∑

n

[
lnPn + 1 + λ

]
δPn − k

B
C δλ ≡ 0 . (4.156)



4.7. STATISTICAL ENSEMBLES FROM MAXIMUM ENTROPY 23

We conclude that C = 0 and that
lnPn = −

(
1 + λ

)
, (4.157)

and we fix λ by the normalization condition
∑

n Pn = 1. This gives

Pn =
1

Ω
, Ω =

∑

n

Θ(E + ∆E − En)Θ(En − E) . (4.158)

Note that Ω is the number of states with energies between E and E + ∆E.

4.7.2 OCE

We maximize S subject to the two constraints

C1 =
∑

n

Pn − 1 = 0 , C2 =
∑

n

En Pn − E = 0 . (4.159)

We now have two Lagrange multipliers. We write

S∗ = S − k
B

2∑

j=1

λj Cj , (4.160)

and we freely extremize over {Pn} and {Cj}. We therefore have

δS∗ = δS − k
B

∑

n

(
λ1 + λ2En

)
δPn − k

B

2∑

j=1

Cj δλj

= −k
B

∑

n

[
lnPn + 1 + λ1 + λ2 En

]
δPn − k

B

2∑

j=1

Cj δλj ≡ 0 .

(4.161)

Thus, C1 = C2 = 0 and
lnPn = −

(
1 + λ1 + λ2En

)
. (4.162)

We define λ2 ≡ β and we fix λ1 by normalization. This yields

Pn =
1

Z
e−βEn , Z =

∑

n

e−βEn . (4.163)

4.7.3 GCE

We maximize S subject to the three constraints

C1 =
∑

n

Pn − 1 = 0 , C2 =
∑

n

En Pn − E = 0 , C3 =
∑

n

Nn Pn −N = 0 . (4.164)

We now have three Lagrange multipliers. We write

S∗ = S − k
B

3∑

j=1

λj Cj , (4.165)
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and hence

δS∗ = δS − k
B

∑

n

(
λ1 + λ2 En + λ3Nn

)
δPn − k

B

3∑

j=1

Cj δλj

= −k
B

∑

n

[
lnPn + 1 + λ1 + λ2En + λ3Nn

]
δPn − k

B

3∑

j=1

Cj δλj ≡ 0 .

(4.166)

Thus, C1 = C2 = C3 = 0 and
lnPn = −

(
1 + λ1 + λ2 En + λ3Nn

)
. (4.167)

We define λ2 ≡ β and λ3 ≡ −βµ, and we fix λ1 by normalization. This yields

Pn =
1

Ξ
e−β(En−µNn) , Ξ =

∑

n

e−β(En−µNn) . (4.168)

4.8 Ideal Gas Statistical Mechanics

The ordinary canonical partition function for the ideal gas was computed in eqn. 4.25. We found

Z(T, V,N) =
1

N !

N∏

i=1

∫
ddxi d

dpi

(2π~)d
e−βp2

i /2m

=
V N

N !




∞∫

−∞

dp

2π~
e−βp2/2m




Nd

=
1

N !

(
V

λd
T

)N

,

(4.169)

where λT is the thermal wavelength:

λT =
√

2π~2/mk
B
T . (4.170)

The physical interpretation of λT is that it is the de Broglie wavelength for a particle of mass mwhich has a kinetic
energy of k

B
T .

In the GCE, we have

Ξ(T, V, µ) =

∞∑

N=0

eβµN Z(T, V,N)

=

∞∑

N=1

1

N !

(
V eµ/kBT

λd
T

)N

= exp

(
V eµ/kBT

λd
T

)
.

(4.171)

From Ξ = e−Ω/kBT , we have the grand potential is

Ω(T, V, µ) = −V k
B
T eµ/kBT

/
λd

T . (4.172)

Since Ω = −pV (see §4.6.2), we have
p(T, µ) = k

B
T λ−d

T eµ/kBT . (4.173)

The number density can also be calculated:

n =
N

V
= − 1

V

(
∂Ω

∂µ

)

T,V

= λ−d
T eµ/kBT . (4.174)

Combined, the last two equations recapitulate the ideal gas law, pV = Nk
B
T .
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4.8.1 Maxwell velocity distribution

The distribution function for momenta is given by

g(p) =
〈 1

N

N∑

i=1

δ(pi − p)
〉
. (4.175)

Note that g(p) =
〈
δ(pi − p)

〉
is the same for every particle, independent of its label i. We compute the average

〈A〉 = Tr
(
Ae−βĤ

)
/Tr e−βĤ . Setting i = 1, all the integrals other than that over p1 divide out between numerator

and denominator. We then have

g(p) =

∫
d3p1 δ(p1 − p) e−βp2

1/2m

∫
d3p1 e

−βp2
1/2m

= (2πmk
B
T )−3/2 e−βp2/2m .

(4.176)

Textbooks commonly refer to the velocity distribution f(v), which is related to g(p) by

f(v) d3v = g(p) d3p . (4.177)

Hence,

f(v) =

(
m

2πk
B
T

)3/2

e−mv2/2kBT . (4.178)

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, viz.
∫
d3p g(p) =

∫
d3v f(v) = 1 . (4.179)

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define the Maxwell

speed distribution, f̃(v), as

f̃(v) = 4π v2f(v) = 4π

(
m

2πk
B
T

)3/2

v2 e−mv2/2kBT . (4.180)

Note that f̃(v) is normalized according to
∞∫

0

dv f̃(v) = 1 . (4.181)

It is convenient to represent v in units of v0 =
√
k

B
T/m, in which case

f̃(v) =
1

v0
ϕ(v/v0) , ϕ(s) =

√
2
π s

2 e−s2/2 . (4.182)

The distribution ϕ(s) is shown in fig. 4.6. Computing averages, we have

Ck ≡ 〈sk〉 =

∞∫

0

ds sk ϕ(s) = 2k/2 · 2√
π

Γ
(

3
2 + k

2

)
. (4.183)

Thus, C0 = 1, C1 =
√

8
π , C2 = 3, etc. The speed averages are

〈
vk
〉

= Ck

(
k

B
T

m

)k/2

. (4.184)

Note that the average velocity is 〈v〉 = 0, but the average speed is 〈v〉 =
√

8k
B
T/πm. The speed distribution is

plotted in fig. 4.6.
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Figure 4.6: Maxwell distribution of speeds ϕ(v/v0). The most probable speed is vMAX =
√

2 v0. The average speed

is vAVG =
√

8
π v0. The RMS speed is vRMS =

√
3 v0.

4.8.2 Equipartition

The Hamiltonian for ballistic (i.e. massive nonrelativistic) particles is quadratic in the individual components of

each momentum pi. There are other cases in which a classical degree of freedom appears quadratically in Ĥ as
well. For example, an individual normal mode ξ of a system of coupled oscillators has the Lagrangian

L = 1
2 ξ̇

2 − 1
2 ω

2
0 ξ

2 , (4.185)

where the dimensions of ξ are [ξ] = M1/2L by convention. The Hamiltonian for this normal mode is then

Ĥ =
p2

2
+ 1

2 ω
2
0 ξ

2 , (4.186)

from which we see that both the kinetic as well as potential energy terms enter quadratically into the Hamiltonian.
The classical rotational kinetic energy is also quadratic in the angular momentum components.

Let us compute the contribution of a single quadratic degree of freedom in Ĥ to the partition function. We’ll
call this degree of freedom ζ – it may be a position or momentum or angular momentum – and we’ll write its

contribution to Ĥ as
Ĥζ = 1

2Kζ
2 , (4.187)

where K is some constant. Integrating over ζ yields the following factor in the partition function:

∞∫

−∞

dζ e−βKζ2/2 =

(
2π

Kβ

)1/2

. (4.188)

The contribution to the Helmholtz free energy is then

∆Fζ = 1
2kB

T ln

(
K

2πk
B
T

)
, (4.189)
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and therefore the contribution to the internal energy E is

∆Eζ =
∂

∂β

(
β∆Fζ

)
=

1

2β
= 1

2kB
T . (4.190)

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

To each degree of freedom which enters the Hamiltonian quadratically is associated a contribution
1
2kB

T to the internal energy of the system. This results in a concomitant contribution of 1
2kB

to the heat
capacity.

We now see why the internal energy of a classical ideal gas with f degrees of freedom per molecule is E =
1
2fNkB

T , and CV = 1
2NkB

. This result also has applications in the theory of solids. The atoms in a solid possess
kinetic energy due to their motion, and potential energy due to the spring-like interatomic potentials which tend
to keep the atoms in their preferred crystalline positions. Thus, for a three-dimensional crystal, there are six
quadratic degrees of freedom (three positions and three momenta) per atom, and the classical energy should
be E = 3Nk

B
T , and the heat capacity CV = 3Nk

B
. As we shall see, quantum mechanics modifies this result

considerably at temperatures below the highest normal mode (i.e. phonon) frequency, but the high temperature
limit is given by the classical value CV = 3νR (where ν = N/NA is the number of moles) derived here, known as
the Dulong-Petit limit.

4.8.3 Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of N noninteracting particles. The Hamiltonian is

Ĥ =

N∑

j=1

ĥj . (4.191)

The single particle Hamiltonian ĥ has eigenstates |α 〉 with corresponding energy eigenvalues εα. What is the
partition function? Is it

H
?

=
∑

α1

· · ·
∑

α
N

e
−β
(
ε

α
1
+ ε

α
2
+ ... + ε

α
N

)
= ζN , (4.192)

where ζ is the single particle partition function,

ζ =
∑

α

e−βεα . (4.193)

For systems where the individual particles are distinguishable, such as spins on a lattice which have fixed positions,
this is indeed correct. But for particles free to move in a gas, this equation is wrong. The reason is that for
indistinguishable particles the many particle quantum mechanical states are specified by a collection of occupation
numbers nα, which tell us how many particles are in the single-particle state |α 〉. The energy is

E =
∑

α

nα εα (4.194)

and the total number of particles is

N =
∑

α

nα . (4.195)
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That is, each collection of occupation numbers {nα} labels a unique many particle state
∣∣ {nα}

〉
. In the product

ζN , the collection {nα} occurs many times. We have therefore overcounted the contribution to ZN due to this state.
By what factor have we overcounted? It is easy to see that the overcounting factor is

degree of overcounting =
N !∏
α nα!

,

which is the number of ways we can rearrange the labels αj to arrive at the same collection {nα}. This follows
from the multinomial theorem,

(
K∑

α=1

xα

)N

=
∑

n1

∑

n2

· · ·
∑

n
K

N !

n1!n2! · · ·nK !
x

n1

1 x
n2

2 · · ·xnK

K δN,n1 + ...+ n
K
. (4.196)

Thus, the correct expression for ZN is

ZN =
∑

{nα}

e−β
P

α
nαεα δN,

P
α

nα

=
∑

α1

∑

α2

· · ·
∑

α
N

(∏
α nα!

N !

)
e
−β(εα

1
+ εα

2
+ ... + εα

N
)
.

(4.197)

When we study quantum statistics, we shall learn how to handle these constrained sums. For now it suffices to
note that in the high temperature limit, almost all the nα are either 0 or 1, hence

ZN ≈ ζN

N !
. (4.198)

This is the classical Maxwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the 1/N !
term which is so important in the thermodynamics of entropy of mixing.

4.9 Selected Examples

4.9.1 Spins in an external magnetic field

Consider a system of Ns spins , each of which can be either up (σ = +1) or down (σ = −1). The Hamiltonian for
this system is

Ĥ = −µ0H

N
s∑

j=1

σj , (4.199)

where now we write Ĥ for the Hamiltonian, to distinguish it from the external magnetic field H , and µ0 is the
magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The partition func-
tion is

Z =
∑

σ1

· · ·
∑

σ
N

s

e−βĤ = ζN
s , (4.200)

where ζ is the single particle partition function:

ζ =
∑

σ=±1

eµ0Hσ/kBT = 2 cosh

(
µ0H

k
B
T

)
. (4.201)
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The Helmholtz free energy is then

F (T,H,N
s
) = −k

B
T lnZ = −N

s
k

B
T ln

[
2 cosh

(
µ0H

k
B
T

)]
. (4.202)

The magnetization is

M = −
(
∂F

∂H

)

T, N
s

= Ns µ0 tanh

(
µ0H

k
B
T

)
. (4.203)

The energy is

E =
∂

∂β

(
βF
)

= −N
s
µ0H tanh

(
µ0H

k
B
T

)
. (4.204)

Hence, E = −HM , which we already knew, from the form of Ĥ itself.

Each spin here is independent. The probability that a given spin has polarization σ is

Pσ =
eβµ0Hσ

eβµ0H + e−βµ0H
. (4.205)

The total probability is unity, and the average polarization is a weighted average of σ = +1 and σ = −1 contribu-
tions:

P↑ + P↓ = 1 , 〈σ〉 = P↑ − P↓ = tanh

(
µ0H

k
B
T

)
. (4.206)

At low temperatures T ≪ µ0H/kB
, we have P↑ ≈ 1 − e−2µ0H/kBT . At high temperatures T > µ0H/kB

, the two

polarizations are equally likely, and Pσ ≈ 1
2

(
1 +

σµ0H
k
B

T

)
.

The isothermal magnetic susceptibility is defined as

χ
T =

1

Ns

(
∂M

∂H

)

T

=
µ2

0

k
B
T

sech2

(
µ0H

k
B
T

)
. (4.207)

(Typically this is computed per unit volume rather than per particle.) At H = 0, we have χT = µ2
0/kB

T , which is
known as the Curie law.

Aside

The energy E = −HM here is not the same quantity we discussed in our study of thermodynamics. In fact,
the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll need to invoke a
new symbol for the thermodynamic energy, E . Recall that the thermodynamic energy E is a function of exten-
sive quantities, meaning E = E(S,M,N

s
). It is obtained from the free energy F (T,H,N

s
) by a double Legendre

transform:

E(S,M,Ns) = F (T,H,Ns) + TS +HM . (4.208)

Now from eqn. 4.202 we derive the entropy

S = −∂F
∂T

= N
s
k

B
ln

[
2 cosh

(
µ0H

k
B
T

)]
−N

s

µ0H

T
tanh

(
µ0H

k
B
T

)
. (4.209)

Thus, using eqns. 4.202 and 4.203, we obtain E(S,M,N
s
) = 0.
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The potential confusion here arises from our use of the expression F (T,H,N
s
). In thermodynamics, it is the Gibbs

free energy G(T, p,N) which is a double Legendre transform of the energy: G = E − TS + pV . By analogy, with
magnetic systems we should perhaps write G = E − TS − HM , but in keeping with many textbooks we shall
use the symbol F and refer to it as the Helmholtz free energy. The quantity we’ve called E in eqn. 4.204 is in fact
E = E −HM , which means E = 0. The energy E(S,M,Ns) vanishes here because the spins are noninteracting.

4.9.2 Negative temperature (!)

Consider again a system of N
s

spins, each of which can be either up (+) or down (−). Let Nσ be the number of
sites with spin σ, where σ = ±1. Clearly N+ + N− = N

s
. We now treat this system within the microcanonical

ensemble.

The energy of the system is

E = −HM , (4.210)

where H is an external magnetic field, and M = (N+ −N−)µ0 is the total magnetization. We now compute S(E)
using the ordinary canonical ensemble. The number of ways of arranging the system with N+ up spins is

Ω =

(
N

s

N+

)
, (4.211)

hence the entropy is

S = k
B

ln Ω = −Ns kB

{
x ln x+ (1 − x) ln(1 − x)

}
(4.212)

in the thermodynamic limit: Ns → ∞, N+ → ∞, x = N+/Ns constant. Now the magnetization is M = (N+ −
N−)µ0 = (2N+ −N

s
)µ0, hence if we define the maximum energy E0 ≡ N

s
µ0H , then

E

E0

= − M

Ns µ0

= 1 − 2x =⇒ x =
E0 − E

2E0

. (4.213)

We therefore have

S(E,Ns) = −Ns kB

[(
E0 − E

2E0

)
ln

(
E0 − E

2E0

)
+

(
E0 + E

2E0

)
ln

(
E0 + E

2E0

)]
. (4.214)

We now have

1

T
=

(
∂S

∂E

)

N
s

=
∂S

∂x

∂x

∂E
=
Ns kB

2E0

ln

(
E0 − E

E0 + E

)
. (4.215)

We see that the temperature is positive for −E0 ≤ E < 0 and is negative for 0 < E ≤ E0.

What has gone wrong? The answer is that nothing has gone wrong – all our calculations are perfectly correct. This
system does exhibit the possibility of negative temperature. It is, however, unphysical in that we have neglected
kinetic degrees of freedom, which result in an entropy function S(E,N

s
) which is an increasing function of energy.

In this system, S(E,N
s
) achieves a maximum of Smax = N

s
k

B
ln 2 at E = 0 (i.e. x = 1

2 ), and then turns over and
starts decreasing. In fact, our results are completely consistent with eqn. 4.204 : the energy E is an odd function
of temperature. Positive energy requires negative temperature! Another example of this peculiarity is provided
in the appendix in §4.11.2.
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Figure 4.7: When entropy decreases with increasing energy, the temperature is negative. Typically, kinetic degrees
of freedom prevent this peculiarity from manifesting in physical systems.

4.9.3 Adsorption

PROBLEM: A surface containing Ns adsorption sites is in equilibrium with a monatomic ideal gas. Atoms adsorbed
on the surface have an energy −∆ and no kinetic energy. Each adsorption site can accommodate at most one
atom. Calculate the fraction f of occupied adsorption sites as a function of the gas density n, the temperature T ,
the binding energy ∆, and physical constants.

The grand partition function for the surface is

Ξsurf = e−Ω
surf

/kBT =
(
1 + e∆/kBT eµ/kBT

)N
s . (4.216)

The fraction of occupied sites is

f =
〈N̂surf〉
Ns

= − 1

Ns

∂Ωsurf

∂µ
=

eµ/kBT

eµ/k
B

T + e−∆/k
B

T
. (4.217)

Since the surface is in equilibrium with the gas, its fugacity z = exp(µ/k
B
T ) and temperature T are the same as in

the gas.

SOLUTION:For a monatomic ideal gas, the single particle partition function is ζ = V λ−3
T , where λT =

√
2π~2/mk

B
T

is the thermal wavelength. Thus, the grand partition function, for indistinguishable particles, is

Ξgas = exp
(
V λ−3

T eµ/kBT
)
. (4.218)

The gas density is

n =
〈N̂gas〉
V

= − 1

V

∂Ωgas

∂µ
= λ−3

T eµ/kBT . (4.219)
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We can now solve for the fugacity: z = eµ/kBT = nλ3
T . Thus, the fraction of occupied adsorption sites is

f =
nλ3

T

nλ3
T + e−∆/k

B
T
. (4.220)

Interestingly, the solution for f involves the constant ~.

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas density tends
to zero at fixed T and ∆, we have f → 0. On the other hand, if n→ ∞ we have f → 1, which also makes sense. At
fixed n and T , if the adsorption energy is (−∆) → −∞, then once again f = 1 since every adsorption site wants to
be occupied. Conversely, taking (−∆) → +∞ results in n → 0, since the energetic cost of adsorption is infinitely
high.

4.9.4 Elasticity of wool

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but reversibly
so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins by assuming they can
exist in one of two states, which we will call A and B, with energies ε

A
and ε

B
and lengths ℓ

A
and ℓ

B
. The situation

is depicted in fig. 4.8. We model these conformational degrees of freedom by a spin variable σ = ±1 for each
molecule, where σ = +1 in the A state and σ = −1 in the B state. Suppose a chain consisting of N monomers is
placed under a tension τ . We then have

Ĥ =

N∑

j=1

[
1
2

(
ε
A

+ ε
B

)
+ 1

2

(
ε
A
− ε

B

)
σj

]
. (4.221)

Similarly, the length is

L̂ =

N∑

j=1

[
1
2

(
ℓ
A

+ ℓ
B

)
+ 1

2

(
ℓ
A
− ℓ

B

)
σj

]
. (4.222)

The Gibbs partition function is Y = Tr e−K̂/kBT , with K̂ = Ĥ − τL̂ :

K̂ =

N∑

j=1

[
1
2

(
ε̃
A

+ ε̃
B

)
+ 1

2

(
ε̃
A
− ε̃

B

)
σj

]
, (4.223)

where ε̃
A
≡ ε

A
− τℓ

A
and ε̃

B
≡ ε

B
− τℓ

B
. At τ = 0 the A state is preferred for each monomer, but when τ exceeds

τ∗, defined by the relation ε̃
A

= ε̃
B

, the B state is preferred. One finds

τ∗ =
ε
B
− ε

A

ℓ
B
− ℓ

A

. (4.224)

Figure 4.8: The monomers in wool are modeled as existing in one of two states. The low energy undeformed state
is A, and the higher energy deformed state is B. Applying tension induces more monomers to enter the B state.



4.9. SELECTED EXAMPLES 33

Figure 4.9: Upper panel: length L(τ, T ) for kBT/ε̃ = 0.01 (blue), 0.1 (green), 0.5 (dark red), and 1.0 (red). Bottom
panel: dimensionless force constant k/N(∆ℓ)2 versus temperature.

Once again, we have a set of N noninteracting spins. The partition function is Y = ζN , where ζ is the single
monomer partition function,

ζ = Tr e−βĥ = e−βε̃A + e−βε̃B , (4.225)

where
ĥ = 1

2

(
ε̃
A

+ ε̃
B

)
+ 1

2

(
ε̃
A
− ε̃

B

)
σ , (4.226)

is the single spin Hamiltonian. It is convenient to define the differences

∆ε = ε
B
− ε

A
, ∆ℓ = ℓ

B
− ℓ

A
, ∆ε̃ = ε̃

B
− ε̃

A
(4.227)

in which case the partition function Y is

Y (T, τ,N) = e−Nβ ε̃A

[
1 + e−β∆ε̃

]N
(4.228)

G(T, τ,N) = Nε̃
A
−Nk

B
T ln

[
1 + e−∆ε̃/kBT

]
(4.229)

The average length is

L = 〈L̂〉 = −
(
∂G

∂τ

)

T,N

= Nℓ
A

+
N∆ℓ

e(∆ε−τ∆ℓ)/k
B

T + 1
.

(4.230)
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The polymer behaves as a spring, and for small τ the spring constant is

k =
∂τ

∂L

∣∣∣∣
τ=0

=
4k

B
T

N(∆ℓ)2
cosh2

(
∆ε

2k
B
T

)
. (4.231)

The results are shown in fig. 4.9. Note that length increases with temperature for τ < τ∗ and decreases with
temperature for τ > τ∗. Note also that k diverges at both low and high temperatures. At low T , the energy gap
∆ε dominates and L = Nℓ

A
, while at high temperatures k

B
T dominates and L = 1

2N(ℓ
A

+ ℓ
B
).

4.9.5 Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in fig. 4.10. Each dimer contains two spins, and is
described by the Hamiltonian

Ĥdimer = −J σ1σ2 − µ0H (σ1 + σ2) . (4.232)

Here, J is an interaction energy between the spins which comprise the dimer. If J > 0 the interaction is ferromagnetic,
which prefers that the spins are aligned. That is, the lowest energy states are |↑↑ 〉 and |↓↓ 〉. If J < 0 the interaction
is antiferromagnetic, which prefers that spins be anti-aligned: |↑↓ 〉 and |↓↑ 〉.6

Suppose there are Nd dimers. Then the OCE partition function is Z = ζNd , where ζ(T,H) is the single dimer
partition function. To obtain ζ(T,H), we sum over the four possible states of the two spins, obtaining

ζ = Tr e−Ĥdimer/kBT

= 2 e−J/kBT + 2 eJ/kBT cosh

(
2µ0H

k
B
T

)
.

Thus, the free energy is

F (T,H,Nd) = −Nd kB
T ln 2 −Nd kB

T ln

[
e−J/kBT + eJ/kBT cosh

(
2µ0H

k
B
T

)]
. (4.233)

The magnetization is

M = −
(
∂F

∂H

)

T,N
d

= 2Nd µ0 ·
eJ/kBT sinh

(
2µ0H
k
B

T

)

e−J/k
B

T + eJ/k
B

T cosh
(

2µ0H
k
B

T

) (4.234)

It is instructive to consider the zero field isothermal susceptibility per spin,

χ
T =

1

2Nd

∂M

∂H

∣∣∣∣
H=0

=
µ2

0

k
B
T

· 2 eJ/kBT

eJ/k
B

T + e−J/k
B

T
. (4.235)

The quantity µ2
0/kB

T is simply the Curie susceptibility for noninteracting classical spins. Note that we correctly
recover the Curie result when J = 0, since then the individual spins comprising each dimer are in fact noninter-
acting. For the ferromagnetic case, if J ≫ k

B
T , then we obtain

χ
T (J ≫ k

B
T ) ≈ 2µ2

0

k
B
T
. (4.236)

This has the following simple interpretation. When J ≫ k
B
T , the spins of each dimer are effectively locked in

parallel. Thus, each dimer has an effective magnetic moment µeff = 2µ0. On the other hand, there are only half as
many dimers as there are spins, so the resulting Curie susceptibility per spin is 1

2 × (2µ0)
2/k

B
T .

6Nota bene we are concerned with classical spin configurations only – there is no superposition of states allowed in this model!



4.10. STATISTICAL MECHANICS OF MOLECULAR GASES 35

Figure 4.10: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin for which
σj = ±1.

When −J ≫ k
B
T , the spins of each dimer are effectively locked in one of the two antiparallel configurations. We

then have

χ
T (−J ≫ k

B
T ) ≈ 2µ2

0

k
B
T
e−2|J|/kBT . (4.237)

In this case, the individual dimers have essentially zero magnetic moment.

4.10 Statistical Mechanics of Molecular Gases

4.10.1 Separation of translational and internal degrees of freedom

The states of a noninteracting atom or molecule are labeled by its total momentum p and its internal quantum
numbers, which we will simply write with a collective index α, specifying rotational, vibrational, and electronic
degrees of freedom. The single particle Hamiltonian is then

ĥ =
p2

2m
+ ĥint , (4.238)

with

ĥ
∣∣k , α

〉
=

(
~

2k2

2m
+ εα

) ∣∣k , α
〉
. (4.239)

The partition function is

ζ = Tr e−βĥ =
∑

p

e−βp2/2m
∑

j

gj e
−βεj . (4.240)

Here we have replaced the internal label α with a label j of energy eigenvalues, with gj being the degeneracy of
the internal state with energy εj . To do the p sum, we quantize in a box of dimensions L1 × L2 × · · · × Ld, using
periodic boundary conditions. Then

p =

(
2π~n1

L1

,
2π~n2

L2

, . . . ,
2π~nd

Ld

)
, (4.241)
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where each ni is an integer. Since the differences between neighboring quantized p vectors are very tiny, we can
replace the sum over p by an integral:

∑

p

−→
∫

ddp

∆p1 · · ·∆pd

(4.242)

where the volume in momentum space of an elementary rectangle is

∆p1 · · ·∆pd =
(2π~)d

L1 · · ·Ld

=
(2π~)d

V
. (4.243)

Thus,

ζ = V

∫
ddp

(2π~)d
e−p2/2mkBT

∑

j

gj e
−εj/kBT = V λ−d

T ξ (4.244)

ξ(T ) =
∑

j

gj e
−εj/kBT . (4.245)

Here, ξ(T ) is the internal coordinate partition function. The full N -particle ordinary canonical partition function is
then

ZN =
1

N !

(
V

λd
T

)N

ξN (T ) . (4.246)

Using Stirling’s approximation, we find the Helmholtz free energy F = −k
B
T lnZ is

F (T, V,N) = −Nk
B
T

[
ln

(
V

Nλd
T

)
+ 1 + ln ξ(T )

]

= −Nk
B
T

[
ln

(
V

Nλd
T

)
+ 1

]
+Nϕ(T ) ,

(4.247)

where

ϕ(T ) = −k
B
T ln ξ(T ) (4.248)

is the internal coordinate contribution to the single particle free energy. We could also compute the partition
function in the Gibbs (T, p,N) ensemble:

Y (T, p,N) = e−βG(T,p,N) =
1

V0

∞∫

0

dV e−βpV Z(T, V,N)

=

(
k

B
T

pV0

)(
k

B
T

p λd
T

)N
ξN (T ) .

(4.249)

Thus, in the thermodynamic limit,

µ(T, p) =
G(T, p,N)

N
= k

B
T ln

(
p λd

T

k
B
T

)
− k

B
T ln ξ(T )

= k
B
T ln

(
p λd

T

k
B
T

)
+ ϕ(T ) .

(4.250)
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4.10.2 Ideal gas law

Since the internal coordinate contribution to the free energy is volume-independent, we have

V =

(
∂G

∂p

)

T,N

=
Nk

B
T

p
, (4.251)

and the ideal gas law applies. The entropy is

S = −
(
∂G

∂T

)

p,N

= Nk
B

[
ln

(
k

B
T

pλd
T

)
+ 1 + 1

2d

]
−Nϕ′(T ) , (4.252)

and therefore the heat capacity is

Cp = T

(
∂S

∂T

)

p,N

=
(

1
2d+ 1

)
Nk

B
−NT ϕ′′(T ) (4.253)

CV = T

(
∂S

∂T

)

V,N

= 1
2dNkB

−NT ϕ′′(T ) . (4.254)

Thus, any temperature variation in Cp must be due to the internal degrees of freedom.

4.10.3 The internal coordinate partition function

At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

ĥint = ĥrot + ĥvib + ĥelec (4.255)

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of freedom. Then

ξint = ξrot · ξvib · ξelec . (4.256)

Associated with each class of excitation is a characteristic temperatureΘ. Rotational and vibrational temperatures
of a few common molecules are listed in table tab. 4.1.

4.10.4 Rotations

Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamiltonian is
then

ĥrot =
L

2
a + L

2
b

2I1
+

L
2
c

2I3

=
~

2L(L+ 1)

2I1
+

(
1

2I3
− 1

2I1

)
L

2
c ,

(4.257)

where n̂a.b,c(t) are the principal axes, with n̂c the symmetry axis, and La,b,c are the components of the angular
momentum vector L about these instantaneous body-fixed principal axes. The components of L along space-fixed
axes {x, y, z} are written as Lx,y,z. Note that

[
Lµ , Lc

]
= nν

c

[
Lµ , Lν

]
+
[
Lµ , nν

c

]
Lν = iǫµνλ n

ν
c L

λ + iǫµνλ n
λ
c L

ν = 0 , (4.258)
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molecule Θrot(K) Θvib(K)

H2 85.4 6100
N2 2.86 3340

H2O 13.7 , 21.0 , 39.4 2290 , 5180 , 5400

Table 4.1: Some rotational and vibrational temperatures of common molecules.

which is equivalent to the statement that Lc = n̂c ·L is a rotational scalar. We can therefore simultaneously specify
the eigenvalues of {L2, Lz, Lc}, which form a complete set of commuting observables (CSCO)7. The eigenvalues
of Lz are m~ with m ∈ {−L, . . . , L}, while those of Lc are k~ with k ∈ {−L, . . . , L}. There is a (2L + 1)-fold
degeneracy associated with the Lz quantum number.

We assume the molecule is prolate, so that I3 < I1. We can the define two temperature scales,

Θ =
~

2

2I1kB

, Θ̃ =
~

2

2I3kB

. (4.259)

Prolateness then means Θ̃ > Θ. We conclude that the rotational partition function for an axisymmetric molecule
is given by

ξrot(T ) =

∞∑

L=0

(2L+ 1) e−L(L+1)Θ/T
L∑

k=−L

e−k2 ( eΘ−Θ)/T (4.260)

In diatomic molecules, I3 is extremely small, and Θ̃ ≫ k
B
T at all relevant temperatures. Only the k = 0 term

contributes to the partition sum, and we have

ξrot(T ) =

∞∑

L=0

(2L+ 1) e−L(L+1)Θ/T . (4.261)

When T ≪ Θ, only the first few terms contribute, and

ξrot(T ) = 1 + 3 e−2Θ/T + 5 e−6Θ/T + . . . (4.262)

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation formula may
be used to evaluate such a series:

n∑

k=0

Fk =

n∫

0

dk F (k) + 1
2

[
F (0) + F (n)

]
+

∞∑

j=1

B2j

(2j)!

[
F (2j−1)(n) − F (2j−1)(0)

]
(4.263)

where Bj is the jth Bernoulli number where

B0 = 1 , B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 . (4.264)

Thus,
∞∑

k=0

Fk =

∞∫

0

dxF (x) + 1
2F (0) − 1

12F
′(0) − 1

720
F ′′′(0) + . . . . (4.265)

7Note that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed in space, we can simulta-
neously specify the components of L along one axis fixed in space and one axis rotating with a body. See Landau and Lifshitz, Quantum
Mechanics, §103.
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We have F (x) = (2x+ 1) e−x(x+1)Θ/T , for which
∞∫
0

dxF (x) = T
Θ , hence

ξrot =
T

Θ
+

1

3
+

1

15

Θ

T
+

4

315

(
Θ

T

)2
+ . . . . (4.266)

Recall thatϕ(T ) = −k
B
T ln ξ(T ). We conclude thatϕrot(T ) ≈ −3k

B
T e−2Θ/T for T ≪ Θ andϕrot(T ) ≈ −k

B
T ln(T/Θ)

for T ≫ Θ. We have seen that the internal coordinate contribution to the heat capacity is ∆CV = −NTϕ′′(T ). For
diatomic molecules, then, this contribution is exponentially suppressed for T ≪ Θ, while for high temperatures
we have ∆CV = Nk

B
. One says that the rotational excitations are ‘frozen out’ at temperatures much below Θ.

Including the first few terms, we have

∆CV (T ≪ Θ) = 12Nk
B

(
Θ

T

)2

e−2Θ/T + . . . (4.267)

∆CV (T ≫ Θ) = Nk
B

{
1 +

1

45

(
Θ

T

)2
+

16

945

(
Θ

T

)3
+ . . .

}
. (4.268)

Note that CV overshoots its limiting value of Nk
B

and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd L states are
allowed, depending on the total nuclear spin. This is discussed below in §4.10.7.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rotations can be
considered classically. We then have

ε(La, Lb, Lc) =
L

2
a

2I1
+

L
2
b

2I2
+

L
2
c

2I3
. (4.269)

We then have

ξrot(T ) =
1

grot

∫
dLa dLb dLc dφ dθ dψ

(2π~)3
e−ε(La Lb Lc)/kBT , (4.270)

where (φ, θ ψ) are the Euler angles. Recall φ ∈ [0, 2π], θ ∈ [0, π], and ψ ∈ [0, 2π]. The factor grot accounts for
physically indistinguishable orientations of the molecule brought about by rotations, which can happen when
more than one of the nuclei is the same. We then have

ξrot(T ) =

(
2k

B
T

~2

)3/2√
πI1I2I3 . (4.271)

This leads to ∆CV = 3
2NkB

.

4.10.5 Vibrations

Vibrational frequencies are often given in units of inverse wavelength, such as cm−1, called a wavenumber. To
convert to a temperature scale T ∗, we write k

B
T ∗ = hν = hc/λ, hence T ∗ = (hc/k

B
)λ−1, and we multiply by

hc

k
B

= 1.436 K · cm . (4.272)

For example, infrared absorption (∼ 50 cm−1 to 104 cm−1) reveals that the ‘asymmetric stretch’ mode of the H2O
molecule has a vibrational frequency of ν = 3756 cm−1. The corresponding temperature scale is T ∗ = 5394 K.
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Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

ĥ =
p2

2m
+ 1

2mω
2q2 = ~ω

(
a†a+ 1

2

)
. (4.273)

In general there are many vibrational modes, hence many normal mode frequencies ωα. We then must sum over
all of them, resulting in

ξvib =
∏

α

ξ
(α)
vib . (4.274)

For each such normal mode, the contribution is

ξ =

∞∑

n=0

e−(n+ 1
2
)~ω/kBT = e−~ω/2kBT

∞∑

n=0

(
e−~ω/kBT

)n

=
e−~ω/2kBT

1 − e−~ω/k
B

T
=

1

2 sinh(Θ/2T )
,

(4.275)

where Θ = ~ω/k
B

. Then

ϕ = k
B
T ln

(
2 sinh(Θ/2T )

)

= 1
2kB

Θ + k
B
T ln

(
1 − e−Θ/T

)
.

(4.276)

The contribution to the heat capacity is

∆CV = Nk
B

(
Θ

T

)2
eΘ/T

(eΘ/T − 1)2

=

{
Nk

B
(Θ/T )2 exp(−Θ/T ) (T → 0)

Nk
B

(T → ∞)

(4.277)

4.10.6 Two-level systems : Schottky anomaly

Consider now a two-level system, with energies ε0 and ε1. We define ∆ ≡ ε1 − ε0 and assume without loss of
generality that ∆ > 0. The partition function is

ζ = e−βε0 + e−βε1 = e−βε0

(
1 + e−β∆

)
. (4.278)

The free energy is

f = −k
B
T ln ζ = ε0 − k

B
T ln

(
1 + e−∆/kBT

)
. (4.279)

The entropy for a given two level system is then

s = − ∂f

∂T
= k

B
ln
(
1 + e−∆/kBT

)
+

∆

T
· 1

e∆/k
B

T + 1
(4.280)

and the heat capacity is = T (∂s/∂T ), i.e.

c(T ) =
∆2

k
B
T 2

· e∆/kBT

(
e∆/k

B
T + 1

)2 . (4.281)
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Figure 4.11: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic gases, (b) a
single vibrational mode, and (c) a single two-level system.

Thus,

c (T ≪ ∆) =
∆2

k
B
T 2

e−∆/kBT (4.282)

c (T ≫ ∆) =
∆2

4k
B
T 2

. (4.283)

We find that c(T ) has a characteristic peak at T ∗ ≈ 0.42 ∆/k
B

. The heat capacity vanishes in both the low tem-
perature and high temperature limits. At low temperatures, the gap to the excited state is much greater than k

B
T ,

and it is not possible to populate it and store energy. At high temperatures, both ground state and excited state
are equally populated, and once again there is no way to store energy.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum over the
individual Schottky functions:

C(T ) =
∑

i

c̃ (∆i/kB
T ) = N

∞∫

0

d∆P (∆) c̃(∆/T ) , (4.284)

where N is the number of two level systems, c̃(x) = k
B
x2 ex/(ex + 1)2, and where P (∆) is the normalized distri-

bution function, which satisfies the normalization condition

∞∫

0

d∆P (∆) = 1 . (4.285)

N
s

is the total number of two level systems. If P (∆) ∝ ∆r for ∆ → 0, then the low temperature heat capacity
behaves as C(T ) ∝ T 1+r. Many amorphous or glassy systems contain such a distribution of two level systems,
with r ≈ 0 for glasses, leading to a linear low-temperature heat capacity. The origin of these two-level sys-
tems is not always so clear but is generally believed to be associated with local atomic configurations for which
there are two low-lying states which are close in energy. The paradigmatic example is the mixed crystalline solid
(KBr)1−x(KCN)x which over the range 0.1<∼x<∼ 0.6 forms an ‘orientational glass’ at low temperatures. The two
level systems are associated with different orientation of the cyanide (CN) dipoles.
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4.10.7 Electronic and nuclear excitations

For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear degrees of
freedom. Let’s first consider the electronic degrees of freedom. We assume that k

B
T is small compared with

energy differences between successive electronic shells. The atomic ground state is then computed by filling up
the hydrogenic orbitals until all the electrons are used up. If the atomic number is a ‘magic number’ (A = 2 (He),
10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), etc.) then the atom has all shells filled and L = 0 and S = 0. Otherwise the last
shell is partially filled and one or both of L and S will be nonzero. The atomic ground state configuration 2J+1LS

is then determined by Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has the lowest
energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L− S|. If the shell is
more than half-filled, then J = L+ S.

The last of Hund’s rules distinguishes between the (2S + 1)(2L + 1) states which result upon fixing S and L as
per rules #1 and #2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian may be written

Ĥ = ΛL · S, where Λ is the Russell-Saunders coupling. If the last shell is less than or equal to half-filled, then
Λ > 0 and the ground state has J = |L − S|. If the last shell is more than half-filled, the coupling is inverted, i.e.
Λ < 0, and the ground state has J = L+ S.8

The electronic contribution to ξ is then

ξelec =

L+S∑

J=|L−S|

(2J + 1) e−∆ε(L,S,J)/kBT (4.286)

where
∆ε(L, S, J) = 1

2Λ
[
J(J + 1) − L(L+ 1) − S(S + 1)

]
. (4.287)

At high temperatures, k
B
T is larger than the energy difference between the different J multiplets, and we have

ξelec ∼ (2L + 1)(2S + 1) e−βε0 , where ε0 is the ground state energy. At low temperatures, a particular value of
J is selected – that determined by Hund’s third rule – and we have ξelec ∼ (2J + 1) e−βε0 . If, in addition, there
is a nonzero nuclear spin I , then we also must include a factor ξnuc = (2I + 1), neglecting the small hyperfine
splittings due to the coupling of nuclear and electronic angular momenta.

For heteronuclear diatomic molecules, i.e. molecules composed from two different atomic nuclei, the internal par-

tition function simply receives a factor of ξelec · ξ
(1)
nuc · ξ(2)nuc, where the first term is a sum over molecular electronic

states, and the second two terms arise from the spin degeneracies of the two nuclei. For homonuclear diatomic
molecules, the exchange of nuclear centers is a symmetry operation, and does not represent a distinct quantum
state. To correctly count the electronic states, we first assume that the total electronic spin is S = 0. This is gen-
erally a very safe assumption. Exchange symmetry now puts restrictions on the possible values of the molecular
angular momentum L, depending on the total nuclear angular momentum Itot. If Itot is even, then the molecular
angular momentum L must also be even. If the total nuclear angular momentum is odd, then Lmust be odd. This
is so because the molecular ground state configuration is 1Σ+

g .9

The total number of nuclear states for the molecule is (2I + 1)2, of which some are even under nuclear exchange,
and some are odd. The number of even states, corresponding to even total nuclear angular momentum is written

8See e.g. §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book ever written.
9See Landau and Lifshitz, Quantum Mechanics, §86.
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2I gg gu

odd I(2I + 1) (I + 1)(2I + 1)
even (I + 1)(2I + 1) I(2I + 1)

Table 4.2: Number of even (gg) and odd (gu) total nuclear angular momentum states for a homonuclear diatomic
molecule. I is the ground state nuclear spin.

as gg, where the subscript conventionally stands for the (mercifully short) German word gerade, meaning ‘even’.
The number of odd (Ger. ungerade) states is written gu. Table 4.2 gives the values of gg,u corresponding to half-
odd-integer I and integer I .

The final answer for the rotational component of the internal molecular partition function is then

ξrot(T ) = gg ζg + gu ζu , (4.288)

where

ζg =
∑

L even

(2L+ 1) e−L(L+1)Θrot/T

ζu =
∑

L odd

(2L+ 1) e−L(L+1)Θrot/T .

(4.289)

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those with the
smaller statistical weight are called parahydrogen. For H2, we have I = 1

2 hence the ortho state has gu = 3 and the
para state has gg = 1. In D2, we have I = 1 and the ortho state has gg = 6 while the para state has gu = 3. In
equilibrium, the ratio of ortho to para states is then

Northo
H2

Npara
H2

=
gu ζu
gg ζg

=
3 ζu
ζg

,
Northo

D2

Npara
D2

=
gg ζg
gu ζu

=
2 ζg
ζu

. (4.290)

Incidentally, how do we derive the results in Tab. 4.10.7 ? The total nuclear angular momentum Itot is the quan-
tum mechanical sum of the two individual nuclear angular momenta, each of which are of magnitude I . From
elementary addition of angular momenta, we have

I ⊗ I = 0 ⊕ 1 ⊕ 2 ⊕ · · · ⊕ 2I . (4.291)

The right hand side of the above equation lists all the possible multiplets. Thus, Itot ∈ {0, 1, . . . , 2I}. Now let us
count the total number of states with even Itot. If 2I is even, which is to say if I is an integer, we have

g(2I=even)
g =

I∑

n=0

{
2 · (2n) + 1

}
= (I + 1)(2I + 1) , (4.292)

because the degeneracy of each multiplet is 2Itot + 1. It follows that

g(2I=even)
u = (2I + 1)2 − gg = I(2I + 1) . (4.293)

On the other hand, if 2I is odd, which is to say I is a half odd integer, then

g(2I=odd)
g =

I− 1
2∑

n=0

{
2 · (2n) + 1

}
= I(2I + 1) . (4.294)

It follows that
g(2I=odd)

u = (2I + 1)2 − gg = (I + 1)(2I + 1) . (4.295)
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4.11 Appendix I : Additional Examples

4.11.1 Three state system

Consider a spin-1 particle where σ = −1, 0,+1. We model this with the single particle Hamiltonian

ĥ = −µ0H σ + ∆(1 − σ2) . (4.296)

We can also interpret this as describing a spin if σ = ±1 and a vacancy if σ = 0. The parameter ∆ then represents
the vacancy formation energy. The single particle partition function is

ζ = Tr e−βĥ = e−β∆ + 2 cosh(βµ0H) . (4.297)

With N
s

distinguishable noninteracting spins (e.g. at different sites in a crystalline lattice), we have Z = ζN
s and

F ≡ N
s
f = −k

B
T lnZ = −N

s
k

B
T ln

[
e−β∆ + 2 cosh(βµ0H)

]
, (4.298)

where f = −k
B
T ln ζ is the free energy of a single particle. Note that

n̂
V

= 1 − σ2 =
∂ĥ

∂∆
(4.299)

m̂ = µ0 σ = − ∂ĥ

∂H
(4.300)

are the vacancy number and magnetization, respectively. Thus,

n
V

=
〈
n̂

V

〉
=
∂f

∂∆
=

e−∆/kBT

e−∆/k
B

T + 2 cosh(µ0H/kB
T )

(4.301)

and

m =
〈
m̂
〉

= − ∂f

∂H
=

2µ0 sinh(µ0H/kB
T )

e−∆/k
B

T + 2 cosh(µ0H/kB
T )

. (4.302)

At weak fields we can compute

χ
T =

∂m

∂H

∣∣∣∣
H=0

=
µ2

0

k
B
T

· 2

2 + e−∆/k
B

T
. (4.303)

We thus obtain a modified Curie law. At temperatures T ≪ ∆/k
B

, the vacancies are frozen out and we recover the
usual Curie behavior. At high temperatures, where T ≫ ∆/k

B
, the low temperature result is reduced by a factor

of 2
3 , which accounts for the fact that one third of the time the particle is in a nonmagnetic state with σ = 0.

4.11.2 Spins and vacancies on a surface

PROBLEM: A collection of spin- 1
2 particles is confined to a surface with N sites. For each site, let σ = 0 if there

is a vacancy, σ = +1 if there is particle present with spin up, and σ = −1 if there is a particle present with spin
down. The particles are non-interacting, and the energy for each site is given by ε = −Wσ2, where −W < 0 is the
binding energy.

(a) Let Q = N↑ +N↓ be the number of spins, and N0 be the number of vacancies. The surface magnetization is

M = N↑ −N↓. Compute, in the microcanonical ensemble, the statistical entropy S(Q,M).
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(b) Let q = Q/N and m = M/N be the dimensionless particle density and magnetization density, respectively.
Assuming that we are in the thermodynamic limit, where N , Q, and M all tend to infinity, but with q and m
finite, Find the temperature T (q,m). Recall Stirling’s formula

ln(N !) = N lnN −N + O(lnN) .

(c) Show explicitly that T can be negative for this system. What does negative T mean? What physical degrees
of freedom have been left out that would avoid this strange property?

SOLUTION: There is a constraint on N↑, N0, and N↓:

N↑ +N0 +N↓ = Q+N0 = N . (4.304)

The total energy of the system is E = −WQ.

(a) The number of states available to the system is

Ω =
N !

N↑!N0!N↓!
. (4.305)

Fixing Q and M , along with the above constraint, is enough to completely determine {N↑, N0, N↓}:

N↑ = 1
2 (Q+M) , N0 = N −Q , N↓ = 1

2 (Q−M) , (4.306)

whence

Ω(Q,M) =
N ![

1
2 (Q+M)

]
!
[

1
2 (Q−M)

]
! (N −Q)!

. (4.307)

The statistical entropy is S = k
B

ln Ω:

S(Q,M) = k
B

ln(N !) − k
B

ln
[

1
2 (Q+M)!

]
− k

B
ln
[

1
2 (Q−M)!

]
− k

B
ln
[
(N −Q)!

]
. (4.308)

(b) Now we invoke Stirling’s rule,
ln(N !) = N lnN −N + O(lnN) , (4.309)

to obtain

ln Ω(Q,M) = N lnN −N − 1
2 (Q+M) ln

[
1
2 (Q+M)

]
+ 1

2 (Q+M)

− 1
2 (Q−M) ln

[
1
2 (Q−M)

]
+ 1

2 (Q−M)

− (N −Q) ln(N −Q) + (N −Q)

= N lnN − 1
2Q ln

[
1
4 (Q2 −M2)

]
− 1

2M ln

(
Q+M

Q−M

)

(4.310)

Combining terms,

ln Ω(Q,M) = −Nq ln
[

1
2

√
q2 −m2

]
− 1

2Nm ln

(
q +m

q −m

)
−N(1 − q) ln(1 − q) , (4.311)

where Q = Nq and M = Nm. Note that the entropy S = k
B

ln Ω is extensive. The statistical entropy per site
is thus

s(q,m) = −k
B
q ln

[
1
2

√
q2 −m2

]
− 1

2kB
m ln

(
q +m

q −m

)
− k

B
(1 − q) ln(1 − q) . (4.312)
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The temperature is obtained from the relation

1

T
=

(
∂S

∂E

)

M

=
1

W

(
∂s

∂q

)

m

=
1

W
ln(1 − q) − 1

W
ln
[

1
2

√
q2 −m2

]
.

(4.313)

Thus,

T =
W/k

B

ln
[
2(1 − q)/

√
q2 −m2

] . (4.314)

(c) We have 0 ≤ q ≤ 1 and −q ≤ m ≤ q, so T is real (thank heavens!). But it is easy to choose {q,m} such that
T < 0. For example, when m = 0 we have T = W/k

B
ln(2q−1−2) and T < 0 for all q ∈

(
2
3 , 1
]
. The reason for

this strange state of affairs is that the entropy S is bounded, and is not an monotonically increasing function

of the energyE (or the dimensionless quantity Q). The entropy is maximized for N ↑= N0 = N↓ = 1
3 , which

says m = 0 and q = 2
3 . Increasing q beyond this point (with m = 0 fixed) starts to reduce the entropy, and

hence (∂S/∂E) < 0 in this range, which immediately gives T < 0. What we’ve left out are kinetic degrees of
freedom, such as vibrations and rotations, whose energies are unbounded, and which result in an increasing
S(E) function.

4.11.3 Fluctuating interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the denser
fluid is on the bottom. Let z = z(x, y) be the height the interface between the fluids, relative to equilibrium. The
potential energy is a sum of gravitational and surface tension terms, with

Ugrav =

∫
d2x

z∫

0

dz′ ∆ρ g z′ (4.315)

Usurf =

∫
d2x 1

2σ (∇z)2 . (4.316)

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t so clear
how to model it a priori so we will assume a rather general form

T =

∫
d2x

∫
d2x′ 1

2µ(x,x′)
∂z(x, t)

∂t

∂z(x′, t)

∂t
. (4.317)

We assume that the (x, y) plane is a rectangle of dimensions Lx × Ly . We also assume µ(x,x′) = µ
(
|x − x′|

)
. We

can then Fourier transform
z(x) =

(
Lx Ly

)−1/2∑

k

zk e
ik·x , (4.318)

where the wavevectors k are quantized according to

k =
2πnx

Lx

x̂ +
2πny

Ly

ŷ , (4.319)

with integer nx and ny , if we impose periodic boundary conditions (for calculational convenience). The La-
grangian is then

L =
1

2

∑

k

[
µk

∣∣żk
∣∣2 −

(
g∆ρ+ σk2

) ∣∣zk
∣∣2
]
, (4.320)
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where

µk =

∫
d2xµ

(
|x|
)
e−ik·x . (4.321)

Since z(x, t) is real, we have the relation z−k = z∗k, therefore the Fourier coefficients at k and −k are not indepen-
dent. The canonical momenta are given by

pk =
∂L

∂ż∗k
= µk żk , p∗k =

∂L

∂żk
= µk ż

∗
k (4.322)

The Hamiltonian is then

Ĥ =
∑

k

′[
pk z

∗
k + p∗k zk

]
− L (4.323)

=
∑

k

′
[ |pk|2
µ

k

+
(
g∆ρ+ σk2

)
|zk|2

]
, (4.324)

where the prime on the k sum indicates that only one of the pair {k,−k} is to be included, for each k.

We may now compute the ordinary canonical partition function:

Z =
∏

k

′
∫
d2pk d

2zk
(2π~)2

e−|pk|
2/µkkBT e−(g ∆ρ+σk2) |zk|

2/kBT

=
∏

k

′
(
k

B
T

2~

)2( µk

g∆ρ+ σk2

)
.

(4.325)

Thus,

F = −k
B
T
∑

k

ln

(
k

B
T

2~Ω
k

)
, (4.326)

where10

Ωk =

(
g∆ρ+ σk2

µ
k

)1/2

. (4.327)

is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is appropriate to
take µk = ∆ρ

/
|k|, where ∆ρ = ρ

L
− ρ

G
≈ ρ

L
is the difference between the densities of water and air.

It is now easy to compute the thermal average

〈
|zk|2

〉
=

∫
d2zk |zk|2 e−(g ∆ρ+σk2) |zk|

2/kBT

/∫
d2zk e

−(g ∆ρ+σk2) |zk|
2/kBT

=
k

B
T

g∆ρ+ σk2
.

(4.328)

Note that this result does not depend on µk, i.e. on our choice of kinetic energy. One defines the correlation function

C(x) ≡
〈
z(x) z(0)

〉
=

1

LxLy

∑

k

〈
|zk|2

〉
eik·x =

∫
d2k

(2π)2

(
k

B
T

g∆ρ+ σk2

)
eik·x

=
k

B
T

4πσ

∞∫

0

dq
eik|x|

√
q2 + ξ2

=
k

B
T

4πσ
K0

(
|x|/ξ

)
,

(4.329)

10Note that there is no prime on the k sum for F , as we have divided the logarithm of Z by two and replaced the half sum by the whole
sum.
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where ξ =
√
g∆ρ/σ is the correlation length, and where K0(z) is the Bessel function of imaginary argument. The

asymptotic behavior ofK0(z) for small z isK0(z) ∼ ln(2/z), whereas for large z one hasK0(z) ∼ (π/2z)1/2 e−z . We
see that on large length scales the correlations decay exponentially, but on small length scales they diverge. This
divergence is due to the improper energetics we have assigned to short wavelength fluctuations of the interface.
Roughly, it can cured by imposing a cutoff on the integral, or by insisting that the shortest distance scale is a
molecular diameter.

4.11.4 Dissociation of molecular hydrogen

Consider the reaction

H −⇀↽− p+ + e− . (4.330)

In equilibrium, we have

µH = µp + µe . (4.331)

What is the relationship between the temperature T and the fraction x of hydrogen which is dissociated?

Let us assume a fraction x of the hydrogen is dissociated. Then the densities of H, p, and e are then

nH = (1 − x)n , np = xn , ne = xn . (4.332)

The single particle partition function for each species is

ζ =
gN

N !

(
V

λ3
T

)N

e−Nεint/kBT , (4.333)

where g is the degeneracy and εint the internal energy for a given species. We have εint = 0 for p and e, and
εint = −∆ for H, where ∆ = e2/2a

B
= 13.6 eV, the binding energy of hydrogen. Neglecting hyperfine splittings11,

we have gH = 4, while ge = gp = 2 because each has spin S = 1
2 . Thus, the associated grand potentials are

ΩH = −gH V kB
T λ−3

T,H e
(µH+∆)/kBT (4.334)

Ωp = −gp V kB
T λ−3

T,p e
µp/kBT (4.335)

Ωe = −ge V kB
T λ−3

T,e e
µe/kBT , (4.336)

where

λT,a =

√
2π~2

makB
T

(4.337)

for species a. The corresponding number densities are

n =
1

V

(
∂Ω

∂µ

)

T,V

= g λ−3
T e(µ−εint)/kBT , (4.338)

and the fugacity z = eµ/kBT of a given species is given by

z = g−1nλ3
T e

εint/kBT . (4.339)

11The hyperfine splitting in hydrogen is on the order of (me/mp) α4 mec
2 ∼ 10−6 eV, which is on the order of 0.01 K. Here α = e2/~c is

the fine structure constant.



4.11. APPENDIX I : ADDITIONAL EXAMPLES 49

We now invoke µH = µp + µe, which says zH = zp ze, or

g−1
H nH λ

3
T,H e

−∆/kBT =
(
g−1
p np λ

3
T,p

)(
g−1
e ne λ

3
T,e

)
, (4.340)

which yields (
x2

1 − x

)
nλ̃3

T = e−∆/kBT , (4.341)

where λ̃T =
√

2π~2/m∗k
B
T , with m∗ = mpme/mH ≈ me. Note that

λ̃T = a
B

√
4πmH

mp

√
∆

k
B
T
, (4.342)

where a
B

= 0.529 Å is the Bohr radius. Thus, we have

(
x2

1 − x

)
· (4π)3/2 ν =

(
T

T0

)3/2

e−T0/T , (4.343)

where T0 = ∆/k
B

= 1.578×105 K and ν = na3
B

. Consider for example a temperatureT = 3000 K, for which T0/T =
52.6, and assume that x = 1

2 . We then find ν = 1.69×10−27, corresponding to a density of n = 1.14×10−2 cm−3. At

this temperature, the fraction of hydrogen molecules in their first excited (2s) state is x′ ∼ e−T0/2T = 3.8 × 10−12.
This is quite striking: half the hydrogen atoms are completely dissociated, which requires an energy of ∆, yet
the number in their first excited state, requiring energy 1

2∆, is twelve orders of magnitude smaller. The student
should reflect on why this can be the case.


