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Chapter 6

Classical Interacting Systems

6.1 References

– M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
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– M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rd edition, World Scientific, 2006)
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Good discussion of mean field theory.
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– J.-P Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 1990)
An advanced, detailed discussion of liquid state physics.
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2 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

6.2 Ising Model

6.2.1 Definition

The simplest model of an interacting system consists of a lattice L of sites, each of which contains a spin σi which
may be either up (σi = +1) or down (σi = −1). The Hamiltonian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi . (6.1)

When J > 0, the preferred (i.e. lowest energy) configuration of neighboring spins is that they are aligned, i.e.
σi σj = +1. The interaction is then called ferromagnetic. When J < 0 the preference is for anti-alignment, i.e.
σi σj = −1, which is antiferromagnetic.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward. In two
dimensions, Onsager’s solution of the model (with H = 0) is among the most celebrated results in statistical
physics. In higher dimensions the system has been studied by numerical simulations (the Monte Carlo method)
and by field theoretic calculations (renormalization group), but no exact solutions exist.

6.2.2 Ising model in one dimension

Consider a one-dimensional ring of N sites. The ordinary canonical partition function is then

Zring = Tr e−βĤ

=
∑

{σn}

N∏

n=1

eβJσnσn+1 eβµ0Hσn

= Tr
(
RN
)
,

(6.2)

where σN+1 ≡ σ1 owing to periodic (ring) boundary conditions, and where R is a 2 × 2 transfer matrix,

Rσσ′ = eβJσσ′

eβµ0H(σ+σ′)/2

=

(
eβJ eβµ0H e−βJ

e−βJ eβJ e−βµ0H

)

= eβJ cosh(βµ0H) + eβJ sinh(βµ0H) τz + e−βJ τx ,

(6.3)

where τα are the Pauli matrices. Since the trace of a matrix is invariant under a similarity transformation, we have

Z(T,H,N) = λN
+ + λN

− , (6.4)

where

λ±(T,H) = eβJ cosh(βµ0H) ±
√
e2βJ sinh2(βµ0H) + e−2βJ (6.5)

are the eigenvalues of R. In the thermodynamic limit, N → ∞, and the λN
+ term dominates exponentially. We

therefore have
F (T,H,N) = −NkBT lnλ+(T,H) . (6.6)

From the free energy, we can compute the magnetization,

M = −
(
∂F

∂H

)

T,N

=
Nµ0 sinh(βµ0H)√

sinh2(βµ0H) + e−4βJ

(6.7)
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and the zero field isothermal susceptibility,

χ(T ) =
1

N

∂M

∂H

∣∣∣∣
H=0

=
µ2

0

k
B
T
e2J/kBT . (6.8)

Note that in the noninteracting limit J → 0 we recover the familiar result for a free spin. The effect of the interac-
tions at low temperature is to vastly increase the susceptibility. Rather than a set of independent single spins, the
system effectively behaves as if it were composed of large blocks of spins, where the block size ξ is the correlation
length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions. In this
case, we define

C(n) ≡
〈
σ1 σn+1

〉
=

Tr
(
σ1Rσ1σ2

· · ·Rσnσ
n+1

σn+1 Rσ
n+1σ

n+2
· · ·Rσ

N
σ1

)

Tr
(
RN
)

=
Tr
(
ΣRnΣRN−n

)

Tr
(
RN
) ,

(6.9)

where 0 < n < N , and where

Σ =

(
1 0
0 −1

)
. (6.10)

To compute this ratio, we decompose R in terms of its eigenvectors, writing

R = λ+ |+〉〈+| + λ− |−〉〈−| . (6.11)

Then

C(n) =
λN

+ Σ2
++ + λN

− Σ2
−− +

(
λN−n

+ λn
− + λn

+ λ
N−n
−

)
Σ+−Σ−+

λN
+ + λN

−
, (6.12)

where
Σµµ′ = 〈µ |Σ |µ′ 〉 . (6.13)

6.2.3 H = 0

Consider the case H = 0, where R = eβJ + e−βJ τx, where τx is the Pauli matrix. Then

| ± 〉 = 1√
2

(
|↑〉 ± |↓〉

)
, (6.14)

i.e. the eigenvectors of R are

ψ± =
1√
2

(
1
±1

)
, (6.15)

and Σ++ = Σ−− = 0, while Σ± = Σ−+ = 1. The corresponding eigenvalues are

λ+ = 2 cosh(βJ) , λ− = 2 sinh(βJ) . (6.16)

The correlation function is then found to be

C(n) ≡
〈
σ1 σn+1

〉
=
λ

N−|n|
+ λ

|n|
− + λ

|n|
+ λ

N−|n|
−

λN
+ + λN

−

=
tanh|n|(βJ) + tanhN−|n|(βJ)

1 + tanhN (βJ)

≈ tanh|n|(βJ) (N → ∞) .

(6.17)
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This result is also valid for n < 0, provided |n| ≤ N . We see that we may write

C(n) = e−|n|/ξ(T ) , (6.18)

where the correlation length is

ξ(T ) =
1

ln ctnh(J/kBT )
. (6.19)

Note that ξ(T ) grows as T → 0 as ξ ≈ 1
2 e

2J/kBT .

6.2.4 Chain with free ends

When the chain has free ends, there are (N−1) links, and the partition function is

Zchain =
∑

σ,σ′

(
RN−1

)
σσ′

=
∑

σ,σ′

{
λN−1

+ ψ+(σ)ψ+(σ′) + λN−1
− ψ−(σ)ψ−(σ′)

}
,

(6.20)

where ψ±(σ) = 〈σ | ± 〉. When H = 0, we make use of eqn. 6.15 to obtain

RN−1 =
1

2

(
1 1
1 1

)(
2 coshβJ

)N−1
+

1

2

(
1 −1
−1 1

)(
2 sinhβJ

)N−1
, (6.21)

and therefore

Zchain = 2N coshN−1(βJ) . (6.22)

There’s a nifty trick to obtaining the partition function for the Ising chain which amounts to a change of variables.
We define

νn ≡ σn σn+1 (n = 1 , . . . , N − 1) . (6.23)

Thus, ν1 = σ1σ2, ν2 = σ2σ3, etc. Note that each νj takes the values ±1. The Hamiltonian for the chain is

Hchain = −J
N−1∑

n=1

σn σn+1 = −J
N−1∑

n=1

νn . (6.24)

The state of the system is defined by the N Ising variables {σ1 , ν1 , . . . , νN−1}. Note that σ1 doesn’t appear in the
Hamiltonian. Thus, the interacting model is recast as N−1 noninteracting Ising spins, and the partition function
is

Zchain = Tr e−βHchain

=
∑

σ1

∑

ν1

· · ·
∑

ν
N−1

eβJν1eβJν2 · · · eβJν
N−1

=
∑

σ1

(
∑

ν

eβJν

)N−1

= 2N coshN−1(βJ) .

(6.25)
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6.2.5 Ising model in two dimensions : Peierls’ argument

We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That is, the
spin-spin correlation function decays asymptotically as an exponential function of the distance with a correlation
length ξ(T ) which is finite for all > 0. Only for T = 0 does the correlation length diverge. At T = 0, there are two
ground states, |↑↑↑↑ · · · ↑ 〉 and |↓↓↓↓ · · · ↓ 〉. To choose between these ground states, we can specify a boundary
condition at the ends of our one-dimensional chain, where we demand that the spins are up. Equivalently, we can
apply a magnetic fieldH of order 1/N , which vanishes in the thermodynamic limit, but which at zero temperature
will select the ‘all up’ ground state. At finite temperature, there is always a finite probability for any consecutive
pair of sites (n, n+1) to be in a high energy state, i.e. either |↑↓ 〉 or |↓↑ 〉. Such a configuration is called a domain
wall, and in one-dimensional systems domain walls live on individual links. Relative to the configurations |↑↑ 〉
and |↓↓ 〉, a domain wall costs energy 2J . For a system with M = xN domain walls, the free energy is

F = 2MJ − kBT ln

(
N

M

)

= N ·
{

2Jx+ k
B
T
[
x lnx+ (1 − x) ln(1 − x)

]}
,

(6.26)

Minimizing the free energy with respect to x, one finds x = 1
/(
e2J/kBT + 1

)
, so the equilibrium concentration of

domain walls is finite, meaning there can be no long-ranged spin order. In one dimension, entropy wins and there
is always a thermodynamically large number of domain walls in equilibrium. And since the correlation length for
T > 0 is finite, any boundary conditions imposed at spatial infinity will have no thermodynamic consequences
since they will only be ‘felt’ over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently short-
ranged interactions and a discrete global symmetry. Another example is the q-state Potts model,

H = −J
∑

〈ij〉
δσi,σj

− h
∑

i

δσi,1
. (6.27)

Here, the spin variables σi take values in the set {1, 2, . . . , q} on each site. The equivalent of an external magnetic
field in the Ising case is a field h which prefers a particular value of σ (σ = 1 in the above Hamiltonian). See the
appendix in §6.8 for a transfer matrix solution of the one-dimensional Potts model.

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite temperature
phase transition for the Ising model on the square lattice1. Consider the Ising model, in zero magnetic field, on
a Nx × Ny square lattice, with Nx,y → ∞ in the thermodynamic limit. Along the perimeter of the system we
impose the boundary condition σi = +1. Any configuration of the spins may then be represented uniquely in
the following manner. Start with a configuration in which all spins are up. Next, draw a set of closed loops on
the lattice. By definition, the loops cannot share any links along their boundaries, i.e. each link on the lattice is
associated with at most one such loop. Now flip all the spins inside each loop from up to down. Identify each
such loop configuration with a label Γ . The partition function is

Z = Tr e−βĤ =
∑

Γ

e−2βJLΓ , (6.28)

where LΓ is the total perimeter of the loop configuration Γ . The domain walls are now loops, rather than individ-
ual links, but as in the one-dimensional case, each link of each domain wall contributes an energy +2J relative to
the ground state.

Now we wish to compute the average magnetization of the central site (assume Nx,y are both odd, so there is a

unique central site). This is given by the difference P+(0) − P−(0), where Pµ(0) =
〈
δσ0 , µ

〉
is the probability that

1Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
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Figure 6.1: Clusters and boundaries for the square lattice Ising model. Left panel: a configuration Γ where the
central spin is up. Right panel: a configuration Cγ ◦ Γ where the interior spins of a new loop γ containing the
central spin have been flipped.

the central spin has spin polarization µ. If P+(0) > P−(0), then the magnetization per site m = P+(0) − P−(0) is
finite in the thermodynamic limit, and the system is ordered. Clearly

P+(0) =
1

Z

∑

Γ∈Σ+

e−2βJLΓ , (6.29)

where the restriction on the sum indicates that only those configurations where the central spin is up (σ0 = +1)
are to be included. (see fig. 6.1a). Similarly,

P−(0) =
1

Z

∑

eΓ∈Σ−

e−2βJL eΓ , (6.30)

where only configurations in which σ0 = −1 are included in the sum. Here we have defined

Σ± =
{
Γ
∣∣ σ0 = ±

}
. (6.31)

I.e. Σ+(Σ−) is the set of configurations Γ in which the central spin is always up (down). Consider now the

construction in fig. 6.1b. Any loop configuration Γ̃ ∈ Σ− may be associated with a unique loop configuration

Γ ∈ Σ+ by reversing all the spins within the loop of Γ̃ which contains the origin. Note that the map from Γ̃ to

Γ is many-to-one. That is, we can write Γ̃ = Cγ ◦ Γ , where Cγ overturns the spins within the loop γ, with the
conditions that (i) γ contains the origin, and (ii) none of the links in the perimeter of γ coincide with any of the
links from the constituent loops of Γ . Let us denote this set of loops as ΥΓ :

ΥΓ =
{
γ : 0 ∈ int(γ) and γ ∩ Γ = ∅

}
. (6.32)

Then

m = P+(0) − P−(0) =
1

Z

∑

Γ∈Σ+

e−2βJLΓ

(
1 −

∑

γ∈Υ
Γ

e−2βJLγ

)
. (6.33)
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If we can prove that
∑

γ∈Υ
Γ
e−2βJLγ < 1, then we will have established that m > 0. Let us ask: how many loops

γ are there in ΥΓ with perimeter L? We cannot answer this question exactly, but we can derive a rigorous upper
bound for this number, which, following Peliti, we call g(L). We claim that

g(L) <
2

3L
· 3L ·

(
L

4

)2

=
L

24
· 3L . (6.34)

To establish this bound, consider any site on such a loop γ. Initially we have 4 possible directions to proceed
to the next site, but thereafter there are only 3 possibilities for each subsequent step, since the loop cannot run
into itself. This gives 4 · 3L−1 possibilities. But we are clearly overcounting, since any point on the loop could
have been chosen as the initial point, and moreover we could have started by proceeding either clockwise or
counterclockwise. So we are justified in dividing this by 2L. We are still overcounting, because we have not
accounted for the constraint that γ is a closed loop, nor that γ ∩ Γ = ∅. We won’t bother trying to improve our
estimate to account for these constraints. However, we are clearly undercounting due to the fact that a given loop
can be translated in space so long as the origin remains within it. To account for this, we multiply by the area
of a square of side length L/4, which is the maximum area that can be enclosed by a loop of perimeter L. We
therefore arrive at eqn. 6.34. Finally, we note that the smallest possible value of L is L = 4, corresponding to a
square enclosing the central site alone. Therefore

∑

γ∈Υ
Γ

e−2βJLγ <
1

12

∞∑

k=2

k ·
(
3 e−2βJ

)2k
=

x4 (2 − x2)

12 (1 − x2)2
≡ r , (6.35)

where x = 3 e−2βJ . Note that we have accounted for the fact that the perimeter L of each loop γ must be an even
integer. The sum is smaller than unity provided x < x0 = 0.869756 . . ., hence the system is ordered provided

k
B
T

J
<

2

ln(3/x0)
= 1.61531 . (6.36)

The exact result is kBTc = 2J/ sinh−1(1) = 2.26918 . . . The Peierls argument has been generalized to higher
dimensional lattices as well2.

With a little more work we can derive a bound for the magnetization. We have shown that

P−(0) =
1

Z

∑

Γ∈Σ+

e−2βJLΓ

∑

γ∈Υ
Γ

e−2βJLγ < r · 1

Z

∑

Γ∈Σ+

e−2βJLΓ = r P+(0) . (6.37)

Thus,
1 = P+(0) + P−(0) < (1 + r)P+(0) (6.38)

and therefore

m = P+(0) − P−(0) > (1 − r)P+(0) >
1 − r

1 + r
, (6.39)

where r(T ) is given in eqn. 6.35.

6.2.6 Two dimensions or one?

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is disordered
at any finite temperature T , but in two dimensions on the square lattice there is a finite critical temperature Tc

below which there is long-ranged order. Consider now the construction depicted in fig. 6.2, where the sites of

2See. e.g. J. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90, 1051 (1998).
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Figure 6.2: A two-dimensional square lattice mapped onto a one-dimensional chain.

a two-dimensional square lattice are mapped onto those of a linear chain3. Clearly we can elicit a one-to-one
mapping between the sites of a two-dimensional square lattice and those of a one-dimensional chain. That is, the
two-dimensional square lattice Ising model may be written as a one-dimensional Ising model, i.e.

Ĥ = −J
square
lattice∑

〈ij〉
σi σj = −

linear
chain∑

n,n′

Jnn′ σn σn′ . (6.40)

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain Jn,n′ is long-ranged. This is apparent from
inspecting the site labels in fig. 6.2. Note that site n = 15 is linked to sites n′ = 14 and n′ = 16, but also to sites n′ =
−6 and n′ = −28. With each turn of the concentric spirals in the figure, the range of the interaction increases. To
complicate matters further, the interactions are no longer translationally invariant, i.e. Jnn′ 6= J(n−n′). But it is the
long-ranged nature of the interactions on our contrived one-dimensional chain which spoils our previous energy-
entropy argument, because now the domain walls themselves interact via a long-ranged potential. Consider for
example the linear chain with Jn,n′ = J |n − n′|−α, where α > 0. Let us compute the energy of a domain wall
configuration where σn = +1 if n > 0 and σn = −1 if n ≤ 0. The domain wall energy is then

∆ =

∞∑

m=0

∞∑

n=1

2J

|m+ n|α . (6.41)

Here we have written one of the sums in terms of m = −n′. For asymptotically large m and n, we can write
R = (m,n) and we obtain an integral over the upper right quadrant of the plane:

∞∫

1

dR R

π/2∫

0

dφ
2J

Rα (cosφ+ sinφ)α
= 2−α/2

π/4∫

−π/4

dφ

cosαφ

∞∫

1

dR

Rα−1
. (6.42)

The φ integral is convergent, but the R integral diverges for α ≤ 2. For a finite system, the upper bound on the
R integral becomes the system size L. For α > 2 the domain wall energy is finite in the thermodynamic limit

3A corresponding mapping can be found between a cubic lattice and the linear chain as well.
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L → ∞. In this case, entropy again wins. I.e. the entropy associated with a single domain wall is k
B

lnL, and
therefore F = E − kBT is always lowered by having a finite density of domain walls. For α < 2, the energy of a
single domain wall scales asL2−α. It was first proven by F. J. Dyson in 1969 that this model has a finite temperature
phase transition provided 1 < α < 2. There is no transition for α < 1 or α > 2. The case α = 2 is special, and is
discussed as a special case in the beautiful renormalization group analysis by J. M. Kosterlitz in Phys. Rev. Lett.
37, 1577 (1976).

6.2.7 High temperature expansion

Consider once again the ferromagnetic Ising model in zero field (H = 0), but on an arbitrary lattice. The partition
function is

Z = Tr eβJ
P

〈ij〉 σi σj =
(
coshβJ

)NL
Tr

{
∏

〈ij〉

(
1 + xσi σj

)
}
, (6.43)

where x = tanhβJ andNL is the number of links. For regular lattices, NL = 1
2zN , whereN is the number of lattice

sites and z is the lattice coordination number, i.e. the number of nearest neighbors for each site. We have used

eβJσσ′

= coshβJ ·
{
1 + σσ′ tanhβJ

}
=

{
e+βJ if σσ′ = +1

e−βJ if σσ′ = −1 .
(6.44)

We expand eqn. 6.43 in powers of x, resulting in a sum of 2NL terms, each of which can be represented graphically
in terms of so-called lattice animals. A lattice animal is a distinct (including reflections and rotations) arrangement
of adjacent plaquettes on a lattice. In order that the trace not vanish, only such configurations and their compo-
sitions are permitted. This is because each σi for every given site i must occur an even number of times in order
for a given term in the sum not to vanish. For all such terms, the trace is 2N . Let Γ represent a collection of lattice
animals, and gΓ the multiplicity of Γ . Then

Z = 2N
(
coshβJ

)NL
∑

Γ

gΓ

(
tanhβJ

)LΓ , (6.45)

where LΓ is the total number of sites in the diagram Γ , and gΓ is the multiplicity of Γ . Since x vanishes as T → ∞,
this procedure is known as the high temperature expansion (HTE).

For the square lattice, he enumeration of all lattice animals with up to order eight is given in fig. 6.3. For the
diagram represented as a single elementary plaquette, there are N possible locations for the lower left vertex. For
the 2 × 1 plaquette animal, one has g = 2N , because there are two inequivalent orientations as well as N trans-
lations. For two disjoint elementary squares, one has g = 1

2N(N − 5), which arises from subtracting 5N ‘illegal’
configurations involving double lines (remember each link in the partition sum appears only once!), shown in the
figure, and finally dividing by two because the individual squares are identical. Note that N(N − 5) is always
even for any integer value of N . Thus, to lowest interesting order on the square lattice,

Z = 2N
(
coshβJ

)2N
{

1 +Nx4 + 2Nx6 +
(
7 − 5

2

)
Nx8 + 1

2N
2x8 + O(x10)

}
. (6.46)

The free energy is therefore

F = −k
B
T ln 2 +Nk

B
T ln(1 − x2) −Nk

B
T
[
x4 + 2 x6 + 9

2 x
8 + O(x10)

]

= NkBT ln 2 −NkBT
{
x2 + 3

2 x
4 + 7

3 x
6 + 19

4 x8 + O(x10)
}
,

(6.47)

again with x = tanhβJ . Note that we’ve substituted cosh2βJ = 1/(1−x2) to write the final result as a power series
in x. Notice that the O(N2) factor in Z has cancelled upon taking the logarithm, so the free energy is properly
extensive.
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Figure 6.3: HTE diagrams on the square lattice and their multiplicities.

Note that the high temperature expansion for the one-dimensional Ising chain yields

Zchain(T,N) = 2N coshN−1βJ , Zring(T,N) = 2N coshNβJ , (6.48)

in agreement with the transfer matrix calculations. In higher dimensions, where there is a finite temperature phase
transition, one typically computes the specific heat c(T ) and tries to extract its singular behavior in the vicinity of
Tc, where c(T ) ∼ A (T − Tc)

−α. Since x(T ) = tanh(J/kBT ) is analytic in T , we have c(x) ∼ A′ (x − xc)
−α, where

xc = x(Tc). One assumes xc is the singularity closest to the origin and corresponds to the radius of convergence
of the high temperature expansion. If we write

c(x) =

∞∑

n=0

an x
n ∼ A′′

(
1 − x

xc

)−α

, (6.49)

then according to the binomial theorem we should expect

an

an−1

=
1

xc

[
1 − 1 − α

n

]
. (6.50)

Thus, by plotting an/an−1 versus 1/n, one extracts 1/xc as the intercept, and (α − 1)/xc as the slope.



6.3. NONIDEAL CLASSICAL GASES 11

Figure 6.4: HTE diagrams for the numerator Ykl of the correlation function Ckl. The blue path connecting sites k
and l is the string. The remaining red paths are all closed loops.

High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function Ckl = 〈σk σl〉 ? Yes we
can. We have

Ckl =
Tr

[
σk σl e

βJ
P

〈ij〉 σi σj

]

Tr

[
eβJ

P
〈ij〉 σ

i
σ

j

] ≡ Ykl

Z
. (6.51)

Recall our analysis of the partition function Z . We concluded that in order for the trace not to vanish, the spin
variable σi on each site i must occur an even number of times in the expansion of the product. Similar considera-
tions hold for Ykl, except now due to the presence of σk and σl, those variables now must occur an odd number of
times when expanding the product. It is clear that the only nonvanishing diagrams will be those in which there
is a finite string connecting sites k and l, in addition to the usual closed HTE loops. See fig. 6.4 for an instructive
sketch. One then expands both Ykl as well as Z in powers of x = tanhβJ , taking the ratio to obtain the correlator
Ckl. At high temperatures (x→ 0), both numerator and denominator are dominated by the configurations Γ with
the shortest possible total perimeter. For Z , this means the trivial path Γ = {∅}, while for Ykl this means finding
the shortest length path from k to l. (If there is no straight line path from k to l, there will in general be several such
minimizing paths.) Note, however, that the presence of the string between sites k and l complicates the analysis
of gΓ for the closed loops, since none of the links of Γ can intersect the string. It is worth stressing that this does
not mean that the string and the closed loops cannot intersect at isolated sites, but only that they share no common
links; see once again fig. 6.4.

6.3 Nonideal Classical Gases

Let’s switch gears now and return to the study of continuous classical systems described by a Hamiltonian

Ĥ
(
{xi}, {pi}

)
. In the next chapter, we will see how the critical properties of classical fluids can in fact be modeled

by an appropriate lattice gas Ising model, and we’ll derive methods for describing the liquid-gas phase transition
in such a model.
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6.3.1 The configuration integral

Consider the ordinary canonical partition function for a nonideal system of identical point particles interacting via
a central two-body potential u(r). We work in the ordinary canonical ensemble. The N -particle partition function
is

Z(T, V,N) =
1

N !

∫ N∏

i=1

ddpi d
dxi

hd
e−Ĥ/kBT

=
λ−Nd

T

N !

∫ N∏

i=1

ddxi exp

(
− 1

kBT

∑

i<j

u
(
|xi − xj|

))
.

(6.52)

Here, we have assumed a many body Hamiltonian of the form

Ĥ =

N∑

i=1

p2
i

2m
+
∑

i<j

u
(
|xi − xj|

)
, (6.53)

in which massive nonrelativistic particles interact via a two-body central potential. As before, λT =
√

2π~2/mk
B
T

is the thermal wavelength. We can now write

Z(T, V,N) = λ−Nd
T QN(T, V ) , (6.54)

where the configuration integral QN(T, V ) is given by

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN

∏

i<j

e−βu(rij) . (6.55)

There are no general methods for evaluating the configurational integral exactly.

6.3.2 One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional gas of
indistinguishable particles of mass m interacting via the potential

u(x− x′) =

{
∞ if |x− x′| < a

0 if |x− x′| ≥ a .
(6.56)

Let the gas be placed in a finite volume L. The hard sphere nature of the particles means that no particle can get
within a distance 1

2a of the ends at x = 0 and x = L. That is, there is a one-body potential v(x) acting as well,
where

v(x) =






∞ if x < 1
2a

0 if 1
2a ≤ x ≤ L− 1

2a

∞ if x > L− 1
2a .

(6.57)

The partition function of the 1D Tonks gas is given by

Z(T, L,N) =
λ−N

T

N !

L∫

0

dx1 · · ·
L∫

0

dxN
χ(x1, . . . , xN ) , (6.58)
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where χ = e−U/kBT is zero if any two ‘rods’ (of length a) overlap, or if any rod overlaps with either boundary at
x = 0 and x = L, and χ = 1 otherwise. Note that χ does not depend on temperature. Without loss of generality,
we can integrate over the subspace where x1 < x2 < · · · < xN and then multiply the result byN ! . Clearly xj must

lie to the right of xj−1 + a and to the left of Yj ≡ L− (N − j)a− 1
2a. Thus,

Z(T, L,N) = λ−N
T

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
YN∫

x
N−1+a

dxN

= λ−N
T

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
YN−1∫

x
N−2+a

dxN−1

(
YN−1 − xN−1

)

= λ−N
T

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
YN−2∫

x
N−3+a

dxN−2
1
2

(
YN−2 − xN−2

)2
= · · ·

=
λ−N

T

N !

(
X1 − 1

2a
)N

=
λ−N

T

N !
(L−Na)N . (6.59)

The λN
T factor comes from integrating over the momenta; recall λT =

√
2π~2/mkBT .

The free energy is

F = −kBT lnZ = −NkBT

{
− lnλT + 1 + ln

(
L

N
− a

)}
, (6.60)

where we have used Stirling’s rule to write lnN ! ≈ N lnN −N . The pressure is

p = −∂F
∂L

=
kBT

L
N − a

=
nkBT

1 − na
, (6.61)

where n = N/L is the one-dimensional density. Note that the pressure diverges as n approaches 1/a. The usual
one-dimensional ideal gas law, pL = NkBT , is replaced by pLeff = NkBT , where Leff = L−Na is the ‘free’ volume
obtained by subtracting the total ‘excluded volume’ Na from the original volume L.

6.3.3 Mayer cluster expansion

Let us return to the general problem of computing the configuration integral. Consider the function e−βuij , where
uij ≡ u(|xi−xj|). We assume that at very short distances there is a strong repulsion between particles, i.e. uij → ∞
as rij = |xi − xj | → 0, and that uij → 0 as rij → ∞. Thus, e−βuij vanishes as rij → 0 and approaches unity as
rij → ∞. For our purposes, it will prove useful to define the function

f(r) = e−βu(r) − 1 , (6.62)

called the Mayer function after Josef Mayer. We may now write

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN

∏

i<j

(
1 + fij

)
. (6.63)

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

u(r) = 4 ǫ

{(σ
r

)12
−
(σ
r

)6}
. (6.64)
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Figure 6.5: Bottom panel: Lennard-Jones potential u(r) = 4ǫ
(
x−12 − x−6

)
, with x = r/σ and ǫ = 1. Note the weak

attractive tail and the strong repulsive core. Top panel: Mayer function f(r, T ) = e−u(r)/kBT − 1 for kBT = 0.8 ǫ
(blue), kBT = 1.5 ǫ (green), and kBT = 5 ǫ (red).

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and a strong
short-ranged repulsion, phenomenologically modelled with a r−12 potential, which mimics a hard core due to
overlap of the atomic electron distributions. Setting u′(r) = 0 we obtain r∗ = 21/6 σ ≈ 1.12246 σ at the minimum,
where u(r∗) = −ǫ. In contrast to the Boltzmann weight e−βu(r), the Mayer function f(r) vanishes as r → ∞,
behaving as f(r) ∼ −βu(r). The Mayer function also depends on temperature. Sketches of u(r) and f(r) for the
Lennard-Jones model are shown in fig. 6.5.

The Lennard-Jones potential4 is realistic for certain simple fluids, but it leads to a configuration integral which is
in general impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere gas is intractable in
more than one space dimension. We can however make progress by deriving a series expansion for the equation of
state in powers of the particle density. This is known as the virial expansion. As was the case when we investigated
noninteracting quantum statistics, it is convenient to work in the grand canonical ensemble and to derive series
expansions for the density n(T, z) and the pressure p(T, z) in terms of the fugacity z, then solve for z(T, n) to
obtain p(T, n). These expansions in terms of fugacity have a nifty diagrammatic interpretation, due to Mayer.

We begin by expanding the product in eqn. 6.63 as

∏

i<j

(
1 + fij

)
= 1 +

∑

i<j

fij +
∑

i<j , k<l
(ij)6=(kl)

fij fkl + . . . . (6.65)

As there are 1
2N(N − 1) possible pairings, there are 2N(N−1)/2 terms in the expansion of the above product. Each

such term may be represented by a graph, as shown in fig. 6.7. For each such term, we draw a connection

between dots representing different particles i and j if the factor fij appears in the term under consideration. The
contribution for any given graph may be written as a product over contributions from each of its disconnected

4Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes, Nazi), Alfred-Marie Liénard
(French, Liénard-Wiechert potentials, not a Nazi), John Lennard-Jones (British, molecular structure, definitely not a Nazi), and Lynyrd Skynyrd
(American, ”Free Bird”, possibly killed by Nazis in 1977 plane crash). I thank my colleague Oleg Shpyrko for setting me straight on this.
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Figure 6.6: Left: John Lennard-Jones. Center: Catherine Zeta-Jones. Right: James Earl Jones.

component clusters. For example, in the case of the term in fig. 6.7, the contribution to the configurational integral
would be

∆Q =
1

N !

∫
ddx1 d

dx4 d
dx7 d

dx9 f1,4 f4,7 f4,9 f7,9

×
∫
ddx2 d

dx5 d
dx6 f2,5 f2,6 ×

∫
ddx3 d

dx10 f3,10 ×
∫
ddx8 d

dx11 f8,11 .

(6.66)

We will refer to a given product of Mayer functions which arises from this expansion as a term.

Figure 6.7: Diagrammatic interpretation of a term involving a product of eight Mayer functions.

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph. Now
a given unlabeled graph consists of a certain number of connected subgraphs. For a system with N particles, we
may then write

N =
∑

γ

mγ nγ , (6.67)

where γ ranges over all possible connected subgraphs, and

mγ = number of connected subgraphs of type γ in the unlabeled graph

nγ = number of vertices in the connected subgraph γ .

Note that the single vertex • counts as a connected subgraph, with n• = 1. We now ask: how many ways are
there of assigning the N labels to the N vertices of a given unlabeled graph? One might first thing the answer is
simply N !, however this is too big, because different assignments of the labels to the vertices may not result in a
distinct graph. To see this, consider the examples in fig. 6.8. In the first example, an unlabeled graph with four
vertices consists of two identical connected subgraphs. Given any assignment of labels to the vertices, then, we
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Figure 6.8: Different assignations of labels to vertices may not result in a distinct term in the expansion of the
configuration integral.

can simply exchange the two subgraphs and get the same term. So we should divide N ! by the product
∏

γ mγ !.
But even this is not enough, because within each connected subgraph γ there may be permutations which leave
the integrand unchanged, as shown in the second and third examples in fig. 6.8. We define the symmetry factor
sγ as the number of permutations of the labels which leaves a given connected subgraphs γ invariant. Examples
of symmetry factors are shown in fig. 6.9. Consider, for example, the third subgraph in the top row. Clearly one
can rotate the figure about its horizontal symmetry axis to obtain a new labeling which represents the same term.
This twofold axis is the only symmetry the diagram possesses, hence sγ = 2. For the first diagram in the second
row, one can rotate either of the triangles about the horizontal symmetry axis. One can also rotate the figure in the
plane by 180◦ so as to exchange the two triangles. Thus, there are 2× 2× 2 = 8 symmetry operations which result
in the same term, and sγ = 8. Finally, the last subgraph in the second row consists of five vertices each of which is

connected to the other four. Therefore any permutation of the labels results in the same term, and sγ = 5! = 120.

In addition to dividing by the product
∏

γ mγ !, we must then also divide by
∏

γ s
mγ
γ .

We can now write the partition function as

Z =
λ−Nd

T

N !

∑

{mγ}

N !
∏
mγ ! s

mγ
γ

·
∏

γ

(∫
ddx1 · · · ddxnγ

γ∏

i<j

fij

)mγ

· δN ,
P

mγnγ
, (6.68)

where the last product is over all links in the subgraph γ. The final Kronecker delta enforces the constraint
N =

∑
γ mγ nγ . We next define the cluster integral bγ as

bγ(T ) ≡ 1

sγ

· 1

V

∫
ddx1 · · ·ddxnγ

γ∏

i<j

fij . (6.69)

Since fij = f
(
|xi − xj |

)
, the product

∏γ
i<j fij is invariant under simultaneous translation of all the coordinate

vectors by any constant vector, and hence the integral over the nγ position variables contains exactly one factor of
the volume, which cancels with the prefactor in the above definition of bγ . Thus, each cluster integral is intensive,

scaling as V 0.5

5We assume that the long-ranged behavior of f(r) ≈ −βu(r) is integrable.
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Figure 6.9: The symmetry factor sγ for a connected subgraph γ is the number of permutations of its indices which
leaves the term

∏
(ij)∈γ fij invariant.

If we compute the grand partition function, then the fixed N constraint is relaxed, and we can do the sums:

Ξ = e−βΩ =
∑

{mγ}

(
eβµ λ−d

T

)P
mγnγ

∏

γ

1

mγ !

(
V bγ

)mγ

=
∏

γ

∞∑

mγ=0

1

mγ !

(
eβµ λ−d

T

)mγ nγ(
V bγ

)mγ

= exp

(
V
∑

γ

(
eβµ λ−d

T

)nγ bγ

)
.

(6.70)

Thus,

Ω(T, V, µ) = −V k
B
T
∑

γ

(
eβµ λ−d

T

)nγ bγ(T ) , (6.71)

and we can write

p = kBT
∑

γ

(
zλ−d

T

)nγ bγ(T )

n =
∑

γ

nγ

(
zλ−d

T

)nγ bγ(T ) ,
(6.72)

where z = exp(βµ) is the fugacity, and where b• ≡ 1. As in the case of ideal quantum gas statistical mechanics, we
can systematically invert the relation n = n(z, T ) to obtain z = z(n, T ), and then insert this into the equation for
p(z, T ) to obtain the equation of state p = p(n, T ). This yields the virial expansion of the equation of state,

p = nk
B
T
{
1 +B2(T )n+B3(T )n2 + . . .

}
. (6.73)

The virial coefficients Bj(T ) are obtained by summing a restricted set of cluster integrals, viz.

Bj(T ) = −(j − 1)
∑

γ∈Γ
j

bγ(T ) , (6.74)
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where Γj is the set of one-particle irreducible clusters with j vertices. A one-particle irreducible cluster is one which
remains connected (i.e. it does not ‘fall apart’) if any of its sites are removed. Thus, the j = 3 cluster which is a
linear chain is one-particle reducible, because it becomes disconnected if the middle site is removed. The j = 3
cluster which is a triangle, however, is one-particle irreducible.

6.3.4 Cookbook recipe

Just follow these simple steps!

• The pressure and number density are written as an expansion over unlabeled connected clusters γ, viz.

βp =
∑

γ

(
zλ−d

T

)nγ bγ

n =
∑

γ

nγ

(
zλ−d

T

)nγ bγ .

• For each term in each of these sums, draw the unlabeled connected cluster γ.

• Assign labels 1 , 2 , . . . , nγ to the vertices, where nγ is the total number of vertices in the cluster γ. It doesn’t
matter how you assign the labels.

• Write down the product
∏γ

i<j fij . The factor fij appears in the product if there is a link in your (now labeled)
cluster between sites i and j.

• The symmetry factor sγ is the number of elements of the symmetric group Snγ
which leave the product∏γ

i<j fij invariant. The identity permutation always leaves the product invariant, so sγ ≥ 1.

• The cluster integral is

bγ(T ) ≡ 1

sγ

· 1

V

∫
ddx1 · · · ddxnγ

γ∏

i<j

fij .

Due to translation invariance, bγ(T ) ∝ V 0. One can therefore set xnγ
≡ 0, eliminate the volume factor from

the denominator, and perform the integral over the remaining nγ−1 coordinates.

• This procedure generates expansions for p(T, z) and n(T, z) in powers of the fugacity z = eβµ. To obtain
something useful like p(T, n), we invert the equation n = n(T, z) to find z = z(T, n), and then substitute into
the equation p = p(T, z) to obtain p = p

(
T, z(T, n)

)
= p(T, n). The result is the virial expansion,

p = nkBT
{
1 +B2(T )n+B3(T )n2 + . . .

}
,

where

Bj(T ) = −(j − 1)
∑

γ∈Γ
j

bγ(T ) ,

with Γj the set of all one-particle irreducible j-site clusters.
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6.3.5 Lowest order expansion

We have

b−(T ) =
1

2V

∫
ddx1

∫
ddx2 f

(
|x1 − x2|

)

= 1
2

∫
ddr f(r)

(6.75)

and

b∧(T ) =
1

2V

∫
ddx1

∫
ddx2

∫
ddx3 f

(
|x1 − x2|

)
f
(
|x1 − x3|

)

= 1
2

∫
ddr

∫
ddr′ f(r) f(r′) = 2

(
b−
)2 (6.76)

and

b△(T ) =
1

6V

∫
ddx1

∫
ddx2

∫
ddx3 f

(
|x1 − x2|

)
f
(
|x1 − x3|

)
f
(
|x2 − x3|

)

= 1
6

∫
ddr

∫
ddr′ f(r) f(r′) f

(
|r − r′|

)
.

(6.77)

We may now write

p = k
B
T
{
zλ−d

T +
(
zλ−d

T

)2
b−(T ) +

(
zλ−d

T

)3 ·
(
b∧ + b△

)
+ O(z4)

}
(6.78)

n = zλ−d
T + 2

(
zλ−d

T

)2
b−(T ) + 3

(
zλ−d

T

)3 ·
(
b∧ + b△

)
+ O(z4) (6.79)

We invert by writing
zλ−d

T = n+ α2 n
2 + α3 n

3 + . . . (6.80)

and substituting into the equation for n(z, T ), yielding

n = (n+ α2 n
2 + α3 n

3) + 2(n+ α2 n
2)2 b− + 3n3

(
b∧ + b△

)
+ O(n4) . (6.81)

Thus,
0 = (α2 + 2b−)n2 + (α3 + 4α2 b− + 3b∧ + 3b△)n3 + . . . . (6.82)

We therefore conclude

α2 = −2b− (6.83)

α3 = −4α2 b− − 3b∧ − 3b△

= 8b2− − 6b2− − 3b△ = 2b2− − 3b△ . (6.84)

We now insert eqn. 6.80 with the determined values of α2,3 into the equation for p(z, T ), obtaining

p

k
B
T

= n− 2b−n
2 + (2b2− − 3b△)n3 + (n− 2b−n

2)2 b− + n3 (2b2− + b△) + O(n4)

= n− b− n
2 − 2b△ n3 + O(n4) .

(6.85)

Thus,
B2(T ) = −b−(T ) , B3(T ) = −2b△(T ) . (6.86)

Note that △ is the sole one-particle irreducible cluster with three vertices.
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Figure 6.10: The overlap of hard sphere Mayer functions. The shaded volume is V .

6.3.6 Hard sphere gas in three dimensions

The hard sphere potential is given by

u(r) =

{
∞ if r ≤ a

0 if r > a .
(6.87)

Here a is the diameter of the spheres. The corresponding Mayer function is then temperature independent, and
given by

f(r) =

{
−1 if r ≤ a

0 if r > a .
(6.88)

We can change variables

b−(T ) = 1
2

∫
d3r f(r) = − 2

3πa
3 . (6.89)

The calculation of b△ is more challenging. We have

b△ = 1
6

∫
d3ρ

∫
d3r f(ρ) f(r) f

(
|r − ρ|

)
. (6.90)

We must first compute the volume of overlap for spheres of radius a (recall a is the diameter of the constituent hard
sphere particles) centered at 0 and at ρ:

V =

∫
d3r f(r) f

(
|r − ρ|

)

= 2

a∫

ρ/2

dz π(a2 − z2) = 4π
3 a

3 − πa2ρ+ π
12 ρ

3 .
(6.91)

We then integrate over region |ρ| < a, to obtain

b△ = − 1
6 · 4π

a∫

0

dρ ρ2 ·
{

4π
3 a

3 − πa2ρ+ π
12 ρ

3
}

= − 5π2

36 a6 .

(6.92)
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Thus,

p = nkBT
{

1 + 2π
3 a

3n+ 5π2

18 a
6n2 + O(n3)

}
. (6.93)

6.3.7 Weakly attractive tail

Suppose

u(r) =

{
∞ if r ≤ a

−u0(r) if r > a .
(6.94)

Then the corresponding Mayer function is

f(r) =

{
−1 if r ≤ a

eβu0(r) − 1 if r > a .
(6.95)

Thus,

b−(T ) = 1
2

∫
d3r f(r) = − 2π

3 a
3 + 2π

∞∫

a

dr r2
[
eβu0(r) − 1

]
. (6.96)

Thus, the second virial coefficient is

B2(T ) = −b−(T ) ≈ 2π
3 a

3 − 2π

kBT

∞∫

a

dr r2 u0(r) , (6.97)

where we have assumed kBT ≪ u0(r). We see that the second virial coefficient changes sign at some temperature
T0, from a negative low temperature value to a positive high temperature value.

6.3.8 Spherical potential well

Consider an attractive spherical well potential with an infinitely repulsive core,

u(r) =






∞ if r ≤ a

−ǫ if a < r < R

0 if r > R .

(6.98)

Then the corresponding Mayer function is

f(r) =






−1 if r ≤ a

eβǫ − 1 if a < r < R

0 if r > R .

(6.99)

Writing s ≡ R/a, we have

B2(T ) = −b−(T ) = − 1
2

∫
d3r f(r)

= −1

2

{
(−1) · 4π

3 a
3 +

(
eβǫ − 1

)
· 4π

3 a
3(s3 − 1)

}

= 2π
3 a

3

{
1 − (s3 − 1)

(
eβǫ − 1

)}
.

(6.100)
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Figure 6.11: An attractive spherical well with a repulsive core u(r) and its associated Mayer function f(r).

To find the temperature T0 where B2(T ) changes sign, we set B2(T0) = 0 and obtain

k
B
T0 = ǫ

/
ln

(
s3

s3 − 1

)
. (6.101)

Recall in our study of the thermodynamics of the Joule-Thompson effect in §1.10.6 that the throttling process is
isenthalpic. The temperature change, when a gas is pushed (or escapes) through a porous plug from a high pressure
region to a low pressure one is

∆T =

p2∫

p1

dp

(
∂T

∂p

)

H

, (6.102)

where (
∂T

∂p

)

H

=
1

Cp

[
T

(
∂V

∂T

)

p

− V

]
. (6.103)

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we have

p =
N

V
k

B
T +

N2

V 2
k

B
T B2(T ) + . . . (6.104)

and we compute
(

∂V
∂T

)
p

by seting

0 = dp = −NkBT

V 2
dV +

NkB

V
dT − 2N2

V 3
k

B
T B2(T ) dV +

N2

V 2
d
(
k

B
T B2(T )

)
+ . . . . (6.105)

Dividing by dT , we find

T

(
∂V

∂T

)

p

− V = N

[
T
∂B2

∂T
−B2

]
. (6.106)

The temperature where
(

∂T
∂p

)
H

changes sign is called the inversion temperature T ∗. To find the inversion point, we

set T ∗B′
2(T

∗) = B2(T
∗), i.e.

d lnB2

d lnT

∣∣∣∣
T∗

= 1 . (6.107)

If we approximate B2(T ) ≈ A− B
T , then the inversion temperature follows simply:

B

T ∗ = A− B

T ∗ =⇒ T ∗ =
2B

A
. (6.108)
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6.3.9 Hard spheres with a hard wall

Consider a hard sphere gas in three dimensions in the presence of a hard wall at z = 0. The gas is confined to the
region z > 0. The total potential energy is now

W (x1 , . . . , xN ) =
∑

i

v(xi) +
∑

i<j

u(xi − xj) , (6.109)

where

v(r) = v(z) =

{
∞ if z ≤ 1

2a

0 if z > 1
2a ,

(6.110)

and u(r) is given in eqn. 6.87. The grand potential is written as a series in the total particle number N , and is
given by

Ξ = e−βΩ = 1 + ξ

∫
d3r e−βv(z) + 1

2ξ
2

∫
d3r

∫
d3r′ e−βv(z) e−βv(z′) e−βu(r−r′) + . . . , (6.111)

where ξ = z λ−3
T , with z = eµ/kBT the fugacity. Taking the logarithm, and invoking the Taylor series ln(1 + δ) =

δ − 1
2δ

2 + 1
3δ

3 − . . ., we obtain

−βΩ = ξ

∫

z> a
2

d3r + 1
2ξ

2

∫

z> a
2

d3r

∫

z′> a
2

d3r′
[
e−βu(r−r′) − 1

]
+ . . . (6.112)

The volume is V =
∫

z>0

d3r. Dividing by V , we have, in the thermodynamic limit,

−βΩ
V

= βp = ξ + 1
2ξ

2 1

V

∫

z> a
2

d3r

∫

z′> a
2

d3r′
[
e−βu(r−r′) − 1

]
+ . . .

= ξ − 2
3πa

3 ξ2 + O(ξ3) .

(6.113)

The number density is

n = ξ
∂

∂ξ
(βp) = ξ − 4

3πa
3 ξ2 + O(ξ3) , (6.114)

and inverting to obtain ξ(n) and then substituting into the pressure equation, we obtain the lowest order virial
expansion for the equation of state,

p = k
B
T
{
n+ 2

3πa
3 n2 + . . .

}
. (6.115)

As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Next, let us compute the number density n(z), given by

n(z) =
〈 ∑

i

δ(r − ri)
〉
. (6.116)

Due to translational invariance in the (x, y) plane, we know that the density must be a function of z alone. The
presence of the wall at z = 0 breaks translational symmetry in the z direction. The number density is

n(z) = Tr

[
eβ(µN̂−Ĥ)

N∑

i=1

δ(r − ri)

]/
Tr eβ(µN̂−Ĥ)

= Ξ−1

{
ξ e−βv(z) + ξ2 e−βv(z)

∫
d3r′ e−βv(z′) e−βu(r−r′) + . . .

}

= ξ e−βv(z) + ξ2 e−βv(z)

∫
d3r′ e−βv(z′)

[
e−βu(r−r′) − 1

]
+ . . . .

(6.117)
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Figure 6.12: In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall. The resulting
density n(z) vanishes for z < 1

2a since the center of each sphere must be at least one radius (1
2a) away from the

wall. Between z = 1
2a and z = 3

2a there is a density enhancement. If the calculation were carried out to higher
order, n(z) would exhibit damped spatial oscillations with wavelength λ ∼ a.

Note that the term in square brackets in the last line is the Mayer function f(r − r′) = e−βu(r−r′) − 1. Consider
the function

e−βv(z) e−βv(z′) f(r − r′) =






0 if z < 1
2a or z′ < 1

2a

0 if |r − r′| > a

−1 if z > 1
2a and z′ > 1

2a and |r − r′| < a .

(6.118)

Now consider the integral of the above function with respect to r′. Clearly the result depends on the value of z.
If z > 3

2a, then there is no excluded region in r′ and the integral is (−1) times the full Mayer sphere volume, i.e.

− 4
3πa

3. If z < 1
2a the integral vanishes due to the e−βv(z) factor. For z infinitesimally larger than 1

2a, the integral
is (−1) times half the Mayer sphere volume, i.e. − 2

3πa
3. For z ∈

[
a
2 ,

3a
2

]
the integral interpolates between − 2

3πa
3

and − 4
3πa

3. Explicitly, one finds by elementary integration,

∫
d3r′ e−βv(z) e−βv(z′) f(r − r′) =





0 if z < 1
2a[

−1 − 3
2

(
z
a − 1

2

)
+ 1

2

(
z
a − 1

2

)3] · 2
3πa

3 if 1
2a < z < 3

2a

− 4
3πa

3 if z > 3
2a .

(6.119)

After substituting ξ = n+ 4
3πa

3n2 + O(n3) to relate ξ to the bulk density n = n∞, we obtain the desired result:

n(z) =






0 if z < 1
2a

n+
[
1 − 3

2

(
z
a − 1

2

)
+ 1

2

(
z
a − 1

2

)3] · 2
3πa

3 n2 if 1
2a < z < 3

2a

n if z > 3
2a .

(6.120)

A sketch is provided in the right hand panel of fig. 6.12. Note that the density n(z) vanishes identically for z < 1
2

due to the exclusion of the hard spheres by the wall. For z between 1
2a and 3

2a, there is a density enhancement,
the origin of which has a simple physical interpretation. Since the wall excludes particles from the region z < 1

2 ,
there is an empty slab of thickness 1

2z coating the interior of the wall. There are then no particles in this region to
exclude neighbors to their right, hence the density builds up just on the other side of this slab. The effect vanishes
to the order of the calculation past z = 3

2a, where n(z) = n returns to its bulk value. Had we calculated to higher
order, we’d have found damped oscillations with spatial period λ ∼ a.
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6.4 Lee-Yang Theory

6.4.1 Analytic properties of the partition function

How can statistical mechanics describe phase transitions? This question was addressed in some beautiful mathe-
matical analysis by Lee and Yang6. Consider the grand partition function Ξ,

Ξ(T, V, z) =

∞∑

N=0

zN QN(T, V )λ−dN
T , (6.121)

where

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN e−U(x1 , ... , xN )/kBT (6.122)

is the contribution to the N -particle partition function from the potential energy U (assuming no momentum-
dependent potentials). For two-body central potentials, we have

U(x1, . . . ,xN) =
∑

i<j

v
(
|xi − xj |

)
. (6.123)

Suppose further that these classical particles have hard cores. Then for any finite volume, there must be some
maximum number NV such that QN(T, V ) vanishes for N > NV . This is because if N > NV at least two spheres
must overlap, in which case the potential energy is infinite. The theoretical maximum packing density for hard

spheres is achieved for a hexagonal close packed (HCP) lattice7, for which fHCP = π
3
√

2
= 0.74048. If the spheres

have radius r0, then NV = V/4
√

2r30 is the maximum particle number.

Thus, if V itself is finite, then Ξ(T, V, z) is a finite degree polynomial in z, and may be factorized as

Ξ(T, V, z) =

NV∑

N=0

zN QN(T, V )λ−dN
T =

NV∏

k=1

(
1 − z

zk

)
, (6.124)

where zk(T, V ) is one of the NV zeros of the grand partition function. Note that the O(z0) term is fixed to be unity.
Note also that since the configuration integrals QN (T, V ) are all positive, Ξ(z) is an increasing function along the
positive real z axis. In addition, since the coefficients of zN in the polynomial Ξ(z) are all real, then Ξ(z) = 0

implies Ξ(z) = Ξ(z̄) = 0, so the zeros of Ξ(z) are either real and negative or else come in complex conjugate pairs.

For finite NV , the situation is roughly as depicted in the left panel of fig. 6.13, with a set of NV zeros arranged in
complex conjugate pairs (or negative real values). The zeros aren’t necessarily distributed along a circle as shown
in the figure, though. They could be anywhere, so long as they are symmetrically distributed about the Re(z) axis,
and no zeros occur for z real and nonnegative.

Lee and Yang proved the existence of the limits

p

k
B
T

= lim
V →∞

1

V
ln Ξ(T, V, z) (6.125)

n = lim
V →∞

z
∂

∂z

[
1

V
ln Ξ(T, V, z)

]
, (6.126)

6See C. N. Yang and R. D. Lee, Phys. Rev. 87, 404 (1952) and ibid, p. 410
7See e.g. http://en.wikipedia.org/wiki/Close-packing . For randomly close-packed hard spheres, one finds, from numerical simulations,

fRCP = 0.644.
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Figure 6.13: In the thermodynamic limit, the grand partition function can develop a singularity at positive real
fugacity z. The set of discrete zeros fuses into a branch cut.

and notably the result

n = z
∂

∂z

(
p

k
B
T

)
, (6.127)

which amounts to the commutativity of the thermodynamic limit V → ∞ with the differential operator z ∂
∂z . In

particular, p(T, z) is a smooth function of z in regions free of roots. If the roots do coalesce and pinch the positive
real axis, then then density n can be discontinuous, as in a first order phase transition, or a higher derivative
∂jp/∂nj can be discontinuous or divergent, as in a second order phase transition.

6.4.2 Electrostatic analogy

There is a beautiful analogy to the theory of two-dimensional electrostatics. We write

p

k
B
T

=
1

V

NV∑

k=1

ln

(
1 − z

zk

)

= −
NV∑

k=1

[
φ(z − zk) − φ(0 − zk)

]
, (6.128)

where

φ(z) = − 1

V
ln(z) (6.129)

is the complex potential due to a line charge of linear density λ = V −1 located at origin. The number density is
then

n = z
∂

∂z

(
p

k
B
T

)
= −z ∂

∂z

NV∑

k=1

φ(z − zk) , (6.130)

to be evaluated for physical values of z, i.e. z ∈ R
+. Since φ(z) is analytic,

∂φ

∂z̄
=

1

2

∂φ

∂x
+
i

2

∂φ

∂y
= 0 . (6.131)
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If we decompose the complex potential φ = φ1 + iφ2 into real and imaginary parts, the condition of analyticity is
recast as the Cauchy-Riemann equations,

∂φ1

∂x
=
∂φ2

∂y
,

∂φ1

∂y
= −∂φ2

∂x
. (6.132)

Thus,

−∂φ
∂z

= −1

2

∂φ

∂x
+
i

2

∂φ

∂y

= −1

2

(
∂φ1

∂x
+
∂φ2

∂y

)
+
i

2

(
∂φ1

∂y
− ∂φ2

∂x

)

= −∂φ1

∂x
+ i

∂φ1

∂y

= Ex − iEy ,

(6.133)

where E = −∇φ1 is the electric field. Suppose, then, that as V → ∞ a continuous charge distribution develops,
which crosses the positive real z axis at a point x ∈ R

+. Then

n+ − n−
x

= Ex(x+) − Ex(x−) = 4πσ(x) , (6.134)

where σ is the linear charge density (assuming logarithmic two-dimensional potentials), or the two-dimensional
charge density (if we extend the distribution along a third axis).

6.4.3 Example

As an example, consider the function

Ξ(z) =
(1 + z)M (1 − zM )

1 − z

= (1 + z)M
(
1 + z + z2 + . . .+ zM−1

)
.

(6.135)

The (2M − 1) degree polynomial has an M th order zero at z = −1 and (M − 1) simple zeros at z = e2πik/M , where
k ∈ {1, . . . ,M−1}. Since M serves as the maximum particle number NV , we may assume that V = Mv0, and the
V → ∞ limit may be taken as M → ∞. We then have

p

kBT
= lim

V →∞

1

V
ln Ξ(z)

=
1

v0
lim

M→∞

1

M
ln Ξ(z)

=
1

v0
lim

M→∞

1

M

[
M ln(1 + z) + ln

(
1 − zM

)
− ln(1 − z)

]
.

(6.136)

The limit depends on whether |z| > 1 or |z| < 1, and we obtain

p v0
k

B
T

=





ln(1 + z) if |z| < 1

[
ln(1 + z) + ln z

]
if |z| > 1 .

(6.137)
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Figure 6.14: Fugacity z and pv0/kBT versus dimensionless specific volume v/v0 for the example problem discussed
in the text.

Thus,

n = z
∂

∂z

(
p

kBT

)
=






1
v0

· z
1+z if |z| < 1

1
v0

·
[

z
1+z + 1

]
if |z| > 1 .

(6.138)

If we solve for z(v), where v = n−1, we find

z =






v0

v−v0
if v > 2v0

v0−v
2v−v0

if 1
2v0 < v < 2

3v0 .

(6.139)

We then obtain the equation of state,

p v0
kBT

=






ln
(

v
v−v0

)
if v > 2v0

ln 2 if 2
3v0 < v < 2v0

ln
(

v(v0−v)
(2v−v0)2

)
if 1

2v0 < v < 2
3v0 .

(6.140)

6.5 Liquid State Physics

6.5.1 The many-particle distribution function

The virial expansion is typically applied to low-density systems. When the density is high, i.e. when na3 ∼ 1,
where a is a typical molecular or atomic length scale, the virial expansion is impractical. There are to many terms
to compute, and to make progress one must use sophisticated resummation techniques to investigate the high
density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions. These
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objects are derived from the general N -body Boltzmann distribution,

f(x1, . . . ,xN ; p1, . . . ,pN ) =





Z−1
N · 1

N ! e
−βĤN(p,x) OCE

Ξ−1 · 1
N ! e

βµN e−βĤN (p,x) GCE .

(6.141)

We assume a Hamiltonian of the form

ĤN =

N∑

i=1

p2
i

2m
+W (x1 , . . . , xN ). (6.142)

The quantity

f(x1, . . . ,xN ; p1, . . . ,pN )
ddx1 d

dp1

hd
· · · d

dxN ddpN

hd
(6.143)

is the propability of finding N particles in the system, with particle #1 lying within d3x1 of x1 and having momen-

tum within ddp1 of p1, etc. If we compute averages of quantities which only depend on the positions {xj} and not
on the momenta {pj}, then we may integrate out the momenta to obtain, in the OCE,

P (x1, . . . ,xN) = Q−1
N · 1

N !
e−βW (x1 , ... , xN ) , (6.144)

where W is the total potential energy,

W (x1, . . . ,xN ) =
∑

i

v(xi) +
∑

i<j

u(xi − xj) +
∑

i<j<k

w(xi − xj , xj − xk) + . . . , (6.145)

and QN is the configuration integral,

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN e−βW (x1 , ... , xN ) . (6.146)

We will, for the most part, consider only two-body central potentials as contributing to W , which is to say we
will only retain the middle term on the RHS. Note that P (x1, . . . ,xN ) is invariant under any permutation of the
particle labels.

6.5.2 Averages over the distribution

To compute an average, one integrates over the distribution:

〈
F (x1, . . . ,xN )

〉
=

∫
ddx1 · · ·

∫
ddxN P (x1 , . . . , xN )F (x1 , . . . , xN) . (6.147)

The overall N -particle probability density is normalized according to
∫
ddxN P (x1, . . . ,xN ) = 1 . (6.148)

The average local density is

n1(r) =
〈∑

i

δ(r − xi)
〉

= N

∫
ddx2 · · ·

∫
ddxN P (r,x2, . . . ,xN ) .

(6.149)
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Note that the local density obeys the sum rule
∫
ddr n1(r) = N . (6.150)

In a translationally invariant system, n1 = n = N
V is a constant independent of position. The boundaries of

a system will in general break translational invariance, so in order to maintain the notion of a translationally
invariant system of finite total volume, one must impose periodic boundary conditions.

The two-particle density matrix n2(r1, r2) is defined by

n2(r1, r2) =
〈∑

i6=j

δ(r1 − xi) δ(r2 − xj)
〉

= N(N − 1)

∫
ddx3 · · ·

∫
ddxN P (r1, r2,x3, . . . ,xN) .

(6.151)

As in the case of the one-particle density matrix, i.e. the local density n1(r), the two-particle density matrix satisfies
a sum rule: ∫

ddr1

∫
ddr2 n2(r1, r2) = N(N − 1) . (6.152)

Generalizing further, one defines the k-particle density matrix as

nk(r1, . . . , rk) =
〈 ∑

i1···ik

′
δ(r1 − xi1

) · · · δ(rk − xi
k
)
〉

=
N !

(N − k)!

∫
ddxk+1 · · ·

∫
ddxN P (r1, . . . , rk,xk+1, . . . ,xN ) ,

(6.153)

where the prime on the sum indicates that all the indices i1, . . . , ik are distinct. The corresponding sum rule is
then ∫

ddr1 · · ·
∫
ddrk nk(r1, . . . , rk) =

N !

(N − k)!
. (6.154)

The average potential energy can be expressed in terms of the distribution functions. Assuming only two-body
interactions, we have

〈W 〉 =
〈∑

i<j

u(xi − xj)
〉

= 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)

〈∑

i6=j

δ(r1 − xi) δ(r2 − xj)
〉

= 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)n2(r1, r2) .

(6.155)

As the separations rij = |ri − rj | get large, we expect the correlations to vanish, in which case

nk(r1, . . . , rk) =
〈 ∑

i1···ik

′
δ(r1 − xi1

) · · · δ(rk − xi
k
)
〉

−−−−−→
r

ij
→∞

∑

i1···ik

′〈
δ(r1 − xi1

)
〉
· · ·
〈
δ(rk − xi

k
)
〉

=
N !

(N − k)!
· 1

Nk
n1(r1) · · ·n1(rk)

=

(
1 − 1

N

)(
1 − 2

N

)
· · ·
(

1 − k − 1

N

)
n1(r1) · · ·n1(rk) .

(6.156)
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The k-particle distribution function is defined as the ratio

gk(r1, . . . , rk) ≡ nk(r1, . . . , rk)

n1(r1) · · ·n1(rk)
. (6.157)

For large separations, then,

gk(r1, . . . , rk) −−−−−→
r

ij
→∞

k−1∏

j=1

(
1 − j

N

)
. (6.158)

For isotropic systems, the two-particle distribution function g2(r1, r2) depends only on the magnitude |r1 − r2|.
As a function of this scalar separation, the function is known as the radial distribution function:

g(r) ≡ g2(r) =
1

n2

〈∑

i6=j

δ(r − xi) δ(xj)
〉

=
1

V n2

〈∑

i6=j

δ(r − xi + xj)
〉
.

(6.159)

The radial distribution function is of great importance in the physics of liquids because

• thermodynamic properties of the system can be related to g(r)

• g(r) is directly measurable by scattering experiments

For example, in an isotropic system the average potential energy is given by

〈W 〉 = 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)n2(r1, r2)

= 1
2n

2

∫
ddr1

∫
ddr2 u(r1 − r2) g

(
|r1 − r2|

)

=
N2

2V

∫
ddr u(r) g(r) .

(6.160)

For a three-dimensional system, the average internal (i.e. potential) energy per particle is

〈W 〉
N

= 2πn

∞∫

0

dr r2 g(r)u(r) . (6.161)

Intuitively, f(r) dr ≡ 4πr2 n g(r) dr is the average number of particles lying at a radial distance between r and
r + dr from a given reference particle. The total potential energy of interaction with the reference particle is then
f(r)u(r) dr. Now integrate over all r and divide by two to avoid double-counting. This recovers eqn. 6.161.

In the OCE, g(r) obeys the sum rule

∫
ddr g(r) =

V

N2
·N(N − 1) = V − V

N
, (6.162)

hence

n

∫
ddr
[
g(r) − 1

]
= −1 (OCE) . (6.163)

The function h(r) ≡ g(r) − 1 is called the pair correlation function.
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Figure 6.15: Pair distribution functions for hard spheres of diameter a at filling fraction η = π
6a

3n = 0.49 (left)
and for liquid Argon at T = 85 K (right). Molecular dynamics data for hard spheres (points) is compared with
the result of the Percus-Yevick approximation (see below in §6.5.8). Reproduced (without permission) from J.-P.
Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental data on liquid argon are from the
neutron scattering work of J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973). The data (points) are compared with
molecular dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

In the grand canonical formulation, we have

n

∫
d3r h(r) =

〈
N
〉

V
·
[〈
N(N − 1)

〉

〈N〉2 V − V

]

=

〈
N2
〉
−
〈
N
〉2

〈
N
〉 − 1

= nkBTκT − 1 (GCE) ,

(6.164)

where κT is the isothermal compressibility. Note that in an ideal gas we have h(r) = 0 and κT = κ0
T ≡ 1/nkBT .

Self-condensed systems, such as liquids and solids far from criticality, are nearly incompressible, hence 0 <
nkBT κT ≪ 1, and therefore n

∫
d3r h(r) ≈ −1. For incompressible systems, where κT = 0, this becomes an

equality.

As we shall see below in §6.5.4, the function h(r), or rather its Fourier transform ĥ(k), is directly measured in
a scattering experiment. The question then arises as to which result applies: the OCE result from eqn. 6.163 or
the GCE result from eqn. 6.164. The answer is that under almost all experimental conditions it is the GCE result
which applies. The reason for this is that the scattering experiment typically illuminates only a subset of the entire
system. This subsystem is in particle equilibrium with the remainder of the system, hence it is appropriate to use
the grand canonical ensemble. The OCE results would only apply if the scattering experiment were to measure
the entire system.
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Figure 6.16: Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys. 202, 295
(1996).

6.5.3 Virial equation of state

The virial of a mechanical system is defined to be

G =
∑

i

xi · Fi , (6.165)

where Fi is the total force acting on particle i. If we average G over time, we obtain

〈G〉 = lim
T→∞

1

T

T∫

0

dt
∑

i

xi · Fi

= − lim
T→∞

1

T

T∫

0

dt
∑

i

m ẋ2
i

= −3Nk
B
T .

(6.166)

Here, we have made use of

xi · Fi = mxi · ẍi = −m ẋ2
i +

d

dt

(
mxi · ẋi

)
, (6.167)

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions. In a
bounded system, there are two contributions to the force Fi. One contribution is from the surfaces which enclose
the system. This is given by8

〈G〉surfaces =
〈∑

i

xi · F (surf)
i

〉
= −3pV . (6.168)

8To derive this expression, note that F (surf) is directed inward and vanishes away from the surface. Each Cartesian direction α = (x, y, z)

then contributes −F
(surf)
α Lα, where Lα is the corresponding linear dimension. But F

(surf)
α = pAα, where Aα is the area of the corresponding

face and p. is the pressure. Summing over the three possibilities for α, one obtains eqn. 6.168.
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The remaining contribution is due to the interparticle forces. Thus,

p

k
B
T

=
N

V
− 1

3V k
B
T

〈∑

i

xi · ∇iW
〉
. (6.169)

Invoking the definition of g(r), we have

p = nkBT




1 − 2πn

3kBT

∞∫

0

dr r3 g(r)u′(r)




 . (6.170)

As an alternate derivation, consider the First Law of Thermodynamics,

dΩ = −S dT − p dV −N dµ , (6.171)

from which we derive

p = −
(
∂Ω

∂V

)

T,µ

= −
(
∂F

∂V

)

T,N

. (6.172)

Now let V → ℓ3V , where ℓ is a scale parameter. Then

p = −∂Ω
∂V

= − 1

3V

∂

∂ℓ

∣∣∣∣∣
ℓ=1

Ω(T, ℓ3V, µ) . (6.173)

Now

Ξ(T, ℓ3V, µ) =

∞∑

N=0

1

N !
eβµN λ−3N

T

∫

ℓ3V

d3x1 · · ·
∫

ℓ3V

d3xN e−βW (x1 , ... , xN )

=

∞∑

N=0

1

N !

(
eβµ λ−3

T

)N

ℓ3N

∫

V

d3x1 · · ·
∫

V

d3xN e−βW (ℓx1 , ... , ℓxN )

(6.174)

Thus,

p = − 1

3V

∂Ω(ℓ3V )

∂ℓ

∣∣∣∣∣
ℓ=1

=
k

B
T

3V

1

Ξ

∂Ξ(ℓ3V )

∂ℓ

=
k

B
T

3V

1

Ξ

∞∑

N=0

1

N !

(
zλ−3

T

)N





∫

V

d3x1 · · ·
∫

V

d3xN e−βW (x1 , ... , xN )

[
3N − β

∑

i

xi ·
∂W

∂xi

]



= nk
B
T − 1

3V

〈∂W
∂ℓ

〉

ℓ=1
. (6.175)

Finally, from W =
∑

i<j u(ℓxij) we have

〈∂W
∂ℓ

〉

ℓ=1
=
∑

i<j

xij · ∇u(xij)

=
2πN2

V

∞∫

0

dr r3g(r)u′(r) ,

(6.176)

and hence

p = nk
B
T − 2

3πn
2

∞∫

0

dr r3 g(r)u′(r) . (6.177)

Note that the density n enters the equation of state explicitly on the RHS of the above equation, but also implicitly
through the pair distribution function g(r), which has implicit dependence on both n and T .
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Figure 6.17: In a scattering experiment, a beam of particles interacts with a sample and the beam particles scatter
off the sample particles. A momentum ~q and energy ~ω are transferred to the beam particle during such a
collision. If ω = 0, the scattering is said to be elastic. For ω 6= 0, the scattering is inelastic.

6.5.4 Correlations and scattering

Consider the scattering of a light or particle beam (i.e. photons or neutrons) from a liquid. We label the states of
the beam particles by their wavevector k and we assume a general dispersion εk. For photons, εk = ~c|k|, while

for neutrons εk = ~
2k2

2mn
. We assume a single scattering process with the liquid, during which the total momentum

and energy of the liquid plus beam are conserved. We write

k′ = k + q (6.178)

εk′ = εk + ~ω , (6.179)

where k′ is the final state of the scattered beam particle. Thus, the fluid transfers momentum ∆p = ~q and energy
~ω to the beam.

Now consider the scattering process between an initial state | i,k 〉 and a final state | j,k′ 〉, where these states
describe both the beam and the liquid. According to Fermi’s Golden Rule, the scattering rate is

Γik→jk′ =
2π

~

∣∣〈 j,k′ | V | i,k 〉
∣∣2 δ(Ej − Ei + ~ω) , (6.180)

where V is the scattering potential and Ei is the initial internal energy of the liquid. If r is the position of the beam
particle and {xl} are the positions of the liquid particles, then

V(r) =

N∑

l=1

v(r − xl) . (6.181)

The differential scattering cross section (per unit frequency per unit solid angle) is

∂2σ

∂Ω ∂ω
=

~

4π

g(εk′)

|v
k
|
∑

i,j

Pi Γik→jk′ , (6.182)

where

g(ε) =

∫
ddk

(2π)d
δ(ε− εk) (6.183)
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is the density of states for the beam particle and

Pi =
1

Z
e−βEi . (6.184)

Consider now the matrix element

〈
j,k′ ∣∣V

∣∣ i,k
〉

=
〈
j
∣∣ 1

V

N∑

l=1

∫
ddrei(k−k′)·r v(r − xl)

∣∣ i
〉

=
1

V
v̂(q)

〈
j
∣∣

N∑

l=1

e−iq·xl

∣∣ i
〉
,

(6.185)

where we have assumed that the incident and scattered beams are plane waves. We then have

∂2σ

∂Ω ∂ω
=

~

2

g(εk+q)

|∇kεk|
|v̂(q)|2
V 2

∑

i

Pi

∑

j

∣∣〈 j
∣∣

N∑

l=1

e−iq·xl

∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω)

=
g(εk+q)

4π |∇
k
ε
k
|
N

V 2
|v̂(q)|2 S(q, ω) ,

(6.186)

where S(q, ω) is the dynamic structure factor,

S(q, ω) =
2π~

N

∑

i

Pi

∑

j

∣∣〈 j
∣∣

N∑

l=1

e−iq·xl

∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω) (6.187)

Note that for an arbitrary operator A,

∑

j

∣∣〈 j
∣∣A
∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω) =

1

2π~

∑

j

∞∫

−∞

dt ei(Ej−Ei+~ω) t/~
〈
i
∣∣A† ∣∣ j

〉 〈
j
∣∣A
∣∣ i
〉

=
1

2π~

∑

j

∞∫

−∞

dt eiωt
〈
i
∣∣A† ∣∣ j

〉 〈
j
∣∣ eiĤt/~ Ae−iĤt/~

∣∣ i
〉

=
1

2π~

∞∫

−∞

dt eiωt
〈
i
∣∣A†(0)A(t)

∣∣ i
〉
. (6.188)

Thus,

S(q, ω) =
1

N

∞∫

−∞

dt eiωt
∑

i

Pi

〈
i
∣∣ ∑

l,l′

eiq·xl(0) e−iq·x
l′

(t)
∣∣ i
〉

=
1

N

∞∫

−∞

dt eiωt
〈∑

l,l′

eiq·xl(0) e−iq·x
l′

(t)
〉
,

(6.189)

where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical operator.
If we integrate over all frequencies, we obtain the equal time correlator,

S(q) =

∞∫

−∞

dω

2π
S(q, ω) =

1

N

∑

l,l′

〈
eiq·(xl−x

l′
)
〉

= N δq,0 + 1 + n

∫
ddr e−iq·r [g(r) − 1

]
.

(6.190)
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Figure 6.18: Comparison of the static structure factor as determined by neutron scattering work of J. L. Yarnell et
al., Phys. Rev. A 7, 2130 (1973) with molecular dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

known as the static structure factor9. Note that S(q = 0) = N , since all the phases eiq·(xi−xj) are then unity. As
q → ∞, the phases oscillate rapidly with changes in the distances |xi −xj|, and average out to zero. However, the
‘diagonal’ terms in the sum, i.e. those with i = j, always contribute a total of 1 to S(q). Therefore in the q → ∞
limit we have S(q → ∞) = 1.

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered beam particles,
although there is always a finite experimental resolution, both in q and ω. This means that what is measured is
actually something like

Smeas(q, ω) =

∫
ddq′

∫
dω′ F (q − q′)G(ω − ω′)S(q′, ω′) , (6.191)

where F and G are essentially Gaussian functions of their argument, with width given by the experimental reso-
lution. If one integrates over all frequencies ω, i.e. if one simply counts scattered particles as a function of q but
without any discrimination of their energies, then one measures the static structure factor S(q). Elastic scattering
is determined by S(q, ω = 0, i.e. no energy transfer.

6.5.5 Correlation and response

Suppose an external potential v(x) is also present. Then

P (x1 , . . . , xN) =
1

QN [v]
· 1

N !
e−βW (x1 , ... , xN ) e−β

P
i v(xi) , (6.192)

where

QN [v] =
1

N !

∫
ddx1 · · ·

∫
ddxN e−βW (x1 , ... , xN ) e−β

P
i v(xi) . (6.193)

9We may write δq,0 = 1
V

(2π)d δ(q).
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The Helmholtz free energy is then

F = − 1

β
ln
(
λ−dN

T QN [v]
)
. (6.194)

Now consider the functional derivative

δF

δv(r)
= − 1

β
· 1

QN

· δQN

δv(r)
. (6.195)

Using
∑

i

v(xi) =

∫
ddr v(r)

∑

i

δ(r − xi) , (6.196)

hence

δF

δv(r)
=

∫
ddx1 · · ·

∫
ddxN P (x1 , . . . , xN )

∑

i

δ(r − xi)

= n1(r) , (6.197)

which is the local density at r.

Next, consider the response function,

χ(r, r′) ≡ δn1(r)

δv(r′)
=

δ2F [v]

δv(r) δv(r′)

=
1

β
· 1

Q2
N

δQN

δv(r)

δQN

δv(r′)
− 1

β
· 1

QN

δ2QN

δv(r) δv(r′)

= β n1(r)n1(r
′) − β n1(r) δ(r − r′) − β n2(r, r

′) .

(6.198)

In an isotropic system, χ(r, r′) = χ(r − r′) is a function of the coordinate separation, and

−k
B
T χ(r − r′) = −n2 + n δ(r − r′) + n2g

(
|r − r′|

)

= n2 h
(
|r − r′|

)
+ n δ(r − r′) .

(6.199)

Taking the Fourier transform,

−k
B
T χ̂(q) = n+ n2 ĥ(q)

= nS(q) .
(6.200)

We may also write
κT

κ0
T

= 1 + n ĥ(0) = −nk
B
T χ̂(0) , (6.201)

i.e. κT = −χ̂(0).

What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially inhomoge-
neous potential v(r). We expect that the density n(r) in the presence of the inhomogeneous potential to itself be
inhomogeneous. The first corrections to the v = 0 value n = n0 are linear in v, and given by

δn(r) =

∫
ddr′ χ(r, r′) v(r′)

= −βn0 v(r) − βn2
0

∫
ddr′ h(r − r) v(r′) .

(6.202)
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Note that if v(r) > 0 it becomes energetically more costly for a particle to be at r. Accordingly, the density response
is negative, and proportional to the ratio v(r)/kBT – this is the first term in the above equation. If there were no
correlations between the particles, then h = 0 and this would be the entire story. However, the particles in general
are correlated. Consider, for example, the case of hard spheres of diameter a, and let there be a repulsive potential
at r = 0. This means that it is less likely for a particle to be centered anywhere within a distance a of the origin.
But then it will be more likely to find a particle in the next ‘shell’ of radial thickness a.

6.5.6 BBGKY hierarchy

The distribution functions satisfy a hierarchy of integro-differential equations known as the BBGKY hierarchy10. In
homogeneous systems, we have

gk(r1 , . . . , rk) =
N !

(N − k)!

1

nk

∫
ddxk+1 · · ·

∫
ddxN P (r1 , . . . , rk , xk+1 , . . . , xN) , (6.203)

where

P (x1 , . . . , xN ) =
1

QN

· 1

N !
e−βW (x1 , ... , xN ) . (6.204)

Taking the gradient with respect to r1, we have

∂

∂r1

gk(r1 , . . . , rk) =
1

QN

· n−k

(N − k)!

∫
ddxk+1 · · ·

∫
ddxN e−β

P
k<i<j u(xij)

× ∂

∂r1

[
e−β

P
i<j≤k u(rij) · e−β

P
i≤k<j u(ri−xj)

]
,

(6.205)

where
∑

k<i<j means to sum on indices i and j such that i < j and k < i, i.e.

∑

k<i<j

u(xij) ≡
N−1∑

i=k+1

N∑

j=i+1

u
(
xi − xj

)

∑

i<j≤k

u(rij) ≡
k−1∑

i=1

k∑

j=i+1

u
(
ri − rj

)

∑

i≤k<j

u(ri − xj) =
k∑

i=1

N∑

j=k+1

u(ri − xj) .

Now

∂

∂r1

[
e−β

P
i<j≤k

u(rij) · e−β
P

i≤k<j
u(ri−xj)

]
= (6.206)

β

{
∑

1<j≤k

∂u(r1 − rj)

∂r1

+
∑

k<j

∂u(r1 − rj)

∂r1

}
·
[
e−β

P
i<j≤k

u(rij) · e−β
P

i≤k<j
u(ri−xj)

]
,

10So named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
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hence

∂

∂r1

gk(r1 , . . . , rk) = −β
k∑

j=2

∂u(r1 − rj)

∂r1

gk(r1 , . . . , rk) (6.207)

− β(N − k)

∫
ddxk+1

∂u(r1 − xk+1)

∂r1

P (r1 , . . . , rk , xk+1 , . . . , xN )

= −β
k∑

j=2

∂u(r1 − rj)

∂r1

gk(r1 , . . . , rk) (6.208)

+ n

∫
ddxk+1

∂u(r1 − xk+1)

∂r1

gk+1(r1 , . . . , rk , xk+1)

Thus, we obtain the BBGKY hierarchy:

−kBT
∂

∂r1

gk(r1 , . . . , rk) =

k∑

j=2

∂u(r1 − rj)

∂r1

gk(r1 , . . . , rk) (6.209)

+ n

∫
ddr′

∂u(r1 − r′)

∂r1

gk+1(r1 , . . . , rk , r′) .

The BBGKY hierarchy is an infinite tower of coupled integro-differential equations, relating gk to gk+1 for all k. If
we approximate gk at some level k in terms of equal or lower order distributions, then we obtain a closed set of
equations which in principle can be solved, at least numerically. For example, the Kirkwood approximation closes
the hierarchy at order k = 2 by imposing the condition

g3(r1 , r2 , r3) ≡ g(r1 − r2) g(r1 − r3) g(r2 − r2) . (6.210)

This results in the single integro-differential equation

−k
B
T ∇g(r) = g(r)∇u+ n

∫
ddr′ g(r) g(r′) g(r − r′)∇u(r − r′) . (6.211)

This is known as the Born-Green-Yvon (BGY) equation. In practice, the BGY equation, which is solved numerically,
gives adequate results only at low densities.

6.5.7 Ornstein-Zernike theory

The direct correlation function c(r) is defined by the equation

h(r) = c(r) + n

∫
d3r′ h(r − r′) c(r′) , (6.212)

where h(r) = g(r) − 1 and we assume an isotropic system. This is called the Ornstein-Zernike equation. The first
term, c(r), accounts for local correlations, which are then propagated in the second term to account for long-
ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transforming:

ĥ(q) = ĉ(q) + n ĥ(q) ĉ(q) , (6.213)

the solution of which is

ĥ(q) =
ĉ(q)

1 − n ĉ(q)
. (6.214)
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The static structure factor is then

S(q) = 1 + n ĥ(q) =
1

1 − n ĉ(q)
. (6.215)

In the grand canonical ensemble, we can write

κT =
1 + n ĥ(0)

nk
B
T

=
1

nk
B
T

· 1

1 − n ĉ(0)
=⇒ n ĉ(0) = 1 − κ0

T

κT

, (6.216)

where κ0
T = 1/nkBT is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, h(r), for another, namely c(r). To close the
system, we need to relate c(r) to h(r) again in some way. There are various approximation schemes which do just
this.

6.5.8 Percus-Yevick equation

In the Percus-Yevick approximation, we take

c(r) =
[
1 − eβu(r)

]
· g(r) . (6.217)

Note that c(r) vanishes whenever the potential u(r) itself vanishes. This results in the following integro-differential
equation for the pair distribution function g(r):

g(r) = e−βu(r) + n e−βu(r)

∫
d3r′

[
g(r − r′) − 1

]
·
[
1 − eβu(r′)

]
g(r′) . (6.218)

This is the Percus-Yevick equation. Remarkably, the Percus-Yevick (PY) equation can be solved analytically for the
case of hard spheres, where u(r) = ∞ for r ≤ a and u(r) = 0 for r > a, where a is the hard sphere diameter. Define
the function y(r) = eβu(r)g(r), in which case

c(r) = y(r) f(r) =

{
−y(r) , r ≤ a

0 , r > a .
(6.219)

Here, f(r) = e−βu(r) − 1 is the Mayer function. We remark that the definition of y(r) may cause some concern for
the hard sphere system, because of the eβu(r) term, which diverges severely for r ≤ a. However, g(r) vanishes in
this limit, and their product y(r) is in fact finite! The PY equation may then be written for the function y(r) as

y(r) = 1 + n

∫

r′<a

d3r′ y(r′) − n

∫

r′<a

|r−r′|>a

d3r′ y(r′) y(r − r′) . (6.220)

This has been solved using Laplace transform methods by M. S. Wertheim, J. Math. Phys. 5, 643 (1964). The final
result for c(r) is

c(r) = −
{
λ1 + 6η λ2

( r
a

)
+ 1

2η λ1

( r
a

)3
}
· Θ(a− r) , (6.221)

where η = 1
6πa

3n is the packing fraction and

λ1 =
(1 + 2η)2

(1 − η)4
, λ2 = − (1 + 1

2η)
2

(1 − η)4
. (6.222)

This leads to the equation of state

p = nkBT · 1 + η + η2

(1 − η)3
. (6.223)



42 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

quantity exact PY HNC

B4/B
3
2 0.28695 0.2969 0.2092

B5/B
4
2 0.1103 0.1211 0.0493

B6/B
5
2 0.0386 0.0281 0.0449

B7/B
6
2 0.0138 0.0156 –

Table 6.1: Comparison of exact (Monte Carlo) results to those of the Percus-Yevick (PY) and hypernetted chains
approximation (HCA) for hard spheres in three dimensions. Sources: Hansen and McDonald (1990) and Reichl
(1998)

This gets B2 and B3 exactly right. The accuracy of the PY approximation for higher order virial coefficients is
shown in table 6.1.

To obtain the equation of state from eqn. 6.221, we invoke the compressibility equation,

nk
B
T κT =

(
∂n

∂p

)

T

=
1

1 − n ĉ(0)
. (6.224)

We therefore need

ĉ(0) =

∫
d3r c(r)

= −4πa3

1∫

0

dxx2
[
λ1 + 6 η λ2 x+ 1

2 η λ1 x
3
]

= −4πa3
[

1
3 λ1 + 3

2 η λ2 + 1
12 η λ1

]
.

(6.225)

With η = 1
6πa

3n and using the definitions of λ1,2 in eqn. 6.222, one finds

1 − n ĉ(0) =
1 + 4η + 4η2

(1 − η)4
. (6.226)

We then have, from the compressibility equation,

6k
B
T

πa3

∂p

∂η
=

1 + 4η + 4η2

(1 − η)4
. (6.227)

Integrating, we obtain p(η) up to a constant. The constant is set so that p = 0 when n = 0. The result is eqn. 6.223.

Another commonly used scheme is the hypernetted chains (HNC) approximation, for which

c(r) = −βu(r) + h(r) − ln
(
1 + h(r)

)
. (6.228)

The rationale behind the HNC and other such approximation schemes is rooted in diagrammatic approaches,
which are extensions of the Mayer cluster expansion to the computation of correlation functions. For details and
references to their application in the literature, see Hansen and McDonald (1990) and Reichl (1998).

6.5.9 Ornstein-Zernike approximation at long wavelengths

Let’s expand the direct correlation function ĉ(q) in powers of the wavevector q, viz.

ĉ(q) = ĉ(0) + c2 q
2 + c4 q

4 + . . . . (6.229)



6.5. LIQUID STATE PHYSICS 43

Here we have assumed spatial isotropy. Then

1 − n ĉ(q) =
1

S(q)
= 1 − n ĉ(0) − n c2 q

2 + . . .

≡ ξ−2R2 + q2R2 + O(q4) ,

(6.230)

where

R2 = −n c2 = 2πn

∞∫

0

dr r4 c(r) (6.231)

and

ξ−2 =
1 − n ĉ(0)

R2
=

1 − 4πn
∫∞
0 dr r

2 c(r)

2πn
∫∞
0 dr r

4 c(r)
. (6.232)

The quantity R(T ) tells us something about the effective range of the interactions, while ξ(T ) is the correlation
length. As we approach a critical point, the correlation length diverges as a power law:

ξ(T ) ∼ A|T − Tc|−ν . (6.233)

The susceptibility is given by

χ̂(q) = −nβ S(q) = − nβR−2

ξ−2 + q2 + O(q4)
(6.234)

In the Ornstein-Zernike approximation, one drops the O(q4) terms in the denominator and retains only the long
wavelength behavior. in the direct correlation function. Thus,

χ̂OZ
(q) = − nβR−2

ξ−2 + q2
. (6.235)

We now apply the inverse Fourier transform back to real space to obtain χOZ(r). In d = 1 dimension the result can
be obtained exactly:

χOZ

d=1(x) = − n

k
B
TR2

∞∫

−∞

dq

2π

eiqx

ξ−2 + q2

= − nξ

2kBTR
2
e−|x|/ξ .

(6.236)

In higher dimensions d > 1 we can obtain the result asymptotically in two limits:

• Take r → ∞ with ξ fixed. Then

χOZ

d (r) ≃ −Cd n · ξ
(3−d)/2

k
B
T R2

· e−r/ξ

r(d−1)/2
·
{

1 + O
(
d− 3

r/ξ

)}
, (6.237)

where the Cd are dimensionless constants.

• Take ξ → ∞ with r fixed; this is the limit T → Tc at fixed r. In dimensions d > 2 we obtain

χOZ

d (r) ≃ − C′
d n

kBTR
2
· e

−r/ξ

rd−2
·
{

1 + O
(
d− 3

r/ξ

)}
. (6.238)

In d = 2 dimensions we obtain

χOZ

d=2(r) ≃ − C′
2 n

k
B
TR2

· ln
(
r

ξ

)
e−r/ξ ·

{
1 + O

(
1

ln(r/ξ)

)}
, (6.239)

where the C′
d are dimensionless constants.
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At criticality, ξ → ∞, and clearly our results in d = 1 and d = 2 dimensions are nonsensical, as they are divergent.
To correct this behavior, M. E. Fisher in 1963 suggested that the OZ correlation functions in the r ≪ ξ limit be
replaced by

χ(r) ≃ −C′′
d n · ξη

kBTR
2
· e−r/ξ

rd−2+η
, (6.240)

a result known as anomalous scaling. Here, η is the anomalous scaling exponent.

Recall that the isothermal compressibility is given by κT = −χ̂(0). Near criticality, the integral in χ̂(0) is dominated
by the r ≪ ξ part, since ξ → ∞. Thus, using Fisher’s anomalous scaling,

κT = −χ̂(0) = −
∫
ddr χ(r)

∼ A

∫
ddr

e−r/ξ

rd−2+η
∼ B ξ2−η ∼ C

∣∣T − Tc

∣∣−(2−η)ν
,

(6.241)

where A, B, and C are temperature-dependent constants which are nonsingular at T = Tc. Thus, since κT ∝
|T − Tc|−γ , we conclude

γ = (2 − η) ν , (6.242)

a result known as hyperscaling.

6.6 Coulomb Systems : Plasmas and the Electron Gas

6.6.1 Electrostatic potential

Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces, which
result in the phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster expansion, since
the Mayer function is no longer integrable. Thus, the virial expansion fails, and new techniques need to be applied
to reveal the physics of plasmas.

The potential energy of a Coulomb system is

U = 1
2

∫
ddr

∫
ddr′ ρ(r)u(r − r′) ρ(r′) , (6.243)

where ρ(r) is the charge density and u(r), which has the dimensions of (energy)/(charge)2, satisfies

∇2u(r − r′) = −4π δ(r − r′) . (6.244)

Thus,

u(r) =





−2π |x− x′| , d = 1

−2 ln |r − r′| , d = 2

|r − r′|−1 , d = 3 .

(6.245)

For discete particles, the charge density ρ(r) is given by

ρ(r) =
∑

i

qi δ(r − xi) , (6.246)
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where qi is the charge of the ith particle. We will assume two types of charges: q = ±e, with e > 0. The electric
potential is

φ(r) =

∫
ddr′ u(r − r′) ρ(r′)

=
∑

i

qi u(r − xi) .
(6.247)

This satisfies the Poisson equation,
∇2φ(r) = −4πρ(r) . (6.248)

The total potential energy can be written as

U = 1
2

∫
ddr φ(r) ρ(r) (6.249)

= 1
2

∑

i

qi φ(xi) , (6.250)

6.6.2 Debye-Hückel theory

We now write the grand partition function:

Ξ(T, V, µ+, µ−) =

∞∑

N+=0

∞∑

N−=0

1

N+!
eβµ+N+ λ

−N+d

+ · 1

N−!
eβµ−N−λ

−N−d

−

·
∫
ddr1 · · ·

∫
ddrN++N−

e
−βU(r1 , ... , r

N
+

+N
−

)
.

(6.251)

We now adopt a mean field approach, known as Debye-Hückel theory, writing

ρ(r) = ρav(r) + δρ(r) (6.252)

φ(r) = φav(r) + δφ(r) . (6.253)

We then have

U = 1
2

∫
ddr
[
ρav(r) + δρ(r)

]
·
[
φav(r) + δφ(r)

]

=

≡ U0︷ ︸︸ ︷
− 1

2

∫
ddr ρav(r)φav(r) +

∫
ddr φav(r) ρ(r)+

ignore fluctuation term︷ ︸︸ ︷
1
2

∫
ddr δρ(r) δφ(r) .

(6.254)

We apply the mean field approximation in each region of space, which leads to

Ω(T, V, µ+, µ−) = −kBTλ
−d
+ z+

∫
ddr exp

(
− e φav(r)

kBT

)

− k
B
Tλ−d

− z−

∫
ddr exp

(
+
e φav(r)

k
B
T

)
,

(6.255)

where

λ± =

(
2π~

2

m±kBT

)
, z± = exp

(
µ±
kBT

)
. (6.256)
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The charge density is therefore

ρ(r) =
δΩ

δφav(r)
= e λ−d

+ z+ exp

(
− e φ(r)

kBT

)
− e λ−d

− z− exp

(
+
e φ(r)

kBT

)
, (6.257)

where we have now dropped the superscript on φav(r) for convenience. At r → ∞, we assume charge neutrality
and φ(∞) = 0. Thus

λ−d
+ z+ = n+(∞) = λ−d

− z− = n−(∞) ≡ n∞ , (6.258)

where n∞ is the ionic density of either species at infinity. Therefore,

ρ(r) = −2e n∞ sinh

(
e φ(r)

kBT

)
. (6.259)

We now invoke Poisson’s equation,

∇2φ = 8πen∞ sinh(βeφ) − 4πρext , (6.260)

where ρext is an externally imposed charge density.

If eφ≪ kBT , we can expand the sinh function and obtain

∇2φ = κ2
D
φ− 4πρext , (6.261)

where

κ
D

=

(
8πn∞e

2

k
B
T

)1/2

, λ
D

=

(
k

B
T

8πn∞e
2

)1/2

. (6.262)

The quantity λD is known as the Debye screening length. Consider, for example, a point charge Q located at the
origin. We then solve Poisson’s equation in the weak field limit,

∇2φ = κ2
D φ− 4πQ δ(r) . (6.263)

Fourier transforming, we obtain

−q2 φ̂(q) = κ2
D
φ̂(q) − 4πQ =⇒ φ̂(q) =

4πQ

q2 + κ2
D

. (6.264)

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

φ(r) =

∫
d3q

(2π)3
4πQ eiq·r

q2 + κ2
D

=
Q

r
· e−κDr . (6.265)

This solution must break down sufficiently close to r = 0, since the assumption eφ(r) ≪ k
B
T is no longer valid

there. However, for larger r, the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential φ(x = 0) = 0
and the other at potential φ(x = L) = V , where x̂ is normal to the plane of the plates. Again assuming a weak
field eφ≪ k

B
T , we solve ∇2φ = κ2

D
φ and obtain

φ(x) = AeκDx +B e−κD x . (6.266)

We fix the constants A and B by invoking the boundary conditions, which results in

φ(x) = V · sinh(κDx)

sinh(κDL)
. (6.267)

Debye-Hückel theory is valid provided n∞ λ3
D
≫ 1, so that the statistical assumption of many charges in a screen-

ing volume is justified.
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6.6.3 The electron gas : Thomas-Fermi screening

Assuming k
B
T ≪ εF, thermal fluctuations are unimportant and we may assume T = 0. In the same spirit as the

Debye-Hückel approach, we assume a slowly varying mean electrostatic potential φ(r). Locally, we can write

εF =
~

2k2
F

2m
− eφ(r) . (6.268)

Thus, the Fermi wavevector kF is spatially varying, according to the relation

kF(r) =

[
2m

~2

(
εF + eφ(r)

)]1/2

. (6.269)

The local electron number density is

n(r) =
k3

F(r)

3π2
= n∞

(
1 +

eφ(r)

εF

)3/2

. (6.270)

In the presence of a uniform compensating positive background charge ρ+ = en∞, Poisson’s equation takes the
form

∇2φ = 4πe n∞ ·
[(

1 +
eφ(r)

εF

)3/2

− 1

]
− 4πρext(r) . (6.271)

If eφ≪ εF, we may expand in powers of the ratio, obtaining

∇2φ =
6πn∞e

2

εF
φ ≡ κ2

TF φ− 4πρext(r) . (6.272)

Here, κTF is the Thomas-Fermi wavevector,

κTF =

(
6πn∞e

2

εF

)1/2

. (6.273)

Thomas-Fermi theory is valid provided n∞ λ3
TF ≫ 1, where λTF = κ−1

TF , so that the statistical assumption of many
electrons in a screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer, valence
electrons of each atom are stripped away from the positively charged ionic core and enter into itinerant, plane-
wave-like states. These states disperse with some ε(k) function (that is periodic in the Brillouin zone, i.e. under
k → k + G, where G is a reciprocal lattice vector), and at T = 0 this energy band is filled up to the Fermi level εF,
as Fermi statistics dictates. (In some cases, there may be several bands at the Fermi level, as we saw in the case
of yttrium.) The set of ionic cores then acts as a neutralizing positive background. In a perfect crystal, the ionic
cores are distributed periodically, and the positive background is approximately uniform. A charged impurity in
a metal, such as a zinc atom in a copper matrix, has a different nuclear charge and a different valency than the
host. The charge of the ionic core, when valence electrons are stripped away, differs from that of the host ions,
and therefore the impurity acts as a local charge impurity. For example, copper has an electronic configuration of
[Ar] 3d10 4s1. The 4s electron forms an energy band which contains the Fermi surface. Zinc has a configuration of
[Ar] 3d10 4s2, and in a Cu matrix the Zn gives up its two 4s electrons into the 4s conduction band, leaving behind
a charge +2 ionic core. The Cu cores have charge +1 since each copper atom contributed only one 4s electron to
the conduction band. The conduction band electrons neutralize the uniform positive background of the Cu ion
cores. What is left is an extra Q = +e nuclear charge at the Zn site, and one extra 4s conduction band electron.
The Q = +e impurity is, however, screened by the electrons, and at distances greater than an atomic radius the
potential that a given electron sees due to the Zn core is of the Yukawa form,

φ(r) =
Q

r
· e−κTFr . (6.274)
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We should take care, however, that the dispersion ε(k) for the conduction band in a metal is not necessarily of the
free electron form ε(k) = ~

2k2/2m. To linear order in the potential, however, the change in the local electronic
density is

δn(r) = eφ(r) g(εF) , (6.275)

where g(εF) is the density of states at the Fermi energy. Thus, in a metal, we should write

∇2φ = (−4π)(−e δn)

= 4πe2g(εF)φ = κ2
TF
φ ,

(6.276)

where

κ
TF

=
√

4πe2 g(εF) . (6.277)

The value of g(εF) will depend on the form of the dispersion. For ballistic bands with an effective mass m∗, the
formula in eqn. 6.272 still applies.

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge +Ze and an electron cloud of charge −Ne. The net ionic charge is
then (Z − N)e. Since we will be interested in atomic scales, we can no longer assume a weak field limit and we
must retain the full nonlinear screening theory, for which

∇2φ(r) = 4πe · (2m)3/2

3π2~3

(
εF + eφ(r)

)3/2

− 4πZe δ(r) . (6.278)

We assume an isotropic solution. It is then convenient to define

εF + eφ(r) =
Ze2

r
· χ(r/r0) , (6.279)

where r0 is yet to be determined. As r → 0 we expect χ→ 1 since the nuclear charge is then unscreened. We then
have

∇2

{
Ze2

r
· χ(r/r0)

}
=

1

r20

Ze2

r
χ′′(r/r0) , (6.280)

thus we arrive at the Thomas-Fermi equation,

χ′′(t) =
1√
t
χ3/2(t) , (6.281)

with r = t r0, provided we take

r0 =
~

2

2me2

(
3π

4
√
Z

)2/3

= 0.885Z−1/3 a
B
, (6.282)

where aB = ~
2

me2 = 0.529 Å is the Bohr radius. The TF equation is subject to the following boundary conditions:

• At short distances, the nucleus is unscreened, i.e.

χ(0) = 1 . (6.283)
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Figure 6.19: The Thomas-Fermi atom consists of a nuclear charge +Ze surrounded by N electrons distributed in a
cloud. The electric potential φ(r) felt by any electron at position r is screened by the electrons within this radius,
resulting in a self-consistent potential φ(r) = φ0 + (Ze2/r)χ(r/r0).

• For positive ions, with N < Z , there is perfect screening at the ionic boundary R = t∗ r0, where χ(t∗) = 0.
This requires

E = −∇φ =

[
−Ze

2

R2
χ(R/r0) +

Ze2

Rr0
χ′(R/r0)

]
r̂ =

(Z −N) e

R2
r̂ . (6.284)

This requires

−t∗ χ′(t∗) = 1 − N

Z
. (6.285)

For an atom, with N = Z , the asymptotic solution to the TF equation is a power law, and by inspection is found
to be χ(t) ∼ C t−3, where C is a constant. The constant follows from the TF equation, which yields 12C = C3/2,
hence C = 144. Thus, a neutral TF atom has a density with a power law tail, with ρ ∼ r−6. TF ions with N > Z
are unstable.

6.7 Polymers

6.7.1 Basic concepts

Linear chain polymers are repeating structures with the chemical formula (A)x, where A is the formula unit and
x is the degree of polymerization. In many cases (e.g. polystyrene), x>∼ 105 is not uncommon. For a very readable
introduction to the subject, see P. G. de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of x values; this is known as polydispersity. Various
preparation techniques, such as chromatography, can mitigate the degree of polydispersity. Another morpholog-
ical feature of polymers is branching, in which the polymers do not form linear chains.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocarbon with a
−C − C − C− backbone. The angle between successive C − C bonds is fixed at θ ≈ 68◦, but the azimuthal angle
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Figure 6.20: Some examples of linear chain polymers.

ϕ can take one of three possible low-energy values, as shown in the right panel of fig. 6.21. Thus, the relative
probabilities of gauche and trans orientations are

Prob (gauche)

Prob (trans)
= 2 e−∆ε/kBT (6.286)

where ∆ε is the energy difference between trans and gauche configurations. This means that the polymer chain is
in fact a random coil with a persistence length

ℓp = ℓ0 e
∆ε/kBT (6.287)

where ℓ0 is a microscopic length scale, roughly given by the length of a formula unit, which is approximately a
few Ångstroms (see fig. 6.22). Let L be the total length of the polymer when it is stretched into a straight line. If
ℓp > L, the polymer is rigid. If ℓp ≪ L, the polymer is rigid on the length scale ℓp but flexible on longer scales. We
have

ℓp
L

=
1

N
e∆ε/kBT , (6.288)

where we now use N (rather than x) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time. The persis-
tence time τp is the time required for a trans-gauche transition. The rate for such transitions is set by the energy
barrier B separating trans from gauche configurations:

τp = τ0 e
B/kBT (6.289)

where τ0 ∼ 10−11 s. On frequency scales ω ≪ τ−1
p the polymer is dynamically flexible. If ∆ε ∼ k

B
T ≪ B the

polymer is flexible from a static point of view, but dynamically rigid. That is, there are many gauche orientations
of successive carbon bonds which reflect a quenched disorder. The polymer then forms a frozen random coil, like
a twisted coat hanger.
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Figure 6.21: Left” trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal angle ϕ.
There are three low energy states: trans (ϕ = 0) and gauche (ϕ = ±ϕ0).

6.7.2 Polymers as random walks

A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than ℓp, it twists about
randomly in space subject to the constraint that it doesn’t overlap itself. Before we consider the mathematics of
SAWs, let’s first recall some aspects of ordinary random walks which are not self-avoiding.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension d. Such a lattice
has coordination number 2d, i.e. there are 2d nearest neighbor separations, δ = ±a ê1 , ±a ê2 , . . . , ±a êd , where a
is the lattice spacing. Consider now a random walk of N steps starting at the origin. After N steps the position is

RN =

N∑

j=1

δj (6.290)

where δj takes on one of 2d possible values. Now N is no longer the degree of polymerization, but somthing
approximatingL/ℓp, which is the number of persistence lengths in the chain. We assume each step is independent,

hence 〈δα
j δ

β
j′ 〉 = (a2/d) δjj′δ

αβ and
〈
R2

N

〉
= Na2. The full distribution PN (R) is given by

PN (R) = (2d)−N
∑

δ1

· · ·
∑

δ
N

δR,
P

j
δ

j

= ad

π/a∫

−π/a

dk1

2π
· · ·

π/a∫

−π/a

dkd

2π
e−ik·R

[
1

d

d∑

µ=1

cos(kµa)

]N

= ad

∫

Ω̂

ddk

(2π)d
e−ik·R exp

[
N ln

(
1 − 1

2d
k2a2 + . . .

)]

≈
(
a

2d

)d ∫
ddk e−Nk2a2/2d e−ik·R =

(
d

2πN

)d/2

e−dR2/2Na2

.

(6.291)

This is a simple Gaussian, with width
〈
R2
〉

= d·(Na2/d) = Na2, as we have already computed. The quantity R
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defined here is the end-to-end vector of the chain. The RMS end-to-end distance is then 〈R2〉1/2 =
√
Na ≡ R0.

A related figure of merit is the radius of gyration, Rg , defined by

R2
g =

1

N

〈 N∑

n=1

(
Rn − R

CM

)2〉
, (6.292)

where R
CM

= 1
N

∑N
j=1 Rj is the center of mass position. A brief calculation yields

R2
g =

(
N + 3 − 4N−1

)
a2 ∼ Na2

6
, (6.293)

in all dimensions.

The total number of random walk configurations with end-to-end vector R is then (2d)NPN (R), so the entropy of
a chain at fixed elongation is

S(R, N) = kB ln
[
(2d)NPN (R)

]
= S(0, N)− dk

B
R2

2Na2
. (6.294)

If we assume that the energy of the chain is conformation independent, then E = E0(N) and

F (R, N) = F (0, N) +
dkBTR2

2Na2
. (6.295)

In the presence of an external force Fext, the Gibbs free energy is the Legendre transform

G(Fext, N) = F (R, N) − Fext · R , (6.296)

and ∂G/∂R = 0 then gives the relation

〈
R(Fext, N)

〉
=

Na2

dk
B
T

Fext . (6.297)

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges ±e at each end, placed in an external electric field of magni-
tude E = 30, 000 V/cm. Let N = 104, a = 2 Å, and d = 3. What is the elongation? From the above formula, we
have

R

R0

=
eER0

3k
B
T

= 0.8 , (6.298)

with R0 =
√
Na as before.

Structure factor

We can also compute the structure factor,

S(k) =
1

N

〈 N∑

m=1

N∑

n=1

eik·(Rm−Rn)
〉

= 1 +
2

N

N∑

m=1

m−1∑

n=1

〈
eik·(Rm−Rn)

〉
. (6.299)

For averages with respect to a Gaussian distribution,

〈
eik·(Rm−Rn)

〉
= exp

{
− 1

2

〈(
k · (Rm − Rn)

)2〉
}

. (6.300)



6.7. POLYMERS 53

Figure 6.22: The polymer chain as a random coil.

Now for m > n we have Rm − Rn =
∑m

j=n+1 δj , and therefore

〈(
k · (Rm − Rn)

)2〉
=

m∑

j=n+1

〈
(k · δj)

2
〉

=
1

d
(m− n)k2a2 , (6.301)

since 〈δα
j δ

β
j′〉 = (a2/d) δjj′δ

αβ . We then have

S(k) = 1 +
2

N

N∑

m=1

m−1∑

n=1

e−(m−n)k2a2/2d =
N (e2µk − 1) − 2 eµk (1 − e−Nµk)

N
(
eµk − 1

)2 , (6.302)

where µk = k2a2/2d. In the limit where N → ∞ and a → 0 with Na2 = R2
0 constant, the structure factor has a

scaling form, S(k) = Nf(Nµk) = (R0/a) f(k2R2
0/2d) , where

f(x) =
2

x2

(
e−x − 1 + x

)
= 1 − x

3
+
x2

12
+ . . . . (6.303)

6.7.3 Flory theory of self-avoiding walks

What is missing from the random walk free energy is the effect of steric interactions. An argument due to Flory
takes these interactions into account in a mean field treatment. Suppose we have a chain of radius R. Then the
average monomer density within the chain is c = N/Rd. Assuming short-ranged interactions, we should then add
a term to the free energy which effectively counts the number of near self-intersections of the chain. This number
should be roughly Nc. Thus, we write

F (R, N) = F0 + u(T )
N2

Rd
+ 1

2dkBT
R2

Na2
. (6.304)

The effective interaction u(T ) is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

0 =
∂F

∂R
= −dvN

2

Rd+1
+ dkBT

R

Na2
, (6.305)

which yields the result

RF(N) =

(
ua2

k
B
T

)1/(d+2)

N3/(d+2) ∝ Nν . (6.306)

Thus, we obtain ν = 3/(d + 2). In d = 1 this says ν = 1, which is exactly correct because a SAW in d = 1 has no
option but to keep going in the same direction. In d = 2, Flory theory predicts ν = 3

4 , which is also exact. In d = 3,
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Figure 6.23: Radius of gyration Rg of polystyrene in a toluene and benzene solvent, plotted as a function of
molecular weight of the polystyrene. The best fit corresponds to a power law Rg ∝ Mν with ν = 0.5936. From J.
Des Cloizeaux and G. Jannink, Polymers in Solution: Their Modeling and Structure (Oxford, 1990).

we have νd=3 = 3
5 , which is extremely close to the numerical value ν = 0.5880. Flory theory is again exact at the

SAW upper critical dimension, which is d = 4, where ν = 1
2 , corresponding to a Gaussian random walk11. Best.

Mean. Field. Theory. Ever.

How well are polymers described as SAWs? Fig. 6.23 shows the radius of gyration Rg versus molecular weight M
for polystyrene chains in a toluene and benzene solvent. The slope is ν = d lnRg/d lnM = 0.5936. Experimental
results can vary with concentration and temperature, but generally confirm the validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

Y (Fext, N) =

∫
ddR PN (R) eFext·R/kBT =

∫
ddx f(x) esn̂·x , (6.307)

where x = R/RF and s = kBT/RFFext and n̂ = F̂ext. One than has R(Fext) = RF Φ(RF/ξ), where ξ = kBT/Fext

and R(Fext) = FextR
2
F/kB

T . For small values of its argument one has Φ(u) ∝ u. For large u it can be shown that
R(Fext) ∝ (FextRF/kBT )2/3.

On a lattice of coordination number z, the number of N -step random walks starting from the origin is ΩN = zN .
If we constrain our random walks to be self-avoiding, the number is reduced to

ΩSAW

N = CNγ−1 yN , (6.308)

where C and γ are dimension-dependent constants, and we expect y <∼ z − 1, since at the very least a SAW cannot
immediately double back on itself. In fact, on the cubic lattice one has z = 6 but y = 4.68, slightly less than z − 1.
One finds γd=2 ≃ 4

3 and γd=3 ≃ 7
6 . The RMS end-to-end distance of the SAW is

RF = aNν , (6.309)

where a and ν are d-dependent constants,with νd=1 = 1, νd=2 ≃ 3
4 , and νd=3 ≃ 3

5 . The distribution PN (R) has a
scaling form,

PN (R) =
1

Rd
F

f

(
R

RF

)
(a ≪ R≪ Na) . (6.310)

11There are logarithmic corrections to the SAW result exactly at d = 4, but for all d > 4 one has ν = 1
2

.
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One finds

f(x) ∼
{
xg x≪ 1

exp(−xδ) x≫ 1 ,
(6.311)

with g = (γ − 1)/ν and δ = 1/(1 − ν).

6.7.4 Polymers and solvents

Consider a solution of monodisperse polymers of length N in a solvent. Let φ be the dimensionless monomer
concentration, so φ/N is the dimensionless polymer concentration and φs = 1 − φ is the dimensionless solvent
concentration. (Dimensionless concentrations are obtained by dividing the corresponding dimensionful concen-
tration by the overall density.) The entropy of mixing for such a system is given by eqn. 2.352. We have

Smix = −V kB

v0
·
{

1

N
φ lnφ+ (1 − φ) ln(1 − φ)

}
, (6.312)

where v0 ∝ a3 is the volume per monomer. Accounting for an interaction between the monomer and the solvent,
we have that the free energy of mixing is

v0 Fmix

V kBT
=

1

N
φ lnφ+ (1 − φ) ln(1 − φ) + χφ(1 − φ) . (6.313)

where χ is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a mean field
theory of the polymer-solvent system.

The osmotic pressure Π is defined by

Π = −∂Fmix

∂V

∣∣∣∣
Np

, (6.314)

which is the variation of the free energy of mixing with respect to volume holding the number of polymers constant.
The monomer concentration is φ = NNpv0/V , so

∂

∂V

∣∣∣∣
Np

= − φ2

NNp v0

∂

∂φ

∣∣∣∣
Np

. (6.315)

Now we have

Fmix = NNp kBT

{
1

N
lnφ+ (φ−1 − 1) ln(1 − φ) + χ (1 − φ)

}
, (6.316)

and therefore

Π =
kBT

v0

[
(N−1 − 1)φ− ln(1 − φ) − χφ2

]
. (6.317)

In the limit of vanishing monomer concentration φ→ 0, we recover

Π =
φkBT

Nv0
, (6.318)

which is the ideal gas law for polymers.

For N−1 ≪ φ≪ 1, we expand the logarithm and obtain

v0Π

k
B
T

=
1

N
φ+ 1

2 (1 − 2χ)φ2 + O(φ3)

≈ 1
2 (1 − 2χ)φ2 .

(6.319)
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Note that Π > 0 only if χ < 1
2 , which is the condition for a ’good solvent’.

In fact, eqn. 6.319 is only qualitatively correct. In the limit where χ≪ 1
2 , Flory showed that the individual polymer

coils behave much as hard spheres of radius RF. The osmotic pressure then satisfies something analogous to a
virial equation of state:

Π

k
B
T

=
φ

Nv0
+A

(
φ

Nv0

)2
R3

F + . . .

=
φ

Nv0
h(φ/φ∗) .

(6.320)

This is generalized to a scaling form in the second line, where h(x) is a scaling function, and φ∗ = Nv0/R
3
F ∝

N−4/5, assuming d = 3 and ν = 3
5 from Flory theory. As x = φ/φ∗ → 0, we must recover the ideal gas law, so

h(x) = 1+O(x) in this limit. For x→ ∞, we require that the result be independent of the degree of polymerization
N . This means h(x) ∝ xp with 4

5p = 1, i.e. p = 5
4 . The result is known as the des Cloiseaux law:

v0Π

kBT
= C φ9/4 , (6.321)

where C is a constant. This is valid for what is known as semi-dilute solutions, where φ∗ ≪ φ ≪ 1. In the dense
limit φ ∼ 1, the results do not exhibit this universality, and we must appeal to liquid state theory, which is no fun
at all.

6.8 Appendix I : Potts Model in One Dimension

6.8.1 Definition

The Potts model is defined by the Hamiltonian

H = −J
∑

〈ij〉
δσ

i
,σ

j
− h

∑

i

δσ
i
,1 . (6.322)

Here, the spin variables σi take values in the set {1, 2, . . . , q} on each site. The equivalent of an external magnetic
field in the Ising case is a field h which prefers a particular value of σ (σ = 1 in the above Hamiltonian). Once
again, it is not possible to compute the partition function on general lattices, however in one dimension we may
once again find Z using the transfer matrix method.

6.8.2 Transfer matrix

On a ring of N sites, we have

Z = Tr e−βH

=
∑

{σn}
e

βhδσ1,1 e
βJδσ1,σ2 · · · eβhδσ

N
,1 e

βJδσ
N

,σ1

= Tr
(
RN
)
,

(6.323)
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where the q × q transfer matrix R is given by

Rσσ′ = eβJδσσ′ e
1
2 βhδσ,1 e

1
2βhδσ′,1 =





eβ(J+h) if σ = σ′ = 1

eβJ if σ = σ′ 6= 1

eβh/2 if σ = 1 and σ′ 6= 1

eβh/2 if σ 6= 1 and σ′ = 1

1 if σ 6= 1 and σ′ 6= 1 and σ 6= σ′ .

(6.324)

In matrix form,

R =




eβ(J+h) eβh/2 eβh/2 · · · eβh/2

eβh/2 eβJ 1 · · · 1

eβh/2 1 eβJ · · · 1
...

...
...

. . .
...

eβh/2 1 1 · · · eβJ 1

eβh/2 1 1 · · · 1 eβJ




(6.325)

The matrix R has q eigenvalues λj , with j = 1, . . . , q. The partition function for the Potts chain is then

Z =

q∑

j=1

λN
j . (6.326)

We can actually find the eigenvalues of R analytically. To this end, consider the vectors

φ =




1
0
...
0


 , ψ =

(
q − 1 + eβh

)−1/2




eβh/2

1
...
1


 . (6.327)

Then R may be written as

R =
(
eβJ − 1

)
I +

(
q − 1 + eβh

)
|ψ 〉〈ψ | +

(
eβJ − 1

)(
eβh − 1

)
|φ 〉〈φ | , (6.328)

where I is the q × q identity matrix. When h = 0, we have a simpler form,

R =
(
eβJ − 1

)
I + q |ψ 〉〈ψ | . (6.329)

From this we can read off the eigenvalues:

λ1 = eβJ + q − 1 (6.330)

λj = eβJ − 1 , j ∈ {2, . . . , q} , (6.331)

since |ψ 〉 is an eigenvector with eigenvalue λ = eβJ + q − 1, and any vector orthogonal to |ψ 〉 has eigenvalue
λ = eβJ − 1. The partition function is then

Z =
(
eβJ + q − 1

)N
+ (q − 1)

(
eβJ − 1

)N
. (6.332)

In the thermodynamic limit N → ∞, only the λ1 eigenvalue contributes, and we have

F (T,N, h = 0) = −Nk
B
T ln

(
eJ/kBT + q − 1

)
for N → ∞ . (6.333)
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When h is nonzero, the calculation becomes somewhat more tedious, but still relatively easy. The problem is that
|ψ 〉 and |φ 〉 are not orthogonal, so we define

|χ 〉 =
|φ 〉 − |ψ 〉〈ψ |φ 〉√

1 − 〈φ |ψ 〉2
, (6.334)

where

x ≡ 〈φ |ψ 〉 =

(
eβh

q − 1 + eβh

)1/2

. (6.335)

Now we have 〈χ |ψ 〉 = 0, with 〈χ |χ 〉 = 1 and 〈ψ |ψ 〉 = 1, with

|φ 〉 =
√

1 − x2 |χ 〉 + x |ψ 〉 . (6.336)

and the transfer matrix is then

R =
(
eβJ − 1

)
I +

(
q − 1 + eβh

)
|ψ 〉〈ψ |

+
(
eβJ − 1

)(
eβh − 1

) [
(1 − x2) |χ 〉〈χ | + x2 |ψ 〉〈ψ | + x

√
1 − x2

(
|χ 〉〈ψ | + |ψ 〉〈χ |

)]

=
(
eβJ − 1

)
I +

[
(
q − 1 + eβh

)
+
(
eβJ − 1

)(
eβh − 1

)( eβh

q − 1 + eβh

)]
|ψ 〉〈ψ | (6.337)

+
(
eβJ − 1

)(
eβh − 1

)( q − 1

q − 1 + eβh

)
|χ 〉〈χ |

+
(
eβJ − 1

)(
eβh − 1

)( (q − 1) eβh

q − 1 + eβh

)1/2 (
|χ 〉〈ψ | + |ψ 〉〈χ |

)
,

which in the two-dimensional subspace spanned by |χ 〉 and |ψ 〉 is of the form

R =

(
a c
c b

)
. (6.338)

Recall that for any 2 × 2 Hermitian matrix,

M = a0 I + a · τ

=

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
,

(6.339)

the characteristic polynomial is

P (λ) = det
(
λ I −M

)
= (λ− a0)

2 − a2
1 − a2

2 − a2
3 , (6.340)

and hence the eigenvalues are

λ± = a0 ±
√
a2
1 + a2

2 + a2
3 . (6.341)

For the transfer matrix of eqn. 6.337, we obtain, after a little work,

λ1,2 = eβJ − 1 + 1
2

[
q − 1 + eβh +

(
eβJ − 1

)(
eβh − 1

)]
(6.342)

± 1
2

√[
q − 1 + eβh +

(
eβJ − 1

)(
eβh − 1

)]2
− 4(q − 1)

(
eβJ − 1

)(
eβh − 1

)
.
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There are q − 2 other eigenvalues, however, associated with the (q−2)-dimensional subspace orthogonal to |χ 〉
and |ψ 〉. Clearly all these eigenvalues are given by

λj = eβJ − 1 , j ∈ {3 , . . . , q} . (6.343)

The partition function is then

Z = λN
1 + λN

2 + (q − 2)λN
3 , (6.344)

and in the thermodynamic limit N → ∞ the maximum eigenvalue λ1 dominates. Note that we recover the correct
limit as h→ 0.

6.9 Appendix II : One-Particle Irreducible Clusters and the Virial Expan-

sion

We start with eqn. 6.72 for p(T, z) and n(T, z),

p = kBT
∑

γ

(
zλ−d

T

)nγ bγ(T )

n =
∑

γ

nγ

(
zλ−d

T

)nγ bγ(T ) ,
(6.345)

where bγ(T ) for the connected cluster γ is given by

bγ(T ) ≡ 1

sγ

· 1

V

∫
ddx1 · · ·ddxnγ

γ∏

i<j

fij . (6.346)

It is convenient to work with dimensionless quantities, using λd
T as the unit of volume. To this end, define

ν ≡ nλd
T , π ≡ pλd

T , cγ(T ) ≡ bγ(T )
(
λd

T

)nγ−1
, (6.347)

so that

βπ =
∑

γ

cγ z
nγ =

∞∑

l=1

c̃l z
l

ν =
∑

γ

nγcγ z
nγ =

∞∑

l=1

l c̃l z
l ,

(6.348)

where

c̃l =
∑

γ

cγ δnγ ,l (6.349)

is the sum over all connected clusters with l vertices. Here and henceforth, the functional dependence on T is
implicit; π and ν are regarded here as explicit functions of z. We can, in principle, invert to obtain z(ν). Let us
write this inverse as

z(ν) = ν exp

( ∞∑

k=1

αk ν
k

)
. (6.350)
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Ultimately we need to obtain expressions for the coefficients αk, but let us first assume the above form and use it
to write π in terms of ν. We have

βπ =

∞∑

l=1

c̃l z
l =

z∫

0

dz′
∞∑

l=1

l c̃l z
′l−1

=

ν∫

0

dν′
dz′

dν′
ν′

z′
=

ν∫

0

dν′
d ln z′

d ln ν′
=

ν∫

0

dν′
(

1 −
∞∑

k=1

k αk ν
′k
)

= ν −
∞∑

k=1

k αk

k + 1
νk+1 =

∞∑

k=1

B̃k ν
k ,

(6.351)

where B̃k = Bk, λ
−d(k−1)
T is the dimensionless kth virial coefficient. Thus,

B̃k =

{
1 if k = 1

−(1 − k−1)αk−1 if k > 1.
(6.352)

6.9.1 Irreducible clusters

The clusters which contribute to c̃l are all connected, by definition. However, it is useful to make a further dis-
tinction based on the topology of connected clusters and define a connected cluster γ to be irreducible if, upon
removing any site in γ and all the links connected to that site, the remaining sites of the cluster are still connected.
The situation is depicted in Fig. 6.24. For a reducible cluster γ, the integral cγ is proportional to a product of
cluster integrals over its irreducible components. Let us define the set Γl as the set of all irreducible clusters of l
vertices, and

ζl =
∑

γ∈Γ
l

cγ . (6.353)

We may also obtain the cluster integrals c̃l in terms of the αk. To this end, note that l2 c̃l is the coefficient of zl in
the function z dν

dz , hence

l2 c̃l =

∮
dz

2πiz

1

zl
z
dν

dz
=

∮
dν

2πi
z−l

=

∮
dν

2πi

1

νl

∞∏

k=1

elαkνk

=

∮
dν

2πi

1

νl

∑

{m
k
}

∞∏

k=1

(l αk)mk

mk!
νkmk

=
∑

{m
k
}
δP

k km
k

, l−1

∞∏

k=1

(l αk)mk

mk!
.

(6.354)
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Figure 6.24: Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they remain
connected if any component site and its connecting links are removed. Cluster (e) is connected, but is reducible. Its
integral cγ may be reduced to a product over its irreducible components, each shown in a unique color.


