
Physics 140B: Homework 2 Solutions

1. a) By equation (11.28) of the text, the Maxwell velocity distribution is

N(v)dv = N
( m

2πkT

)3/2
e−( 1

2
mv2)/kT · 4πv2dv

Using ε = 1
2mv

2 we can rephrase this in terms of the energy.

N(ε)dε = N
( m

2πkT

)3/2
e−ε/kT 4π

(
2ε
m

)
︸ ︷︷ ︸
v2

·
(

2
m

)1/2 1
2
ε−1/2dε︸ ︷︷ ︸

dv

= N
2

√
π(kT )3/2

e−ε/kT ε1/2dε

Now, we use N = NA, T = 273.15K, ε = ε̄ = 3
2kT , and dε = 10−22J we get

N(ε)dε = 4.9× 1024

b) Using equation (12.25) the number of “single-particle energy states” in a small
interval is given by

g(ε)dε =
4
√

2πV
h3

m3/2ε1/2dε

Making the same substitutions as above we get

g(ε)dε = 5.6× 1030

c) Using the above expressions we can compute the ratio

N(ε)dε
g(ε)dε

=
Nh3

V (2πmkT )3/2︸ ︷︷ ︸
Note that this is nothing but eβµ

e−3/2︸ ︷︷ ︸
And this is e−βε

= 8.8× 10−7

Also, note that N(ε)
g(ε) � 1, which justifies the use of Maxwell-Boltzmann statis-

tics!
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2. As shown in class the expectation value of the number of photons in a radiation
cavity is 1

N̄ = 2.404 · 8πV
(
kT

hc

)3

Thus, plugging in the average temperature of the CMB, T = 2.7K along with the
constants we get

N̄ = 1.67× 1087

3. Given 2 (
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

In the context of blackbody radiation we may write

U = V · u(T ) , P =
1
3
u(T )

and plug into the above relation to get

u = T · 1
3
du

dT
− 1

3
u⇒ T

du

dT
= 4u

which is the desired differential equation for u(T ), (note that it is key that u is only
a function of temperature so we can make the partial derivative a total derivative).
We can now solve for the explicit T dependence

du

u
= 4

dT

T
⇒ lnu = 4 lnT +K ⇒ u = cT 4

1Note, this expression simply comes from N̄ =
R∞
0
N(ν)dν =

R∞
0

g(ν)dν

ehν/kT−1
= 8πV

`
kT
hc

´3 R∞
0

x2dx
ex−1

and

the dimensionless integral can be evaluated numerically to give 2.404.
2For reference, see equation (6.26)
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4. Start from equation (18.44)

U = AT 5/2, where A = 0.77NkT−3/2
B︸ ︷︷ ︸

a function of N&V

Then,

Cv =
(
∂U

∂T

)
N,V

=
5
2
AT 3/2 =

5
2
U

T

S =
∫ T

0

CvdT

T
=
∫ T

0

5
2
AT 1/2dT =

5
2
A

(
2
3
T 3/2

)
=

5
3
AT 3/2 =

5
3
U

T

F = U − TS = AT 5/2 − 5
3
AT 5/2 = −2

3
AT 5/2 = −2

3
U

PV = G− F = Nµ− F = 0−
(
−2

3
U

)
=

2
3
U ⇒ P =

2
3
U

V

5. The average number of particles in a given energy state for a Bose-Einstein gas is
given by

N̄ε =
1

e(ε−µ)/kT − 1
(ε = Aps)

In the region of Bose-Einstein condensation, µ is essentially zero 3 Thus,

Nexc =
∫ ∞

0
N̄εg(ε)dε

where we can derive the density of states g(ε) from the “phase-space” expression:

V · 4πp2dp

h3
=

4πV
h3

( ε
A

)2/s 1
s

( ε
A

)1/s−1
dε ∼ V ε3/s−1dε

Thus,

Nexc = const · V
∫ ∞

0

ε3/s−1dε

eε/kT − 1

[
set

ε

kT
= x

]
= const · V (kT )3/s ∝ T 3/s

a) TB is determined by the condition Nexc = N , it follows that TB ∝
(
N

V

)s/3
.

3This is because at temperatures near zero, N0 ≈ N and so ε ≈ 0. This implies that N ≈ (e−µ/kT −1)−1

and thus −µ/kT ≈ ln
`
1 + 1

N

´
≈ 1

N
, so for a large collection of particles the chemical potential is essentially

zero in the region near Bose-Einstein condensation.
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b) Since Nexc ∝ T 3/s we get

Nexc

N
=
(
T

TB

)3/s

∴
N0

N
= 1−

(
T

TB

)3/s

.

c) it is now straightforward to show that

U =
∫ ∞

0
εN̄(ε)g(ε)dε ∼ T 3/s+1

Hence, Cv ∼ T 3/s and S =
∫ T
0

CvdT
T ⇒ S ∼ T 3/s .
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