Physics 140B: Homework 2 Solutions

a) By equation (11.28) of the text, the Maxwell velocity distribution is
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Using € = %va we can rephrase this in terms of the energy.
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Now, we use N = Ny, T =273.15K, e =& = %k:T, and de = 10722.J we get

N(e)de = 4.9 x 10*

b) Using equation (12.25) the number of “single-particle energy states” in a small
interval is given by
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Making the same substitutions as above we get

g(e)de = 5.6 x 10%

c¢) Using the above expressions we can compute the ratio
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And this is e= 8¢
Note that this is nothing but ef+

N(e)

Also, note that
g(e)
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< 1, which justifies the use of Maxwell-Boltzmann statis-



2. As shown in class the expectation value of the number of photons in a radiation
cavity is !
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Thus, plugging in the average temperature of the CMB, T" = 2.7K along with the
constants we get

[N = 1.67 x 10|
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In the context of blackbody radiation we may write

3. Given 2
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U=V-uT) , P:§U(T)
and plug into the above relation to get
ldu 1 du

which is the desired differential equation for u(7'), (note that it is key that w is only
a function of temperature so we can make the partial derivative a total derivative).
We can now solve for the explicit T' dependence
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!'Note, this expression simply comes from N = [~ N(v)dv = [~ e,f,(/"k)f""il =87V (%)3 I :ffﬁ and
the dimensionless integral can be evaluated numerically to give 2.404.

2For reference, see equation (6.26)



4. Start from equation (18.44)
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Then,
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5. The average number of particles in a given energy state for a Bose-Einstein gas is
given by
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Ne= opr—y (€=4p)

In the region of Bose-Einstein condensation, u is essentially zero 3 Thus,

ch:/ N.g(e)de
0

where we can derive the density of states g(e) from the “phase-space” expression:
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Thus,
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a) Tp is determined by the condition N¢y. = N, it follows that | Ts <V> .

3This is because at temperatures near zero, No ~ N and so € ~ 0. This implies that N ~ (ef“/kT — 1)71
and thus —p/kT ~ In (1 + %) ~ %, so for a large collection of particles the chemical potential is essentially
zero in the region near Bose-Einstein condensation.



b) Since Nege X T3/5 we get
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¢) it is now straightforward to show that

Hence,

C,y ~ T3/s

U —/ eN(e)g(e)de ~ T3/*+1
0

and § = [ T =[5 ~ 7]



