Homework 6: Due March 4

1. Consider a ferromagnetic system composed of N elementary magnets with nearest-neighbor interaction

$$\varepsilon_{ij} = -I\sigma_i\sigma_j$$
 $(I > 0; \sigma_i, \sigma_j = 1 \text{ or } -1).$

In the mean-field approximation, this expression may be replaced my $-I\langle\sigma\rangle^2$, i.e. $-Im^2$, where m is the "degree of magnetization" in the system.

(a) Using this approximation, write down the total energy U_0 of the system in the limit $H \to 0$ and show that this gives for the specific heat of the system

$$C_0 = -NIqm_s \frac{\mathrm{d}m_s}{\mathrm{d}T},$$

where q is the # of nearest neighbors that each elementary magnet has.

- (b) Next show that, as $T \to T_c$ from below, $C_0 \to \frac{3}{2}Nk$.
- 2. The equation of state of a ferromagnetic system, in the mean-field approximation, is given by

$$m = \tanh\left(\frac{\mu_B H + Iqm}{kT}\right),\,$$

where the various symbols have their usual meanings. Making no further approximations, show that the magnetic susceptibility of this system is given by the general expression

$$\chi = \frac{N\mu_B^2}{k} \frac{1 - m^2}{T - (1 - m^2)T_c}$$

and the specific heat difference by

$$C_H - C_M = Nk \frac{T(1-m^2)(\tanh^{-1}m)^2}{T - (1-m^2)T_c}.$$

- (a) What forms do these expressions take in the Curie regime?
- (b) What forms do they take in the limit $H \to 0$ and at temperature $T > T_c$ and at $T \lesssim T_c$?
- 3. (a) It was proved in the class that

$$C_H - C_M = -T \left(\frac{\partial H}{\partial T} \right)_M \left(\frac{\partial M}{\partial T} \right)_H,$$

where the various symbols have their usual meanings. Show that this result may be expressed in the form

$$C_H - C_M = \frac{N^2 \mu_B^2 T}{\chi} \left(\frac{\partial m}{\partial T} \right)_H^2,$$

where χ is the magnetic susceptibility of the system and m the degree of magnetization.

(b) Now show that, as $H \to 0$ and $T \to T_c$ from below, this quantity too approaches the value $\frac{3}{2}Nk$.

1