- 1. Consider two samples of low-density gases A and B, such that $P_B = \frac{1}{6}P_A$ and $T_B = 2T_A$. If the mean free path λ_B is 3 times the mean free path λ_A , what is the ratio of the molecular diameter d_A ?
- 2. Consider a sample of carbon dioxide (molecular weight 44, molecular diameter $4.6 \times 10^{-10} m$) at 1 atmosphere and 300 K. Determine the collision frequency, the mean free path and the ratio of the mean free path t_0 the molecular diameter.
- 3. The mean free path of air molecules (O_2 or N_2) in a sample at 1 atmosphere and 300 K is almost $1.02 \times 10^{-7} m$. Using the same value of the molecular diameter d as used in the class, determine the mean free path of air molecules at a height of 10 kilometers above the surface of the Earth and at a temperature 300 K.

[For simplicity, assume the atmosphere to be <u>isothermal</u> and use the fact that under this assumption,

$$n(z) = n(0)exp\left[-\frac{mgz}{kT}\right],$$

where the various symbols have their usual meanings. For m, the mass of an air molecule, take 29 amu].

- 4. In a room containing "still" air at 1 atmosphere and 25 °C, focus your attention on one molecule (of O_2 or N_2). At t=0, this molecule is at a particular location which may be designated as $\vec{r}=0$. Estimate the amount of time it will take for the molecule to reach a point 10 centimeters away from its initial location.
 - Consider a large group of Brownian particles diffusing in and dispersing through a background fluid. The number density $n(\vec{r},t)$ of these particles is governed by the diffusion equation

$$\frac{\partial n(\vec{r},t)}{\partial t} = D \nabla^2 n(\vec{r},t),$$

where D is the coefficient of diffusion and ∇^2 the laplacian operator.

(a) Show, by substitution, that the function

$$n(\vec{r}, t) = \frac{N_0}{(4\pi D t)^{3/2}} \exp\left(-\frac{r^2}{4 D t}\right)$$

satisfies the diffusion equation.

[Note that the dependence of $n(\vec{r},t)$ on \vec{r} is through the magnitude r only, so ∇^2 is only radial.]

(b) Using this distribution function, evaluate the mean-square value of the variable r at time t.

