8.2 Wave Nature of Matter

De Broglie Wavelength Diffraction of electrons **Uncertainty Principle** Wave Function Tunneling

Wave properties of matter

Material particles behave as waves with a wavelength given by the De Broglie wavelength (Planck's constant/momentum)

$$\lambda = \frac{h}{p}$$

The particles are diffracted by passing through an aperture in a similar manner as light waves.

The wave properties of particles mean that when you confine it in a small space its momentum (and kinetic energy) must increase. (uncertainty principle) This is responsible for the size of the atom.

De Broglie Wavelength

Momentum of a photon - inverse to wavelength.

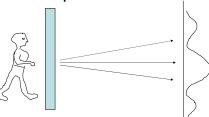
relativity theory

Wavelength of a particle- inverse to momentum.

$$\lambda = \frac{h}{p}$$

De Broglie proposed that this wavelength applied to material particles as well as for photons. (1924)

properties of particle waves.



Suppose you walk into a room through a doorway. In the wave picture you will be diffracted.

By a small amount since you are big. But suppose you can shrink in size. Then the angle will

Big particles- small wavelengths.

Find the De Broglie wavelength of a 100 kg man walking at 1 m/s.

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6.63x10^{-34}\,Js}{(100kg)(1.0m/s)} = 6.6x10^{-36}m$$

For macroscopic momenta the wavelengths are so small that diffraction effects are negligible.

Small particles-large wavelengths

Find the wavelength of an electron traveling at 1.0 m/s ($m_e = 9.11x10^{-31}$ kg)

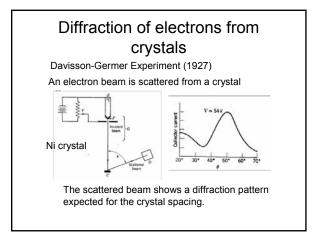
$$\lambda = \frac{h}{mv} = \frac{6.63x10^{-34}}{(9.11x10^{-31})(1)} = 7.3x10^{-4}m \quad = 0.73 \text{ mm}$$

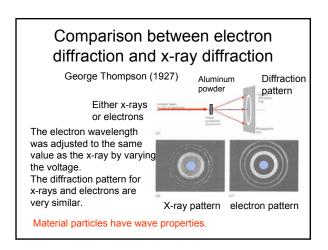
Diffraction effects should be observable for small particles.

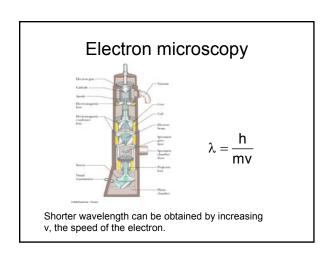
The wavelength of the electron can be changed by varying it velocity.

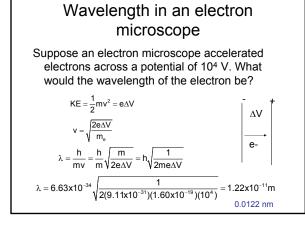
Diffraction of light from crystals Light with wavelength close to the inter-atomic spacing

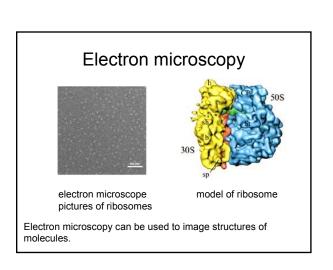
(x-rays) is diffracted.



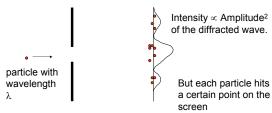








Diffraction of particles Probabilistic Interpretation of the wave amplitude.



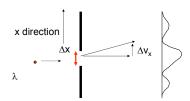
The amplitude² is interpreted as the probability of the particle hitting the screen at a certain position This is true for electrons as well as photons.

Wavefunction

In quantum mechanics the result of an experiment is given in terms of a wavefunction Ψ . The square of the wavefunction Ψ^2 is the probability of the particle being at a certain position.

The wavefunction can be calculated using using the Schrödinger Equation. For instance for electrons in an atom.

Wave property of particles



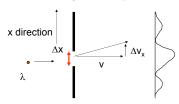
Decreasing the slit reduces Δx But increases the width of the diffraction, Δv_x

When Δx decreases, Δp_x increases.

Uncertainty Principle

Particle passing through a slit --The uncertainty in position is Δx

The uncertainty in the x component of momentum is $\Delta p_x = m \Delta v_x$



most often written as an inequality

 $\Delta x \Delta p_x \ge \frac{h}{4\pi}$

 $\Delta x \sin \theta = \lambda = \frac{\Pi}{mv}$ $\sin \theta = \theta = \frac{\Delta v_x}{mv}$

The particle is diffracted

 $\Delta x \frac{\Delta v_x}{v} = \frac{v}{mv}$

Therefore $\Delta x \Delta p_x = h$

The position and velocity cannot be know with unlimited certainty.

The size of an atom

What accounts for the size of the hydrogen atom?

electron proton
$$PE = -\frac{k_0e}{r}$$

$$PE \Rightarrow -\inf_{e \in \mathbb{R}^n} e = -\frac{k_0e}{r}$$

Classical electrostatics predicts that the potential energy of the hydrogen atom should go to – infinity

The finite size of the atom is a quantum mechanical effect.

In the quantum limit – when the size of the atom r is comparable to the de Broglie wavelength. the kinetic energy increases with decreasing r due to the uncertainty principle.

Use linear momentum as a rough estimate.

$$\Delta p_x \approx h$$

$$\Delta p_x \approx \frac{h}{h} = \frac{h}{h}$$

 $\Delta p_x = \frac{h}{2r} \approx p_x$ p_x cannot be smaller than Δp_x

$$KE = \frac{1}{2}mv_x^2 = \frac{p_x^2}{2m} \approx \frac{h^2}{8r^2m}$$

F- KF IDE - sees through a m

E= KE+PE goes through a minimum as a function of r

