Physics 211B : Solution Set #2

[1] Rectangular Barrier — Consider a symmetric planar barrier consisting of a layer of
Al,Gaj_,As of width 2¢ imbedded in GaAs. The barrier height Vj is simply the difference
between conduction band minima A FE. at the I' point; energies are defined relative to ElgaAs.
Derive the S-matrix for this problem. Show that
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where n = E/Vp and b = a/¢ with £ = h//2m*Vj. Sketch T(E) versus E/V; for various
values of the dimensionless thickness b.

and

T(E) = (n>1),

Solution: Let the barrier extend from z = 0 to £ = d = 2a. The energy is
k2 R2?
2m* m*
Thus, with n = E/Vj, and £ = h/+/2m*Vj, the wavevectors k and ¢ outside and inside the
barrier region are given by k = Kﬁl\/ﬁ and ¢ = £~1/n — 1, respectively.
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The wavefunction in the three regions is written
Y(z) = Aet® 4 Bemike (x <0)
=C e § De ™" (0<z<d)
=Bt 4 Fethe (d<uz).

Matching the wavefunction and its derivative at the points = 0 and = = d gives four
equations in the six unknowns A, B, C, D, E, and F":

A+B=C+D
k(A — B) = ¢(C — D)
Ceitd | D e—iad — ik | —ikd
q(C ¢4+ D e*iqd) =k(E ekd _ g e*ikd).

Solving the first two equations for C' and D yields
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The bottom pair says
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Thus, the transfer matrix for this problem is
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Thus, '
. 4k‘q ezkd
(k‘ + q)2 eiqd _ (k _ q)2 e iqd
and (see sketch in figure 1):
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[2] Multichannel Scattering — Consider a multichannel scattering process defined by the
Hamiltonian matrix

n? 02

which describes the scattering among N channels by a d-function impurity at z = 0. The
matrix 2;; allows a particle in channel j passing through x = 0 to be scattered into channel
i. The {g;} are the internal (transverse) energies for the various channels. For z # 0, we
can write the channel j component of the wavefunction as

¥i(x) = I; %% 4+ Of e~ " (z <0)
=0; eki® 4 I e~ kT (x >0),
where the k; are positive and determined by
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Show that the incoming and outgoing flux amplitudes are related by a 2N x 2N S-matrix:
S

GO T (e
(o)~ +) (57)



]. ] 1 _| T 17T T 1T 17T T ]
0.8 -4 08| -
] _ L 4
c _ - i
$0.6 — 0.6 — —
5 . - ;
"20.4 — 0.4 b=1 —
o d C ]
S02 | 3 o2k =

0 oo lv v by 3 0 AR B AR AN A A A A

0 1 2 3 0 1 2 3

]. _| 1T T LI - 1 _| 1T Al T T\yl\l-/r_
208 4 08 -
] - _ - 4
o - , - 4
80.6 - — 0.6 — —
S C . C ]
"204 — b=2 - 0.4 b=8 —
o C ] C ]
So02 E 3 o0z2F =

0 C Ll b 0 Ci11 J IR R

0 1 2 3 0 1 2 3
n:E/Vo n:E/Vo

Figure 1: Dimensionless barrier conductance versus incident energy for a set of thickness
parameters.

where v = diag(vy,...,vy) with v; = hk;/m > 0. Find explicit expressions for the compo-
nent N x N blocks 7, t, t/, r’, and show that S is unitary, i.e. SIS = SST = L.
Solution: Continuity of the wavefunction at x = 0 requires
’ /
I +0;=0;+1I; .
Integrating the Schrodinger equation from z = 0" to x = 0" yields

hZ / 1(n—
o= [H0%) = wi(07)| + 2 w5(0) = 0.,

which is equivalent to
with Vij =1 5ij. Thus,
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If Ais any N x N matrix, then

1 -1\ _; (1 A
A A) 2 \-1 A1)~



Consequently,

O\ 1 (Q-1 Q+1\ /(I
(0)-4(@+ a7 ) ()

with Q = (ihV — Q)~1(ihV + Q). This immediately gives the S-matrix as
s_(OY_1(@-1 Q+1
@) 2\Q+1 Q-1

Q=V'2QV 2= (1+ih Q) (1-i Q)

where

with Q = V-1/2QV -2, Note that the product in the above equation may be taken in
either order, as the two factors commute. Since Q=0fis Hermitian, Q is unitary, which
in turn guarantees the unitarity of S:

sts — QlQ+1 QfQ—1 _(1 o)
QfQ-1 QfQ+1) \o 1)~

[3] Spin Valve — Consider a barrier between two halves of a ferromagnetic metallic wire.
For x < 0 the magnetization lies in the 2 direction, while for x > 0 the magnetization is
directed along the unit vector n = (sin  cos ¢, sin 6 sin ¢, cos #). The Hamiltonian is given
by
h2 d?
H = * dx -3 + ,UBHlnt )

where Hjy is the (spontaneously generated) internal magnetic field and pg = eh/2mec is
the Bohr magneton!. The magnetization M points along Hjy>. For x < 0 we therefore
have

thz% thf

2m* ~ 2m*

EF: _A,

where A = pHine. A similar relation holds for the Fermi wavevectors corresponding to
spin states ‘ ﬁ.> and ‘ — fz> in the region = > 0.

Consider the S-matrix for this problem. The ‘in’ and ‘out’ states should be defined as
local eigenstates, which means that they have different spin polarization axes for x < 0 and
x > 0. Explicitly, for x < 0 we write

77/}( ik, T —ik,x 1 ik, T —ik x 0
<w1(g>:{ATekT + Bye ky }<0)—|—{Alekl +Bje ky }<1> ,

Note that it is the bare electron mass m, which appears in the formula for s and not the effective mass
m*!).

2For weakly magnetized systems, the magnetization is M = pu2 g(ey) Hine, where g(ez) is the total
density of states per unit volume at the Fermi energy.




while for z > 0 we write

¢ ik, x —ik.x ik, x —ik, x —v*
(wiz;)_{qe’% +Dye ™ }(:j)—i—{clekl +Dje ™ }( ;) :

where u = cos(f/2) and v = sin(0/2) exp(i¢). The S-matrix relates the flux amplitudes of
the in-states and out-states:
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Derive the 2 x 2 transmission matrix ¢ (you don’t have to derive the entire S-matrix) and
thereby obtain the dimensionless conductance g = Tr (t't). Define the polarization P by

ny —mn
p=-1 "
ny +n
where n, = k, /7 is the electronic density. Find g(P,9).

Solution: Continuity of the wavefunction and its derivatives at x = 0 yields four equations,
conveniently written in matrix form:

1 0 -—u v* BT -1 0 U —u* AT
0O 1 —v -—u Bl 0 -1 w U Ai
kT 0 kTu —k:lv CT - kT 0 kTu —klfu DT
0 kl k:Tv klu Cl 0 ki k:Tv klu Dl

Defining the 2 x 2 blocks,

we have .
BY (1 -2\ (-1 X A
Cc)] \K YK K YK)\D) -
Converting to flux amplitudes, we have
s_(VE 0\(1 -Z\ (-1 % KT 0
“\0 VK)\K XK K YK 0 K-1)°

We now invoke the general result

A B\ ((A-BD7'C)"' (C-DB'A)™
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to obtain the blocks of &:
r= K1/2{ 1I+K 'Sk - (1+ 2K121K)_1}K1/2

f = 2K1/2(Z_1 + K—lz—lK)*lK—lﬂ
t=2K"2(S + K'2K) K12

r = K1/2{ 1+K 'SR - (1+ 2_1K_12K)1}K_1/2 :

1 ( u v* cosh y>
t= 5
u? + |v|2 cosh®y \—vcoshy u

with y = %hﬂ(k‘T /k|). The dimensionless conductance is

We find

2 2(1— P?)
P,0) = Tr (t't) = = ,
9(P9) (%) u? + [v[2 cosh?y (1 — P2)cos?36 + sin?30

where P is the polarization. Note that g(P = £1,60) = 0, since it is impossible to match
boundary conditions on the lower components. One can also compute the reflection matrix,

_ sinhy sin$6 ( cosz0 coshy sin$6 ei¢>

= X s 1p i 1
6052%0 + Sm%g cosh?y \—coshy sin36 ' cosz0

[4] Distribution of Resistances of a One-Dimensional Wire — In this problem you are asked
to derive an equation governing the probability distribution P(R, L) for the dimensionless
resistance R of a one-dimensional wire of length L. The equation is called the Fokker-Planck
equation. Here’s a brief primer on how to derive Fokker-Planck equations.

Suppose z(t) is a stochastic variable. We define the quantity
dx(t) = x(t + ot) — z(t) , (1)
and we assume
(0z(t)) = Fi(=(t)) 6t
([62(1)]%) = 2 Fa(x(t)) 6t

but ([6z(t)]") = O((6t)?) for n > 2. The n =1 term is due to drift and the n = 2 term is
due to diffusion. Now consider the conditional probability density, P(x,t|z,t,), defined
to be the probability distribution for x = z(t) given that x(t,) = z,. The conditional
probability density satisfies the composition rule,

o0
Plat| 29, tg) = /dx’P(:v,t|:1:’,t’)P(x’,t'|:170,t0) ,

—00



for any value of ¢’. Therefore, we must have

oo
P(z,t+ 0t |zg, ty) = /d:):’P(ac,t—l—dt]x',t) P2 t|zg,t) -

—00

Now we may write
P(z,t+6t|2',t) = (6(z — 2’ — 6z(t)))
d 1 2 d2 !/
= 41+ (0z(t)) — + 3([dz(1)] >—de2 +... p0(x—a"),
where the average is over the random variables. Upon integrating by parts and expanding
to O(dt), we obtain the Fokker-Planck equation,

oP 0 0?
E = —%[Fl(a:) P(l‘,t)] + @

That wasn’t so bad, now was it?

[Fa(z) P(z,1)] .

For our application, z(t) is replaced by R(L). We derived the composition rule for series
quantum resistors in class:

R(L +6L) = R(L) + R(6L) + 2 R(L) R(SL)
~2c0s 3 \/R(L) [1 +R(L)] R(SL) [1 + R(GL)] .

where (8 is a random phase. For small values of L, we needn’t worry about quantum
interference and we can use our Boltzmann equation result. Show that

e? m* oL
R(OL) = h ne’r oL = 20

where ¢ = vp7 is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions F}(R) and F5(R). Show that the distribution function
P(R, L) obeys the equation

or 1 9 op
—=—-=R1A+R) == ¢ -
oL ~ 2t aR{ 1+ )aR}
Show that this equation may be solved in the limits R < 1 and R > 1, with
1
P('R,7 z) — e—R/z
z
for R < 1, and
1
P(R,z) = (4#2)_1/2 = o~ (INR—2)%/4z

for R > 1, where z = L/2( is the dimensionless length of the wire. Compute (R) in the
former case, and (InR) in the latter case.



Solution: We have

2 2 * 2 *

e e’ m e’ m*v
R(L) =< poL =S =M ey
(0L) hp h ne?r h ne2f
ke dL_or
C2mn 4 2

From the composition rule for series quantum resistances, we derive the phase averages

(R) = (1+2R(1)) %
) 2 (51> 5L 5L
(OR)?) = (1 + 2R(L)> (%) +2R(L) (1 + R(L)) 57 (1 + %)
—2R(L) (1 + R(L)) % +0((6L)?)
whence we obtain the drift and diffusion terms
FU(R) = 2732; L mBm)-= W .

Note that Fi(R) = dFy/dR, which allows us to write the Fokker-Planck equation as

oP _ 0 [RU+R) 0P
oL  OR 2/ OR |~

Defining the dimensionless length z = L/2¢, we have
oP 0 opP
—=—R(1+R)— .
9- fm{ (1+7R) 8R}
In the limit R < 1, this reduces to

2
op _ ., P 0P

2z “orz TR
which is satisfied by P(R,z) = 27! exp(—R/z). In the opposite limit, R > 1, we have

opP 5 0°P opP
0  Foaret2Rap
_or op
o2 ov

where v = InR. This is solved by the log-normal distribution,
P(R,z) = (4mz)"1/? e~ (wt2)?/4z

Note that
(InR — 2)?

P(R,z)dR = (4mz) /2 exp{ - P

}dlnR .



