
Physics 211B : Solution Set #2

[1] Rectangular Barrier – Consider a symmetric planar barrier consisting of a layer of
AlxGa1−xAs of width 2a imbedded in GaAs. The barrier height V0 is simply the difference
between conduction band minima ∆Ec at the Γ point; energies are defined relative to EGaAs

Γ .
Derive the S-matrix for this problem. Show that

T (E) =
1

1 +
[

sinh
(
b
√

1−η
)

2
√
η(1−η)

]2 (η ≤ 1)

and
T (E) =

1

1 +
[

sin
(
b
√
η−1
)

2
√
η(η−1)

]2 (η ≥ 1) ,

where η = E/V0 and b = a/` with ` = ~/
√

2m∗V0. Sketch T (E) versus E/V0 for various
values of the dimensionless thickness b.

Solution: Let the barrier extend from x = 0 to x = d ≡ 2a. The energy is

E =
~2k2

2m∗
=

~2q2

m∗
+ V0 .

Thus, with η = E/V0, and ` = ~/
√

2m∗V0, the wavevectors k and q outside and inside the
barrier region are given by k = `−1√η and q = `−1

√
η − 1, respectively.

The wavefunction in the three regions is written

ψ(x) = Aeikx +B e−ikx (x ≤ 0)

= C eiqx +De−iqx (0 ≤ x ≤ d)

= E eikx + F e−ikx (d ≤ x) .

Matching the wavefunction and its derivative at the points x = 0 and x = d gives four
equations in the six unknowns A, B, C, D, E, and F :

A+B = C +D

k(A−B) = q(C −D)

C eiqd +De−iqd = E eikd + F e−ikd

q
(
C eiqd +De−iqd

)
= k

(
E eikd − F e−ikd

)
.

Solving the first two equations for C and D yields(
C
D

)
=
(

1 1
q −q

)−1(1 1
k −k

)(
A
B

)
The bottom pair says(

E
F

)
=
(
eikd e−ikd

k eikd −k eikd
)−1(

eiqd e−iqd

q eiqd −q e−iqd
)(

C
D

)
.

1



Thus, the transfer matrix for this problem is

M =
1

4kq

(
k e−ikd e−ikd

k eikd −eikd
)(

eiqd e−iqd

q eiqd −q e−iqd
)(

q 1
q −1

)(
1 1
k −k

)
=

1
4kq

(
(k + q)2 e−i(k−q)d − (k − q)2 e−i(k+q)d −2i (k2 − q2) e−ikd sin(qd)

2i (k2 − q2) eikd sin(qd) (k + q)2 ei(k−q)d − (k − q)2 ei(k+q)d

)
=
(

1/t∗ −r∗/t∗
−r/t′ 1/t′

)
.

Thus,

t∗ =
4kq eikd

(k + q)2 eiqd − (k − q)2 e−iqd

and (see sketch in figure 1):

T (E) = |t|2 =
1

1 +
(
k2−q2

2kq

)2
sin2(qd)

=
1

1 +
[

sin
(

2b
√
η−1
)

2
√
η(η−1)

]2 (η ≥ 1)

=
1

1 +
[

sinh
(

2b
√

1−η
)

2
√
η(1−η)

]2 (η ≤ 1) .

[2] Multichannel Scattering – Consider a multichannel scattering process defined by the
Hamiltonian matrix

Hij =
(
− ~2

2m
∂2

∂x2
+ εi

)
δij + Ωij δ(x) ,

which describes the scattering among N channels by a δ-function impurity at x = 0. The
matrix Ωij allows a particle in channel j passing through x = 0 to be scattered into channel
i. The {εi} are the internal (transverse) energies for the various channels. For x 6= 0, we
can write the channel j component of the wavefunction as

ψj(x) = Ij e
ikjx +O′j e

−ikjx (x < 0)

= Oj e
ikjx + I ′j e

−ikjx (x > 0) ,

where the kj are positive and determined by

εF =
~2k2

j

2m
+ εj .

Show that the incoming and outgoing flux amplitudes are related by a 2N × 2N S-matrix:

(√
v O′√
v O

)
=

S︷ ︸︸ ︷(
r t′

t r′

) (√
v I√
v I ′

)
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Figure 1: Dimensionless barrier conductance versus incident energy for a set of thickness
parameters.

where v = diag(v1, . . . , vN ) with vi = ~ki/m > 0. Find explicit expressions for the compo-
nent N ×N blocks r, t, t′, r′, and show that S is unitary, i.e. S†S = SS† = I.

Solution: Continuity of the wavefunction at x = 0 requires

Ij +O′j = Oj + I ′j .

Integrating the Schrödinger equation from x = 0−to x = 0+ yields

− ~2

2m

[
ψ′i(0

+)− ψ′i(0−)
]

+ Ωij ψj(0) = 0 ,

which is equivalent to

(i~V + Ω)ij (Ij + I ′j) = (i~V − Ω)ij (Oj +O′j) ,

with Vij = vi δij . Thus,(
1 −1

i~V − Ω i~V − Ω

)(
O′

O

)
=
(
−1 1

i~V + Ω i~V + Ω

)(
I
I ′

)
.

If A is any N ×N matrix, then(
1 −1
A A

)
= 1

2

(
1 A−1

−1 A−1

)
.
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Consequently, (
O′

O

)
= 1

2

(
Q− 1 Q+ 1
Q+ 1 Q− 1

)(
I
I ′

)
with Q = (i~V − Ω)−1(i~V + Ω). This immediately gives the S-matrix as

S =
(
O′

O

)
= 1

2

(
Q̃− 1 Q̃+ 1
Q̃+ 1 Q̃− 1

)

where
Q̃ = V 1/2QV −1/2 =

(
1 + i~−1 Ω̃

)−1(1− i~−1 Ω̃
)
,

with Ω̃ = V −1/2 ΩV −1/2. Note that the product in the above equation may be taken in
either order, as the two factors commute. Since Ω̃ = Ω̃† is Hermitian, Q̃ is unitary, which
in turn guarantees the unitarity of S:

S†S = 1
2

(
Q̃†Q̃+ 1 Q̃†Q̃− 1
Q̃†Q̃− 1 Q̃†Q̃+ 1

)
=
(

1 0
0 1

)
.

[3] Spin Valve – Consider a barrier between two halves of a ferromagnetic metallic wire.
For x < 0 the magnetization lies in the ẑ direction, while for x > 0 the magnetization is
directed along the unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ). The Hamiltonian is given
by

H = − ~2

2m∗
d2

dx2
+ µBHint · σ ,

where Hint is the (spontaneously generated) internal magnetic field and µB = e~/2mec is
the Bohr magneton1. The magnetization M points along Hint

2. For x < 0 we therefore
have

EF =
~2k2
↑

2m∗
+ ∆ =

~2k2
↓

2m∗
−∆ ,

where ∆ = µBHint. A similar relation holds for the Fermi wavevectors corresponding to
spin states

∣∣ n̂ 〉 and
∣∣ − n̂ 〉 in the region x > 0.

Consider the S-matrix for this problem. The ‘in’ and ‘out’ states should be defined as
local eigenstates, which means that they have different spin polarization axes for x < 0 and
x > 0. Explicitly, for x < 0 we write(

ψ↑(x)
ψ↓(x)

)
=
{
A↑ e

ik↑x +B↑ e
−ik↑x

}(
1
0

)
+
{
A↓ e

ik↓x +B↓ e
−ik↓x

}(
0
1

)
,

1Note that it is the bare electron mass me which appears in the formula for µB and not the effective mass
m∗!).

2For weakly magnetized systems, the magnetization is M = µ2
B g(εF)Hint, where g(εF) is the total

density of states per unit volume at the Fermi energy.
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while for x > 0 we write(
ψ↑(x)
ψ↓(x)

)
=
{
C↑ e

ik↑x +D↑ e
−ik↑x

}(
u
v

)
+
{
C↓ e

ik↓x +D↓ e
−ik↓x

}(
−v∗
u

)
,

where u = cos(θ/2) and v = sin(θ/2) exp(iφ). The S-matrix relates the flux amplitudes of
the in-states and out-states:


b↑
b↓
c↑
c↓

 =

S︷ ︸︸ ︷
r11 r12 t′11 t′12

r21 r22 t′21 t′22

t11 t12 r′11 r′12

t21 t22 r′21 r′22



a↑
a↓
d↑
d↓

 .

Derive the 2 × 2 transmission matrix t (you don’t have to derive the entire S-matrix) and
thereby obtain the dimensionless conductance g = Tr (t†t). Define the polarization P by

P =
n↑ − n↓
n↑ + n↓

,

where nσ = kσ/π is the electronic density. Find g(P, θ).

Solution: Continuity of the wavefunction and its derivatives at x = 0 yields four equations,
conveniently written in matrix form:

1 0 −u v∗

0 1 −v −u
k↑ 0 k↑u −k↓v
0 k↓ k↑v k↓u



B↑
B↓
C↑
C↓

 =


−1 0 u −v∗
0 −1 v u

k↑ 0 k↑u −k↓v
0 k↓ k↑v k↓u



A↑
A↓
D↑
D↓

 .

Defining the 2× 2 blocks,

Σ ≡
(
u −v∗
v u

)
, K ≡

(
k↑ 0
0 k↓

)
,

we have (
B
C

)
=
(

1 −Σ
K ΣK

)−1(−1 Σ
K ΣK

)(
A
D

)
.

Converting to flux amplitudes, we have

S =
(√

K 0
0

√
K

)(
1 −Σ
K ΣK

)−1(−1 Σ
K ΣK

)(√
K−1 0
0

√
K−1

)
.

We now invoke the general result(
A B
C D

)−1

=
(

(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

)
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to obtain the blocks of S:

r = K1/2

{(
1 +K−1ΣKΣ−1

)−1 −
(
1 + ΣK−1Σ−1K

)−1
}
K−1/2

t′ = 2K1/2
(
Σ−1 +K−1Σ−1K

)−1
K−1/2

t = 2K1/2
(
Σ +K−1ΣK

)−1
K−1/2

r′ = K1/2

{(
1 +K−1Σ−1KΣ

)−1 −
(
1 + Σ−1K−1ΣK

)−1
}
K−1/2 .

We find

t =
1

u2 + |v|2 cosh2y

(
u v∗ cosh y

−v cosh y u

)
with y = 1

2 ln(k↑/k↓). The dimensionless conductance is

g(P, θ) = Tr (t†t) =
2

u2 + |v|2 cosh2y
=

2 (1− P 2)
(1− P 2) cos2 1

2θ + sin2 1
2θ

,

where P is the polarization. Note that g(P = ±1, θ) = 0, since it is impossible to match
boundary conditions on the lower components. One can also compute the reflection matrix,

r =
sinh y sin1

2θ

cos2 1
2θ + sin2 1

2θ cosh2y

(
cos1

2θ cosh y sin1
2θ e

−iφ

− cosh y sin1
2θ e

iφ cos1
2θ

)
.

[4] Distribution of Resistances of a One-Dimensional Wire – In this problem you are asked
to derive an equation governing the probability distribution P (R, L) for the dimensionless
resistanceR of a one-dimensional wire of length L. The equation is called the Fokker-Planck
equation. Here’s a brief primer on how to derive Fokker-Planck equations.

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt)− x(t) , (1)

and we assume 〈
δx(t)

〉
= F1

(
x(t)

)
δt〈[

δx(t)
]2〉 = 2F2

(
x(t)

)
δt

but
〈[
δx(t)

]n〉 = O
(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is

due to diffusion. Now consider the conditional probability density, P (x, t |x0, t0), defined
to be the probability distribution for x ≡ x(t) given that x(t0) = x0. The conditional
probability density satisfies the composition rule,

P (x, t |x0, t0) =

∞∫
−∞

dx′ P (x, t |x′, t′)P (x′, t′ |x0, t0) ,
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for any value of t′. Therefore, we must have

P (x, t+ δt |x0, t0) =

∞∫
−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) .

Now we may write

P (x, t+ δt |x′, t) =
〈
δ
(
x− x′ − δx(t)

)〉
=
{

1 +
〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}
δ(x− x′) ,

where the average is over the random variables. Upon integrating by parts and expanding
to O(δt), we obtain the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

∂2

∂x2

[
F2(x)P (x, t)

]
.

That wasn’t so bad, now was it?

For our application, x(t) is replaced by R(L). We derived the composition rule for series
quantum resistors in class:

R(L+ δL) = R(L) +R(δL) + 2R(L)R(δL)

− 2 cosβ
√
R(L)

[
1 +R(L)

]
R(δL)

[
1 +R(δL)

]
,

where β is a random phase. For small values of δL, we needn’t worry about quantum
interference and we can use our Boltzmann equation result. Show that

R(δL) =
e2

h

m∗

ne2τ
δL =

δL

2`
,

where ` = vFτ is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions F1(R) and F2(R). Show that the distribution function
P (R, L) obeys the equation

∂P

∂L
=

1
2`

∂

∂R

{
R (1 +R)

∂P

∂R

}
.

Show that this equation may be solved in the limits R � 1 and R � 1, with

P (R, z) =
1
z
e−R/z

for R � 1, and

P (R, z) = (4πz)−1/2 1
R
e−(lnR−z)2/4z

for R � 1, where z = L/2` is the dimensionless length of the wire. Compute 〈R〉 in the
former case, and 〈lnR〉 in the latter case.
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Solution: We have

R(δL) =
e2

h
ρ δL =

e2

h

m∗

ne2τ
δL =

e2

h

m∗vF

ne2`
δL

=
kF

2πn
δL

`
=
δL

2`
.

From the composition rule for series quantum resistances, we derive the phase averages〈
δR
〉

=
(

1 + 2R(L)
)δL

2`〈
(δR)2

〉
=
(

1 + 2R(L)
)2
(
δL

2`

)2

+ 2R(L)
(

1 +R(L)
) δL

2`

(
1 +

δL

2`

)
= 2R(L)

(
1 +R(L)

) δL
2`

+O
(
(δL)2

)
,

whence we obtain the drift and diffusion terms

F1(R) =
2R+ 1

2`
, F2(R) =

R(1 +R)
2`

.

Note that F1(R) = dF2/dR, which allows us to write the Fokker-Planck equation as

∂P

∂L
=

∂

∂R

{
R (1 +R)

2`
∂P

∂R

}
.

Defining the dimensionless length z = L/2`, we have

∂P

∂z
=

∂

∂R

{
R (1 +R)

∂P

∂R

}
.

In the limit R � 1, this reduces to

∂P

∂z
= R ∂2P

∂R2
+
∂P

∂R
,

which is satisfied by P (R, z) = z−1 exp(−R/z). In the opposite limit, R � 1, we have

∂P

∂z
= R2 ∂

2P

∂R2
+ 2R ∂P

∂R

=
∂2P

∂ν2
+
∂P

∂ν
,

where ν ≡ lnR. This is solved by the log-normal distribution,

P (R, z) = (4πz)−1/2 e−(ν+z)2/4z .

Note that

P (R, z) dR = (4πz)−1/2 exp
{
− (lnR− z)2

4z

}
d lnR .
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