Physics 211B : Solution Set #2

[1] Rectangular Barrier – Consider a symmetric planar barrier consisting of a layer of $\text{Al}_x\text{Ga}_{1-x}\text{As}$ of width 2a imbedded in GaAs. The barrier height V_0 is simply the difference between conduction band minima ΔE_c at the Γ point; energies are defined relative to E_{Γ}^{GaAs} . Derive the S -matrix for this problem. Show that

$$
T(E) = \frac{1}{1 + \left[\frac{\sinh\left(b\sqrt{1-\eta}\right)}{2\sqrt{\eta(1-\eta)}}\right]^2} \qquad (\eta \le 1)
$$

and

$$
T(E) = \frac{1}{1 + \left[\frac{\sin((b\sqrt{\eta - 1})}{2\sqrt{\eta(\eta - 1})}\right]^2} \quad (\eta \ge 1) ,
$$

where $\eta = E/V_0$ and $b = a/\ell$ with $\ell = \hbar / \sqrt{2m^*V_0}$. Sketch $T(E)$ versus E/V_0 for various values of the dimensionless thickness b.

Solution: Let the barrier extend from $x = 0$ to $x = d \equiv 2a$. The energy is

$$
E = \frac{\hbar^2 k^2}{2m^*} = \frac{\hbar^2 q^2}{m^*} + V_0.
$$

Thus, with $\eta = E/V_0$, and $\ell = \hbar / \sqrt{2m^*V_0}$, the wavevectors k and q outside and inside the barrier region are given by $k = \ell^{-1}\sqrt{\eta}$ and $q = \ell^{-1}\sqrt{\eta-1}$, respectively.

The wavefunction in the three regions is written

$$
\psi(x) = A e^{ikx} + B e^{-ikx} \qquad (x \le 0)
$$

= $C e^{iqx} + D e^{-iqx} \qquad (0 \le x \le d)$
= $E e^{ikx} + F e^{-ikx} \qquad (d \le x)$.

Matching the wavefunction and its derivative at the points $x = 0$ and $x = d$ gives four equations in the six unknowns A, B, C, D, E , and F :

$$
A + B = C + D
$$

$$
k(A - B) = q(C - D)
$$

$$
C e^{iqd} + D e^{-iqd} = E e^{ikd} + F e^{-ikd}
$$

$$
q(C e^{iqd} + D e^{-iqd}) = k(E e^{ikd} - F e^{-ikd}).
$$

Solving the first two equations for C and D yields

$$
\begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ q & -q \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ k & -k \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}
$$

The bottom pair says

$$
\begin{pmatrix} E \\ F \end{pmatrix} = \begin{pmatrix} e^{ikd} & e^{-ikd} \\ ke^{ikd} & -ke^{ikd} \end{pmatrix}^{-1} \begin{pmatrix} e^{iqd} & e^{-iqd} \\ q e^{iqd} & -qe^{-iqd} \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix}.
$$

Thus, the transfer matrix for this problem is

$$
\mathcal{M} = \frac{1}{4kq} \begin{pmatrix} k e^{-ikd} & e^{-ikd} \\ k e^{ikd} & -e^{ikd} \end{pmatrix} \begin{pmatrix} e^{iqd} & e^{-iqd} \\ q e^{iqd} & -q e^{-iqd} \end{pmatrix} \begin{pmatrix} q & 1 \\ q & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ k & -k \end{pmatrix}
$$

=
$$
\frac{1}{4kq} \begin{pmatrix} (k+q)^2 e^{-i(k-q)d} - (k-q)^2 e^{-i(k+q)d} & -2i (k^2 - q^2) e^{-ikd} \sin(qd) \\ 2i (k^2 - q^2) e^{ikd} \sin(qd) & (k+q)^2 e^{i(k-q)d} - (k-q)^2 e^{i(k+q)d} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1/t^* & -r^*/t^* \\ -r/t' & 1/t' \end{pmatrix}.
$$

Thus,

$$
t^* = \frac{4kq e^{ikd}}{(k+q)^2 e^{iqd} - (k-q)^2 e^{-iqd}}
$$

and (see sketch in figure 1):

$$
T(E) = |t|^2 = \frac{1}{1 + \left(\frac{k^2 - q^2}{2kq}\right)^2 \sin^2(qd)} \\
= \frac{1}{1 + \left[\frac{\sin(2b\sqrt{\eta - 1})}{2\sqrt{\eta(\eta - 1)}}\right]^2} \qquad (\eta \ge 1) \\
= \frac{1}{1 + \left[\frac{\sin(2b\sqrt{1 - \eta})}{2\sqrt{\eta(1 - \eta)}}\right]^2} \qquad (\eta \le 1) .
$$

[2] Multichannel Scattering – Consider a multichannel scattering process defined by the Hamiltonian matrix

$$
\mathcal{H}_{ij} = \bigg(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \varepsilon_i\bigg)\delta_{ij} + \Omega_{ij}\,\delta(x) \ ,
$$

which describes the scattering among N channels by a δ -function impurity at $x = 0$. The matrix Ω_{ij} allows a particle in channel j passing through $x = 0$ to be scattered into channel *i*. The $\{\varepsilon_i\}$ are the internal (transverse) energies for the various channels. For $x \neq 0$, we can write the channel j component of the wavefunction as

$$
\psi_j(x) = I_j e^{ik_j x} + O'_j e^{-ik_j x} \qquad (x < 0)
$$

= $O_j e^{ik_j x} + I'_j e^{-ik_j x} \qquad (x > 0) ,$

where the k_j are positive and determined by

$$
\varepsilon_{\rm F} = \frac{\hbar^2 k_j^2}{2m} + \varepsilon_j \ .
$$

Show that the incoming and outgoing flux amplitudes are related by a $2N \times 2N$ S-matrix:

$$
\begin{pmatrix}\n\sqrt{v} O' \\
\sqrt{v} O\n\end{pmatrix} =\n\begin{pmatrix}\n\overline{r} & t' \\
t & r'\n\end{pmatrix}\n\begin{pmatrix}\n\sqrt{v} I \\
\sqrt{v} I'\n\end{pmatrix}
$$

Figure 1: Dimensionless barrier conductance versus incident energy for a set of thickness parameters.

where $v = diag(v_1, \ldots, v_N)$ with $v_i = \hbar k_i/m > 0$. Find explicit expressions for the component $N \times N$ blocks r, t, t', r' , and show that S is unitary, *i.e.* $S^{\dagger}S = SS^{\dagger} = \mathbb{I}$.

Solution: Continuity of the wavefunction at $x = 0$ requires

$$
I_j + O'_j = O_j + I'_j.
$$

Integrating the Schrödinger equation from $x = 0^-$ to $x = 0^+$ yields

$$
-\frac{\hbar^2}{2m}\Big[\psi_i'(0^+) - \psi_i'(0^-)\Big] + \Omega_{ij}\,\psi_j(0) = 0 ,
$$

which is equivalent to

$$
(i\hbar V + \Omega)_{ij} (I_j + I'_j) = (i\hbar V - \Omega)_{ij} (O_j + O'_j) ,
$$

with $V_{ij} = v_i \, \delta_{ij}$. Thus,

$$
\begin{pmatrix} 1 & -1 \ i\hbar V - \Omega & i\hbar V - \Omega \end{pmatrix} \begin{pmatrix} O' \\ O \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ i\hbar V + \Omega & i\hbar V + \Omega \end{pmatrix} \begin{pmatrix} I \\ I' \end{pmatrix} .
$$

If A is any $N \times N$ matrix, then

$$
\begin{pmatrix} 1 & -1 \ A & A \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & A^{-1} \\ -1 & A^{-1} \end{pmatrix} .
$$

Consequently,

$$
\begin{pmatrix} O' \\ O \end{pmatrix} = \frac{1}{2} \begin{pmatrix} Q-1 & Q+1 \\ Q+1 & Q-1 \end{pmatrix} \begin{pmatrix} I \\ I' \end{pmatrix}
$$

with $Q = (i\hbar V - \Omega)^{-1}(i\hbar V + \Omega)$. This immediately gives the S-matrix as

$$
S = \begin{pmatrix} O' \\ O \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \widetilde{Q} - 1 & \widetilde{Q} + 1 \\ \widetilde{Q} + 1 & \widetilde{Q} - 1 \end{pmatrix}
$$

where

$$
\widetilde{Q} = V^{1/2} Q V^{-1/2} = (1 + i\hbar^{-1} \widetilde{\Omega})^{-1} (1 - i\hbar^{-1} \widetilde{\Omega}) ,
$$

with $\widetilde{\Omega} = V^{-1/2} \Omega V^{-1/2}$. Note that the product in the above equation may be taken in either order, as the two factors commute. Since $\widetilde{\Omega} = \widetilde{\Omega}^{\dagger}$ is Hermitian, \widetilde{Q} is unitary, which in turn guarantees the unitarity of S :

$$
\mathcal{S}^{\dagger} \mathcal{S} = \frac{1}{2} \begin{pmatrix} \widetilde{Q}^{\dagger} \widetilde{Q} + 1 & \widetilde{Q}^{\dagger} \widetilde{Q} - 1 \\ \widetilde{Q}^{\dagger} \widetilde{Q} - 1 & \widetilde{Q}^{\dagger} \widetilde{Q} + 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

[3] Spin Valve – Consider a barrier between two halves of a ferromagnetic metallic wire. For $x < 0$ the magnetization lies in the \hat{z} direction, while for $x > 0$ the magnetization is directed along the unit vector $\hat{\mathbf{n}} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. The Hamiltonian is given by

$$
\mathcal{H} = -\frac{\hbar^2}{2m^*}\frac{d^2}{dx^2} + \mu_\mathrm{B}\boldsymbol{H}_{\rm int}\cdot\boldsymbol{\sigma}\ ,
$$

where H_{int} is the (spontaneously generated) internal magnetic field and $\mu_{\text{B}} = e\hbar/2m_{\text{e}}c$ is the Bohr magneton¹. The magnetization M points along H_{int}^2 . For $x < 0$ we therefore have

$$
E_{\rm F}=\frac{\hbar^2 k_\uparrow^2}{2m^*}+\Delta=\frac{\hbar^2 k_\downarrow^2}{2m^*}-\Delta\ ,
$$

where $\Delta = \mu_{\rm B}H_{\rm int}$. A similar relation holds for the Fermi wavevectors corresponding to spin states $\vert \hat{\boldsymbol{n}} \rangle$ and $\vert -\hat{\boldsymbol{n}} \rangle$ in the region $x > 0$.

Consider the S-matrix for this problem. The 'in' and 'out' states should be defined as local eigenstates, which means that they have different spin polarization axes for $x < 0$ and $x > 0$. Explicitly, for $x < 0$ we write

$$
\begin{pmatrix} \psi_{\uparrow}(x) \\ \psi_{\downarrow}(x) \end{pmatrix} = \left\{ A_{\uparrow} e^{ik_{\uparrow}x} + B_{\uparrow} e^{-ik_{\uparrow}x} \right\} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \left\{ A_{\downarrow} e^{ik_{\downarrow}x} + B_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} 0 \\ 1 \end{pmatrix} ,
$$

¹Note that it is the bare electron mass m_e which appears in the formula for μ_B and not the effective mass $m^*!$).

²For weakly magnetized systems, the magnetization is $\bm{M} = \mu_B^2 g(\varepsilon_F) \bm{H}_{\text{int}}$, where $g(\varepsilon_F)$ is the total density of states per unit volume at the Fermi energy.

while for $x > 0$ we write

$$
\begin{pmatrix} \psi_{\uparrow}(x) \\ \psi_{\downarrow}(x) \end{pmatrix} = \left\{ C_{\uparrow} e^{ik_{\uparrow}x} + D_{\uparrow} e^{-ik_{\uparrow}x} \right\} \begin{pmatrix} u \\ v \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} ,
$$

where $u = \cos(\theta/2)$ and $v = \sin(\theta/2) \exp(i\phi)$. The *S*-matrix relates the *flux amplitudes* of the in-states and out-states:

$$
\begin{pmatrix} b_{\uparrow} \\ b_{\downarrow} \\ c_{\uparrow} \\ c_{\downarrow} \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & t'_{11} & t'_{12} \\ r_{21} & r_{22} & t'_{21} & t'_{22} \\ t_{11} & t_{12} & r'_{11} & r'_{12} \\ t_{21} & t_{22} & r'_{21} & r'_{22} \end{pmatrix} \begin{pmatrix} a_{\uparrow} \\ a_{\downarrow} \\ d_{\uparrow} \\ d_{\downarrow} \end{pmatrix} .
$$

Derive the 2×2 transmission matrix t (you don't have to derive the entire S-matrix) and thereby obtain the dimensionless conductance $g = \text{Tr}(t^{\dagger}t)$. Define the polarization P by

$$
P = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} ,
$$

where $n_{\sigma} = k_{\sigma}/\pi$ is the electronic density. Find $g(P, \theta)$.

Solution: Continuity of the wavefunction and its derivatives at $x = 0$ yields four equations, conveniently written in matrix form:

$$
\begin{pmatrix} 1 & 0 & -u & v^* \ 0 & 1 & -v & -u \ k_{\uparrow} & 0 & k_{\uparrow}u & -k_{\downarrow}v \ 0 & k_{\downarrow} & k_{\uparrow}v & k_{\downarrow}u \ \end{pmatrix} \begin{pmatrix} B_{\uparrow} \\ B_{\downarrow} \\ C_{\uparrow} \\ C_{\downarrow} \end{pmatrix} = \begin{pmatrix} -1 & 0 & u & -v^* \ 0 & -1 & v & u \ k_{\uparrow} & 0 & k_{\uparrow}u & -k_{\downarrow}v \ 0 & k_{\uparrow}u & -k_{\downarrow}v & k_{\downarrow}u \end{pmatrix} \begin{pmatrix} A_{\uparrow} \\ A_{\downarrow} \\ D_{\uparrow} \\ D_{\downarrow} \end{pmatrix}.
$$

Defining the 2×2 blocks,

$$
\Sigma \equiv \begin{pmatrix} u & -v^* \\ v & u \end{pmatrix} , \qquad K \equiv \begin{pmatrix} k_{\uparrow} & 0 \\ 0 & k_{\downarrow} \end{pmatrix} ,
$$

we have

$$
\begin{pmatrix} B \\ C \end{pmatrix} = \begin{pmatrix} 1 & -\Sigma \\ K & \Sigma K \end{pmatrix}^{-1} \begin{pmatrix} -1 & \Sigma \\ K & \Sigma K \end{pmatrix} \begin{pmatrix} A \\ D \end{pmatrix} .
$$

Converting to flux amplitudes, we have

$$
S = \begin{pmatrix} \sqrt{K} & 0 \\ 0 & \sqrt{K} \end{pmatrix} \begin{pmatrix} 1 & -\Sigma \\ K & \Sigma K \end{pmatrix}^{-1} \begin{pmatrix} -1 & \Sigma \\ K & \Sigma K \end{pmatrix} \begin{pmatrix} \sqrt{K^{-1}} & 0 \\ 0 & \sqrt{K^{-1}} \end{pmatrix}.
$$

We now invoke the general result

$$
\begin{pmatrix} A & B \ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & (C - DB^{-1}A)^{-1} \\ (B - AC^{-1}D)^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}
$$

to obtain the blocks of S :

$$
r = K^{1/2} \left\{ \left(1 + K^{-1} \Sigma K \Sigma^{-1} \right)^{-1} - \left(1 + \Sigma K^{-1} \Sigma^{-1} K \right)^{-1} \right\} K^{-1/2}
$$

\n
$$
t' = 2K^{1/2} \left(\Sigma^{-1} + K^{-1} \Sigma^{-1} K \right)^{-1} K^{-1/2}
$$

\n
$$
t = 2K^{1/2} \left(\Sigma + K^{-1} \Sigma K \right)^{-1} K^{-1/2}
$$

\n
$$
r' = K^{1/2} \left\{ \left(1 + K^{-1} \Sigma^{-1} K \Sigma \right)^{-1} - \left(1 + \Sigma^{-1} K^{-1} \Sigma K \right)^{-1} \right\} K^{-1/2}.
$$

We find

$$
t = \frac{1}{u^2 + |v|^2 \cosh^2 y} \begin{pmatrix} u & v^* \cosh y \\ -v \cosh y & u \end{pmatrix}
$$

with $y=\frac{1}{2}$ $\frac{1}{2}\ln(k_{\uparrow}/k_{\downarrow})$. The dimensionless conductance is

$$
g(P,\theta) = \text{Tr}(t^{\dagger}t) = \frac{2}{u^2 + |v|^2 \cosh^2 y} = \frac{2(1 - P^2)}{(1 - P^2)\cos^2 \frac{1}{2}\theta + \sin^2 \frac{1}{2}\theta},
$$

where P is the polarization. Note that $g(P = \pm 1, \theta) = 0$, since it is impossible to match boundary conditions on the lower components. One can also compute the reflection matrix,

$$
r = \frac{\sinh y \sin \frac{1}{2}\theta}{\cos^2 \frac{1}{2}\theta + \sin^2 \frac{1}{2}\theta \cosh^2 y} \begin{pmatrix} \cos \frac{1}{2}\theta & \cosh y \sin \frac{1}{2}\theta e^{-i\phi} \\ -\cosh y \sin \frac{1}{2}\theta e^{i\phi} & \cos \frac{1}{2}\theta \end{pmatrix}
$$

[4] Distribution of Resistances of a One-Dimensional Wire – In this problem you are asked to derive an equation governing the probability distribution $P(\mathcal{R}, L)$ for the dimensionless resistance $\mathcal R$ of a one-dimensional wire of length L. The equation is called the Fokker-Planck equation. Here's a brief primer on how to derive Fokker-Planck equations.

Suppose $x(t)$ is a stochastic variable. We define the quantity

$$
\delta x(t) \equiv x(t + \delta t) - x(t) \tag{1}
$$

.

and we assume

$$
\langle \delta x(t) \rangle = F_1(x(t)) \, \delta t
$$

$$
\langle [\delta x(t)]^2 \rangle = 2 F_2(x(t)) \, \delta t
$$

but $\langle [\delta x(t)]^n \rangle = O((\delta t)^2)$ for $n > 2$. The $n = 1$ term is due to *drift* and the $n = 2$ term is due to *diffusion*. Now consider the conditional probability density, $P(x, t | x_0, t_0)$, defined to be the probability distribution for $x \equiv x(t)$ given that $x(t_0) = x_0$. The conditional probability density satisfies the composition rule,

$$
P(x,t\,|\,x_0,t_0) = \int_{-\infty}^{\infty} dx' P(x,t\,|\,x',t') P(x',t' \,|\, x_0,t_0) ,
$$

for any value of t' . Therefore, we must have

$$
P(x, t + \delta t \,|\, x_0, t_0) = \int_{-\infty}^{\infty} dx' \, P(x, t + \delta t \,|\, x', t) \, P(x', t \,|\, x_0, t_0) \; .
$$

Now we may write

$$
P(x, t + \delta t | x', t) = \langle \delta(x - x' - \delta x(t)) \rangle
$$

=
$$
\left\{ 1 + \langle \delta x(t) \rangle \frac{d}{dx'} + \frac{1}{2} \langle [\delta x(t)]^2 \rangle \frac{d^2}{dx'^2} + \dots \right\} \delta(x - x'),
$$

where the average is over the random variables. Upon integrating by parts and expanding to $\mathcal{O}(\delta t)$, we obtain the Fokker-Planck equation,

$$
\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} [F_1(x) P(x, t)] + \frac{\partial^2}{\partial x^2} [F_2(x) P(x, t)].
$$

That wasn't so bad, now was it?

For our application, $x(t)$ is replaced by $\mathcal{R}(L)$. We derived the composition rule for series quantum resistors in class:

$$
\mathcal{R}(L + \delta L) = \mathcal{R}(L) + \mathcal{R}(\delta L) + 2 \mathcal{R}(L) \mathcal{R}(\delta L)
$$

- 2 cos $\beta \sqrt{\mathcal{R}(L) [1 + \mathcal{R}(L)] \mathcal{R}(\delta L) [1 + \mathcal{R}(\delta L)]}$,

where β is a random phase. For small values of δL , we needn't worry about quantum interference and we can use our Boltzmann equation result. Show that

$$
\mathcal{R}(\delta L) = \frac{e^2}{h} \frac{m^*}{ne^2 \tau} \, \delta L = \frac{\delta L}{2\ell} \;,
$$

where $\ell = v_{\text{F}}\tau$ is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions $F_1(\mathcal{R})$ and $F_2(\mathcal{R})$. Show that the distribution function $P(\mathcal{R}, L)$ obeys the equation

$$
\frac{\partial P}{\partial L} = \frac{1}{2\ell} \frac{\partial}{\partial \mathcal{R}} \left\{ \mathcal{R} \left(1 + \mathcal{R} \right) \frac{\partial P}{\partial \mathcal{R}} \right\} .
$$

Show that this equation may be solved in the limits $\mathcal{R} \ll 1$ and $\mathcal{R} \gg 1$, with

$$
P(\mathcal{R}, z) = \frac{1}{z} e^{-\mathcal{R}/z}
$$

for $\mathcal{R} \ll 1$, and

$$
P(\mathcal{R}, z) = (4\pi z)^{-1/2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R} - z)^2/4z}
$$

for $\mathcal{R} \gg 1$, where $z = L/2\ell$ is the dimensionless length of the wire. Compute $\langle \mathcal{R} \rangle$ in the former case, and $\langle \ln \mathcal{R} \rangle$ in the latter case.

Solution: We have

$$
\mathcal{R}(\delta L) = \frac{e^2}{h} \rho \delta L = \frac{e^2}{h} \frac{m^*}{ne^2 \tau} \delta L = \frac{e^2}{h} \frac{m^* v_{\rm F}}{ne^2 \ell} \delta L
$$

$$
= \frac{k_{\rm F}}{2\pi n} \frac{\delta L}{\ell} = \frac{\delta L}{2\ell} .
$$

From the composition rule for series quantum resistances, we derive the phase averages

$$
\langle \delta \mathcal{R} \rangle = \left(1 + 2 \mathcal{R}(L) \right) \frac{\delta L}{2\ell}
$$

$$
\langle (\delta \mathcal{R})^2 \rangle = \left(1 + 2 \mathcal{R}(L) \right)^2 \left(\frac{\delta L}{2\ell} \right)^2 + 2 \mathcal{R}(L) \left(1 + \mathcal{R}(L) \right) \frac{\delta L}{2\ell} \left(1 + \frac{\delta L}{2\ell} \right)
$$

$$
= 2 \mathcal{R}(L) \left(1 + \mathcal{R}(L) \right) \frac{\delta L}{2\ell} + \mathcal{O}((\delta L)^2) ,
$$

whence we obtain the drift and diffusion terms

$$
F_1(\mathcal{R}) = \frac{2\mathcal{R} + 1}{2\ell} \qquad , \qquad F_2(\mathcal{R}) = \frac{\mathcal{R}(1+\mathcal{R})}{2\ell}
$$

.

Note that $F_1(\mathcal{R}) = dF_2/d\mathcal{R}$, which allows us to write the Fokker-Planck equation as

$$
\frac{\partial P}{\partial L} = \frac{\partial}{\partial \mathcal{R}} \left\{ \frac{\mathcal{R} (1 + \mathcal{R})}{2\ell} \frac{\partial P}{\partial \mathcal{R}} \right\}.
$$

Defining the dimensionless length $z = L/2\ell$, we have

$$
\frac{\partial P}{\partial z} = \frac{\partial}{\partial \mathcal{R}} \left\{ \mathcal{R} \left(1 + \mathcal{R} \right) \frac{\partial P}{\partial \mathcal{R}} \right\} .
$$

In the limit $R \ll 1$, this reduces to

$$
\frac{\partial P}{\partial z} = \mathcal{R} \frac{\partial^2 P}{\partial \mathcal{R}^2} + \frac{\partial P}{\partial \mathcal{R}} \;,
$$

which is satisfied by $P(\mathcal{R}, z) = z^{-1} \exp(-\mathcal{R}/z)$. In the opposite limit, $\mathcal{R} \gg 1$, we have

$$
\frac{\partial P}{\partial z} = \mathcal{R}^2 \frac{\partial^2 P}{\partial \mathcal{R}^2} + 2 \mathcal{R} \frac{\partial P}{\partial \mathcal{R}}
$$

$$
= \frac{\partial^2 P}{\partial \nu^2} + \frac{\partial P}{\partial \nu} ,
$$

where $\nu \equiv \ln \mathcal{R}$. This is solved by the log-normal distribution,

$$
P(\mathcal{R}, z) = (4\pi z)^{-1/2} e^{-(\nu+z)^2/4z}.
$$

Note that

$$
P(\mathcal{R}, z) d\mathcal{R} = (4\pi z)^{-1/2} \exp\left\{-\frac{(\ln \mathcal{R} - z)^2}{4z}\right\} d\ln \mathcal{R}.
$$