
Physics 211B : Problem Set #1

[1] Recall that a quantity F (k) that is conserved between collisions satisfies
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In this context, we see how the relaxation time approximation,(
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= −δf(r,k, t)
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,

where δf = f − f0, violates number conservation. To remedy this situation, one can
orthogonalize the relaxation approximation collision integral to this collisional invariant.
This is the so-called BTK collision integral, first discussed in P. L. Bhatnagar, E. P. Gross,
and M. Krook, Phys. Rev. 94, 511 (1954):(
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where Tr↔
∫̂
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. How would you write down a linearized collision integral which would

preserve both particle number and energy?

[2] In eqns. 1.91 – 1.97 of the notes, I write the linearized Boltzmann equation with E = 0
in terms of the amplitudes ALM in the different angular momentum channels. Work out
the equation corresponding to 1.95 when E is included. Show that the coefficients of the
spherical harmonics all decay to zero except for the case L = 1. How do you identify the
transport lifetime?

[3] Thoroughly study problem #5 from the example problems for chapter 1. Compute the
real part of σxx(B, ω) as a function of field amplitude B for the direction B̂ and frequency
given in the problem, both for Si and Ge. Assume different values for ωτ and find the value
of τ which best fits the data in each case.

[4] The spin-orbit Hamiltonian is

HSO =
~

4m2
ec

2
σ ·∇V × p .

Write down the Boltzmann equation for scattering within a single band, treated within the
effective mass approximation, for a collection of randomly distributed but otherwise identical
spin-orbit scatterers. You should only consider spin-orbit scattering in this problem (a
highly artificial situation) and neglect any potential scattering. You should derive coupled
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Boltzmann equations for δfk↑ and δfk,↓. It will make your life easier if, for each k, you
choose k as the quantization axis for the spin. Writing

δfk,s = 1
2

(
δfk,↑ + δfk,↓

)
δfk,a = 1

2

(
δfk,↑ − δfk,↓

)
,

and then taking
δfk,α =

∑
L,M

ALMα(k, t)YLM (k̂) ,

where α = s or a, derive equations for the rate of change of the coefficients ALMα in the
absence of any external fields.
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