Physics 222 UCSD/225b UCSB

Lecture 15

- Extending the Higgs Sector => 2 Higgs Doublet Models (2HDM).
- I am using the following for today's lecture:
 - "Higgs Hunter's guide" (1990)
 - TASI 06 lectures by Rainwater

Logic of Today's Lecture

- Reminder of single higgs doublet, i.e. Minimal Standard Model (SM or MSM).
- Overview of constraints for extending the higgs sector.
- Focus on 2 higgs doublet models
 - -4 types => discuss 2 of them
- Focus on 2HDM type 2, as implemented in Minimal Supersymmetric Standard Model (MSSM).

Higgs Field in SM

- Standard Model assumes the simplest choice for the higgs field:
 - a complex doublet with Y = 1.
 - Complex for U(1)
 - Doublet for SU(2)
 - Y=1 to make quatum numbers come out right.

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \frac{1}{\sqrt{2}}$$

The superscript indicate the charge according to:

$$Q = T^3 + Y/2$$

Higgs Ground State in SM

- This particular choice of multiplets is exactly what we need because it allows us to break both SU(2) and U(1)_Y, while at the same time allowing us to choose a ground state that leaves U(1)_{em} unbroken.
- The latter is accomplished by choosing a ground state that leaves $\phi^+ = 0$.

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} 0 \\ v \end{pmatrix} \frac{1}{\sqrt{2}}$$

 Use the same higgs field to give mass to fermions and bosons.

Extended Higgs Fields

- There are in principle many choices one could make.
- The only constraint is that the higgs fields belongs to some multiplet of SU(2) x U(1).
- And unitarity should not be violated at large s.
- Apart from that, there are experimental constraints, the most stringent of which are:

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \approx 1$$

FCNC are heavily suppressed in nature.

Comments on $\rho=1$

- Halzen & Martin Exercise 15.4 explores this further.
- Additional discussion can be found in "Higgs Hunter's Guide" chapter 4, and references therein.
- Bottom line:
 - There are many ways to satisfy this constraints.
 - In particular, any model with arbitrary number of higgs doublets and higgs singlets will satisfy the constraint.

Comments on FCNC

- Flavor changing neutral currents in quark sector are heavily suppressed in the SM, proceeding only via "penguin" loops, and other 2nd order weak transitions.
- Glashow & Weinberg showed that tree-level FCNC are forbidden IFF all fermions of a given electric charge couple one-to-one to higgs doublets. (see references for details)
- => Multi-higgs doublet models are thus ok as long as they obey this rule.

Two higgs Doublet Models

- Has been studied theoretically, as well as limited experimentally, in great detail because:
 - It's a minimal extension of the SM higgs sector.
 - It satisfies both experimental constraints we mentioned.
 - It adds new phenomenology by predicting a charged higgs particle.
 - It is required in the MSSM, as well as "low energy"
 SUSY models in general.

General 2HDM Potential

$$\begin{split} V(\phi_{1},\phi_{2}) &= \lambda_{1} \left(\left| \phi_{1} \right|^{2} - v_{1}^{2} \right)^{2} + \lambda_{2} \left(\left| \phi_{2} \right|^{2} - v_{2}^{2} \right)^{2} \\ &+ \lambda_{3} \left[\left(\left| \phi_{1} \right|^{2} - v_{1}^{2} \right) + \left(\left| \phi_{2} \right|^{2} - v_{2}^{2} \right) \right]^{2} \\ &+ \lambda_{4} \left[\left| \phi_{1} \right|^{2} \left| \phi_{2} \right|^{2} - \left(\phi_{1}^{*T} \phi_{2} \right) \left(\phi_{2}^{*T} \phi_{1} \right) \right] \qquad \textit{All λ are real.} \\ &+ \lambda_{5} \left[\operatorname{Re} \left(\phi_{1}^{*T} \phi_{2} \right) - v_{1} v_{2} \cos \xi \right]^{2} \\ &+ \lambda_{6} \left[\operatorname{Im} \left(\phi_{1}^{*T} \phi_{2} \right) - v_{1} v_{2} \sin \xi \right]^{2} \quad \text{From "Higgs Hunter's guide".} \end{split}$$

A slightly less opaque notation:

$$V(\Phi) = \sum_{i=1}^{2} (-\mu_{i}^{2} |\Phi_{i}|^{2} + \lambda_{i}^{2} |\Phi_{i}|^{4})$$

$$+ \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} \qquad \qquad \text{MPI-PAE/Pth 1/91}$$

$$+ \lambda_{4} |\Phi_{1}^{+} \Phi_{2}|^{2}$$

$$+ \frac{1}{2} [\lambda_{5} (\Phi_{1}^{+} \Phi_{2})^{2} + \lambda_{5}^{*} (\Phi_{2}^{+} \Phi_{1})^{2}]$$

I will stick with Higgs Hunter's guide notation as that's my primary reference.

CP violation

 In principle, we have the freedom to choose the two vevs to have an arbitrary phase with regard to each other.

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}_1 = \begin{pmatrix} 0 \\ v_1 \end{pmatrix} \frac{1}{\sqrt{2}} \qquad \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}_2 = \begin{pmatrix} 0 \\ v_2 e^{i\xi} \end{pmatrix} \frac{1}{\sqrt{2}}$$

- If on top, λ₅ ≠ λ₆ then we have CP violation in the higgs sector.
- In the interest of time, we're going to ignore this. See Higgs Hunter's guide for details.

Vevs, G_F, and m_W

For Standard Model (H&M Exercise 15.2)

$$m_W = \frac{1}{2}gv$$
$$G_F = \frac{\sqrt{2}}{v^2}$$

For 2HDM this stays the same, except for:

$$(v_1^2 + v_2^2) \equiv v^2 \approx 246 GeV$$

Higgs Boson Spectroscopy

One Charged Higgs with mass:

$$m_{H^{\pm}} = \sqrt{\lambda_4(v_1^2 + v_2^2)}$$

One CP-odd neutral Higgs with mass:

$$m_{A^0} = \sqrt{\lambda_6(v_1^2 + v_2^2)}$$

And two CP-even higgs that mix.

$$M = \begin{pmatrix} 4v_1^2(\lambda_1 + \lambda_3) + v_2^2\lambda_5 & (4\lambda_3 + \lambda_5)v_1v_2 \\ (4\lambda_3 + \lambda_5)v_1v_2 & 4v_2^2(\lambda_2 + \lambda_3) + v_1^2\lambda_5 \end{pmatrix}$$

Free Parameters in 2HDM

- Four higgs masses
- The ratio of vevs:

$$\tan \beta = \frac{v_2}{v_1}$$

 and a higgs mixing angle, α, for the neutral CP-even higgs states to mix.

Some guiding principles

- Charged higgs mass can be very large, to limit loop contributions to precision data. (Replace a W⁺ with a H⁺ wherever you want.)
- A₀, CP-odd higgs, doesn't couple to the Gauge bosons, i.e. no A₀WW nor A₀ZZ coupling. It's mass can also be very large.
- Of the remaining neutral CP-even h,H, one must be reasonably low mass to meet the m_h constraints from indirect measurements.

$$m_{H,h}^2 = \frac{1}{2} \left[M_{11} + M_{22} \pm \sqrt{(M_{11} - M_{22})^2 + 4M_{12}^2} \right]$$

$$m_{H,h}^2 = \frac{1}{2} \left[M_{11} + M_{22} \pm \sqrt{(M_{11} - M_{22})^2 + 4M_{12}^2} \right]$$

If $M_{11} >> M_{22}$ and $M_{11} >> M_{12}$, then:

$$m_{H}^2 = M_{11}$$
 >> $m_h^2 = M_{22} / 2$

This is easy to arrange via appropriate choice of λ_i and without restricting the choice of $\tan \beta = v_2 / v_1$

$$M = \begin{pmatrix} 4v_1^2(\lambda_1 + \lambda_3) + v_2^2\lambda_5 & (4\lambda_3 + \lambda_5)v_1v_2 \\ (4\lambda_3 + \lambda_5)v_1v_2 & 4v_2^2(\lambda_2 + \lambda_3) + v_1^2\lambda_5 \end{pmatrix}$$

Categorizing 2HDM

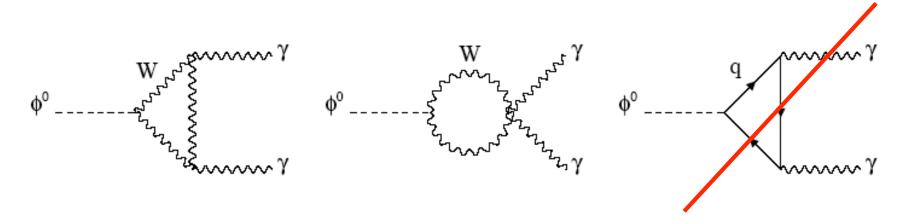
- I only Φ_2 couples to fermions
- II Φ_1 couples to down-type, Φ_2 to up-type fermions
- III Φ_1 couples to down quarks, Φ_2 to up quarks and down leptons
- IV Φ_1 couples to quarks, Φ_2 to leptons

Options III and IV lead to FCNC and are thus not studied any more in any significant way.

Option I leads to "fermiphobic" higgs, i.e. higgs that only couples to gauge bosons.

MSSM is a special case of Option II.

Comparing Type I & II


	Φ	$g_{\Phi u ar u}$	$g_{\Phi dar{d}}$	$g_{\Phi VV}$	$g_{\Phi ZA}$
	1	q_f	q_f	q_V	g_V
	h	$-\frac{\cos\alpha}{\sin\beta}$	$-\frac{\cos\alpha}{\sin\beta}$	$\sin(\beta - \alpha)$	$-\frac{1}{2}i\cos(\beta-\alpha)$
Type I	Н	$-\frac{\sin \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\sin \beta}$	$\cos(\beta - \alpha)$	$\frac{1}{2}i\sin(\beta-\alpha)$
	A	$-i\gamma_5\cot\beta$	$i\gamma_5\coteta$	0	0
	h	$-\frac{\cos\alpha}{\sin\beta}$	$\frac{\sin \alpha}{\cos \beta}$	$\sin(\beta - \alpha)$	$-\frac{1}{2}i\cos(\beta-\alpha)$
Type II	H	$-\frac{\sin \alpha}{\sin \beta}$	$-\frac{\cos\alpha}{\cos\beta}$	$\cos(\beta - \alpha)$	$\frac{1}{2}i\sin(\beta-\alpha)$
	A	$-i\gamma_5\cot\beta$	$-i\gamma_5 \tan \beta$	0	0

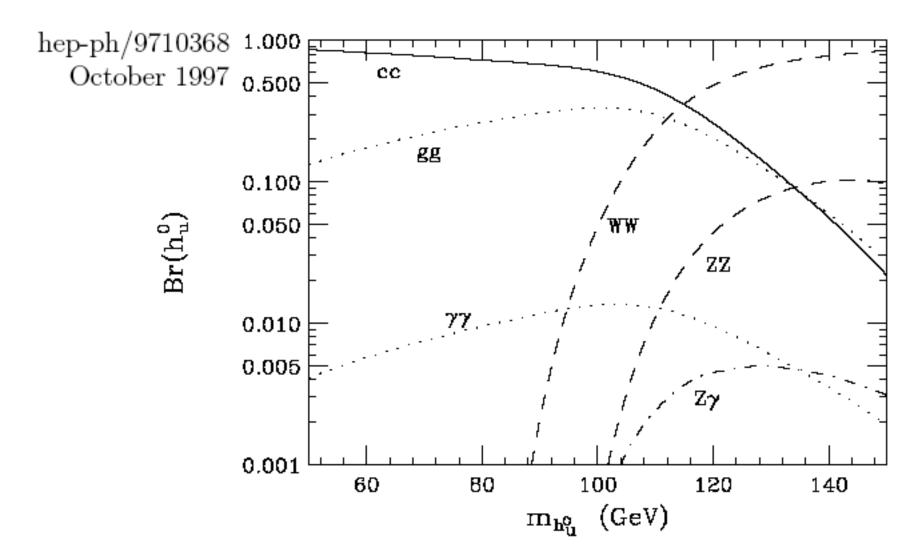
Up and down fermions couple the same way in type I models. We can thus eliminate fermion coupling to m_h entirely while at the same time keeping boson coupling maximal.

 $=>\cos\alpha=0$ while $\sin(\beta-\alpha)=1$.

Type-I: Fermiphobic Higgs

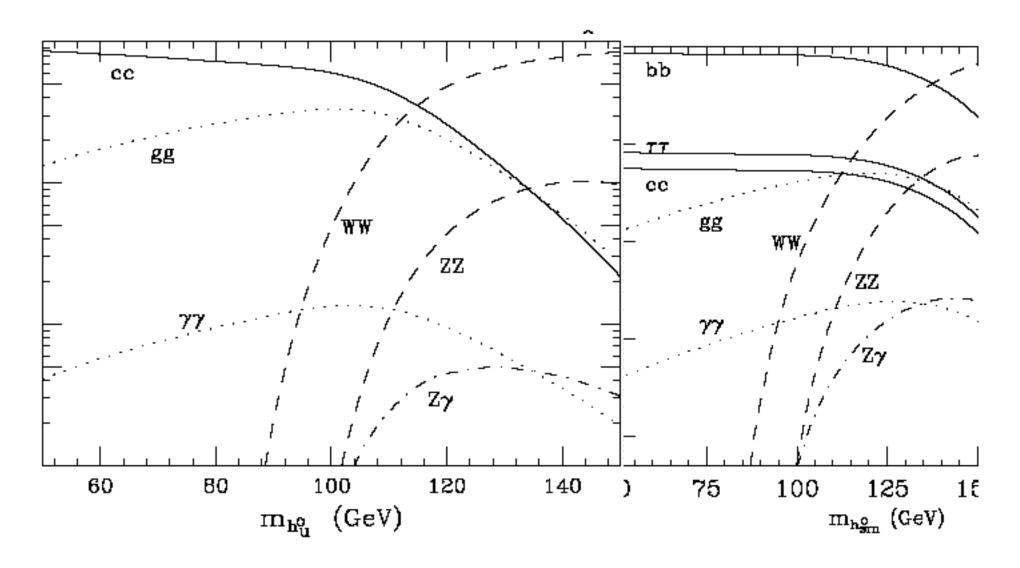
Example higgs to di-photon decay:

This is not allowed.


Leave it to you as an exercise to think through what happens to the rest of higgs phenomenology in fermiphobic models.

Comparing Type I & II

	Φ	$g_{\Phi u ar u}$	$g_{\Phi dar{d}}$	$g_{\Phi VV}$	$g_{\Phi ZA}$
	_	g_f	g_f	g_V	g_V
	h	$-\frac{\cos\alpha}{\sin\beta}$	$-\frac{\cos\alpha}{\sin\beta}$	$\sin(\beta - \alpha)$	$-\frac{1}{2}i\cos(\beta-\alpha)$
Type I	H	$-\frac{\sin \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\sin \beta}$	$\cos(\beta - \alpha)$	$\frac{1}{2}i\sin(\beta-\alpha)$
	A	$-i\gamma_5\cot\beta$	$i\gamma_5\coteta$	0	0
- "	h	$-\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\cos \beta}$	$\sin(\beta - \alpha)$	$-\frac{1}{2}i\cos(\beta-\alpha)$
Type II	Н	$-\frac{\sin \alpha}{\sin \beta}$	$-\frac{\cos\alpha}{\cos\beta}$	$\cos(\beta - \alpha)$	$\frac{1}{2}i\sin(\beta-\alpha)$
	A	$-i\gamma_5\cot\beta$	$-i\gamma_5 \tan \beta$	0	0


Up and down fermions couple differently in type II models. We can thus eliminate down quark coupling to m_h entirely while at the same time keeping boson coupling maximal.

 $=> \sin \alpha = 0$ while $\sin(\beta - \alpha) = 1$.

BR's for low mass m_h , i.e. below WW threshold. Partial width to bb and tautau are turned off as promised.

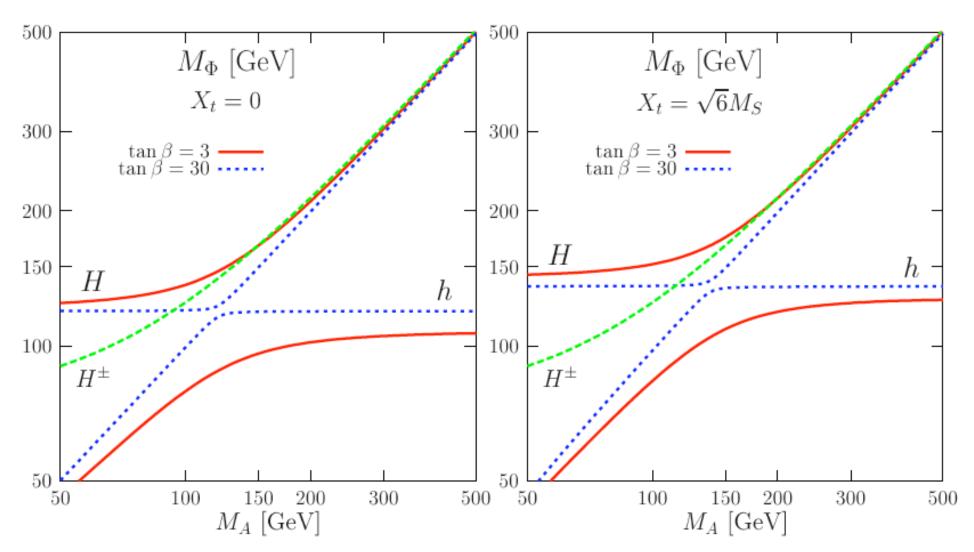
 m_h ~110GeV has 50% BR to WW

No down-quark couplings

Higgs in MSSM

- MSSM is basically a type II 2HDM, but with a variety of constraints among the parameters defining the model.
- The details of these are well beyond the scope of this lecture.
- Instead, we will simply be descriptive, and focus on the few statements that can be made simply.
- As reference, we use the TASI06 lectures by Rainwater.

MSSM Higgs

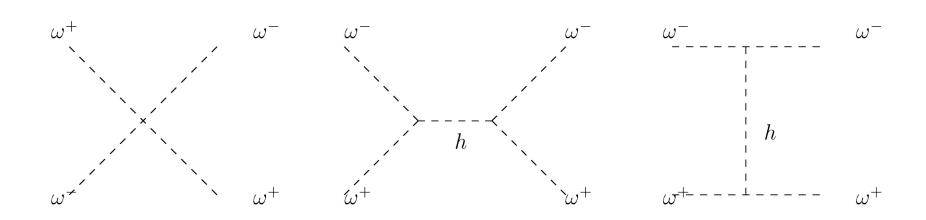

- Assuming no CP violation, it is convenient to look at the masses of the other 3 higgs states as a function of m_A , the mass of the CP-odd higgs. $M_{H^\pm}^2 = M_A^2 + M_W^2$
- At tree level:

$$M_{H,h}^2 \; = \; \frac{1}{2} \bigg(M_A^2 + M_Z^2 \pm \sqrt{(M_A^2 + M_Z^2)^2 + 4 M_A^2 M_Z^2 \sin^2(2\beta)} \bigg)$$

This would imply that $m_h < m_Z$ for large m_A , which is of course already ruled out by experiment.

Loop corrections proportional to m_t² increase m_h somewhat.

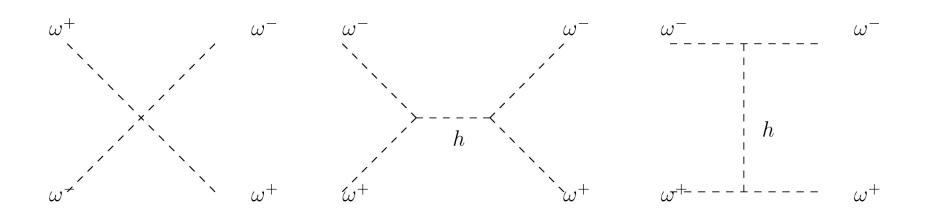
The details depend on mixing in the stop sector, and v_2 / v_1


 m_h < 140GeV in all cases, and getting close to the limit requires large v_2 / v_1 or large masses for all other higgs.

Conclusions from 2HDM

- All the existing standard model constraints can be met.
- There are 3 additional higgs bosons, that all three of them can be so high in mass that we won't find them easily.
- At the same time, both the production and decay properties of the light higgs can be altered such as to affect the higgs hunting significantly.

Aside or backup


SM & WW scattering

Without the higgs, we get $M \propto s / m_W^2$ for large s. This violates unitarity, as previously discussed. (see H&M 15.6 and homework)

In SM, higgs, and the hWW vertex of a igm_w resolve that. (see H&M Exercise 15.5)

2HDM & WW scattering

The same cancellation is still satisfied if: $(v_1^2 + v_2^2) \equiv v^2$

G_F now relates to the sum of the squares of the vevs. As a result, the total cross section for higgs associate production is easy to suppress, but difficult to enhance.