
Problem
7. Four identical charges q, initially widely separated, are brought to the vertices of a tetrahedron of side

a (Fig. 26-26). Find the electrostatic energy of this configuration.

FIGURE 26-26 Problem 7.

Solution
There are six different pairs of equal charges and the separation of any pair is a. Thus,

    W = ∑pairs kqiq j=a = 6kq2=a.  (See Problem 1.)

Problem
8. A charge   Q0  is at the origin. A second charge,   Qx = 2Q0 ,  is brought to the point   x = a,  y = 0.  Then

a third charge Qy  is brought to the point   x = 0,  y = a.  If it takes twice as much work to bring in Qy
as it did   Qx , what is Qy in terms of Q0?

Solution
The work necessary to bring up Qx is     Wx = kQ0Qx=a = 2kQ0

2=a,  while the work necessary to subsequently
bring up Qy is      Wy = kQ0Qy=a + kQxQy= 2a = kQ0Qy (1 + 2)=a.  If   Wy = 2Wx ,  then

    Qy(1 + 2) = 4Q0,  or Qy = 4Q0=( 2 + 1) = 1.66Q0 .  (Note:     1=( 2 + 1) = 2 − 1.)

Problem
10. Two square conducting plates measure 5.0 cm on a side. The plates are parallel, spaced 1.2 mm apart,

and initially uncharged. (a) How much work is required to transfer   7.2 µC  from one plate to the
other? (b) How much work is required to transfer a second   7.2 µC ?

Solution
The separation is much smaller than the linear dimensions of the plates, so the discussion in Section 26-2
applies. (a) From Equation 26-2,

    W = Q2d=2ε0A = (7.2 µC)2(1.2 mm)=2(8.85 × 10−12 F/m)(5 cm)2 = 1.41 J. (b) The additional work
required to double the charge on each plate is       ΔW = (2Q)2 d=2ε0 A − W = 3W = 4.22 J.

Problem
13. A conducting sphere of radius a is surrounded by a concentric spherical shell of radius b. Both are

initially uncharged. How much work does it take to transfer charge from one to the other until they
carry charges   ±Q ?



Solution
When a charge q (assumed positive) is on the inner sphere, the potential difference between the spheres is

  V = kq(a−1 − b−1).  (See the solution to Problem 25-63(a).) To transfer an additional charge dq from the
outer sphere requires work   dW = V dq ,  so the total work required to transfer charge Q (leaving the

spheres oppositely charged) is   W = ∫ 0
Q V dq =    ∫0

Q kq  dq (a−1 − b−1) = 1
2 kQ

2(a−1 − b−1).  (Incidentally,

this shows that the capacitance of this spherical capacitor is     1=k(a
−1 − b−1) = ab=k(b − a) ; see Equation 26-

8a.)

Problem
15. Two conducting spheres of radius a are separated by a distance       l À a;  since the distance is large,

neither sphere affects the other’s electric field significantly, and the fields remain spherically
symmetric. (a) If the spheres carry equal but opposite charges   ±q ,  show that the potential difference
between them is     2kq=a.  (b) Write an expression for the work dW involved in moving an infinitesimal
charge dq from the negative to the positive sphere. (c) Integrate your expression to find the work
involved in transferring a charge Q from one sphere to the other, assuming both are initially uncharged.

Solution
(a) The potential difference between the two (essentially isolated) spheres is     ΔV = kq=a − k(−q)=a = 2kq=a
(see Equation 25-12). (b) ΔV  is the work per unit positive charge transferred between the spheres, so

    dW = dq  ΔV = 2kq  dq=a.  (c) The integration yields     W = ∫ dW = ∫ 0
Q 2kq dq=a = kQ2=a.

Section 26-3: Energy and the Electric Field

Problem
16. The energy density in a uniform electric field is   3.0 J/m3.  What is the field strength?

Solution
Equation 26-3 relates the field strength and the electric energy density,

    
E = 2u=ε0 =

2(3 J/m3 )
(8.85 × 10−12 F/m)

= 8.23 × 105  V/m.

(Note: the manipulation of units is facilitated by the relations   V = J/C  and     F = C=V . Thus,

    (J/m3 )=(F/m) =      (VC/m3)=(C/V ⋅ m) = (V/m)2.)

Problem
22. A sphere of radius R contains charge Q spread uniformly throughout its volume. Find an expression for

the electrostatic energy contained within the sphere itself. Hint: Consult Example 24-1.

Solution
The radially symmetric field inside the sphere is     Er = kQr=R3,  so the energy density is

    u(r) = 1
2 ε0Er

2 = kQ2r2=8π R6.  With thin spherical shells of radius r for volume elements,   dV = 4π r2 dr ,

the integral for the energy is       U = ∫ sphere u dV = ∫0
R 1

2 (kQ2=R6 )r4  dr = kQ 2=10R.  (This is just the energy
stored inside the sphere. For the energy outside the sphere, and the total energy, see the next two problems.)



Problem
23. A sphere of radius R carries a total charge Q distributed over its surface. Show that the total energy

stored in its electric field is     U = kQ2=2R.

Solution
The calculation of the electrostatic energy for a sphere with uniform surface charge density is, in fact, given
in Example
26-3. We simply set   R2 = R,  the radius of the sphere, and   R1 = ∞  (so the integral covers all the space
where the field is non-zero).

Problem
28. A capacitor’s plates hold   1.3 µC  when charged to 60 V. What is its capacitance?

Solution
From Equation 26-5,       C = Q=V = 1.3 µC=60 V = 0.0217 µF.

Problem
33. Find the capacitance of a parallel-plate capacitor consisting of circular plates 20 cm in radius separated

by 1.5 mm.

Solution
For a (closely spaced) parallel plate capacitor, with circular plates, Example 26-4 shows that

    C = ε0π r
2=d =      (8.85 pF/m)π (20 cm)2=(1.5 mm) = 741 pF.

Problem
34. A parallel-plate capacitor with 1.1-mm plate spacing has   ±2.3 µC  on its plates when charged to 150

V. What is the plate area?

Solution
From Equation 26-6,     A = Qd=ε0V = (2.3 µC)(1.1 mm)=(8.85 pF/m)(150 V) = 1.91 m2.

Problem
35. Find the capacitance of a 1.0-m-long piece of coaxial cable whose inner conductor radius is 0.80 mm

and whose outer conductor radius is 2.2 mm, with air in between.

Solution
The capacitance of air-filled   (κ = 1)  cylindrical capacitor was found in Example 26-5:

      C = 2πε0l=ln(b=a) = 2π (8.85 pF/m)      (1 m)=ln(2.2=0.8) = 55.0 pF.

Problem
40. A certain capacitor stores 40 mJ of energy when charged to 100 V. (a) How much would it store when

charged to 25 V? (b) What is its capacitance?



Solution
(a) Equation 26-8b, expressed as a ratio for the same capacitor charged to two different voltages, gives

    U2=U1 = (V2=V1)2.  Therefore,     U2 = (25=100)2(0.04 J) = 2.5 mJ. (b) From the same Equation 26-8b,

    C = 2U1=V1
2 = 2(0.04 J)=(100 V)2 = 8 µF. (    C = 2U2=V2

2,  of course.)

Problem
47. A solid conducting slab is inserted between the plates of a charged capacitor, as shown in Fig. 26-29.

The slab thickness is 60% of the plate spacing, and its area is the same as the plates. (a) What happens
to the capacitance? (b) What happens to the stored energy, assuming the capacitor is not connected to
anything?

Solution
(a) The charge on the plates remains the same, and so does the electric field     (E = σ=ε0)  in the gaps
between either plate and the slab. However, the separation (i.e., the thickness of the field region) between
the plates is reduced to 40% of its original value   ′ d = d1 + d2 = 0.4d ,  therefore the capacitance is
increased,     ′ C = ε0 A= ′ d = ε0A=0.4d = 2.5 C.  (The equations   V = El  and   C = Q=V  lead to the same
result.) In fact, the configuration behaves like a series combination of two parallel plate capacitors,

      1= ′ C = C1
−1 + C2

−1 = (d1=ε0 A) + (d2=ε0 A) = (d1 + d2 )=ε0 A = 0.4d=ε0 A = 1=2.5 C.  (b) When the charge is
constant (no connections to anything isolates the system), the energy stored is inversely proportional to the
capacitance,     U = Q2=2C. Thus       ′ U = Q2=2 ′ C = Q2=2(2.5C) = 0.4U,  or the energy decreases to 40% of its
original value. (With the slab inserted, there is less field region and less energy stored. While the slab is
being inserted, work is done by electrical forces to conserve energy.)

FIGURE 26-29 Problem 47 Solution.

Problem
52. (a) What is the equivalent capacitance of the combination shown in Fig. 26-30? (b) If a 100-V battery

is connected across the combination, what is the charge on each capacitor? (c) What is the voltage
across each?

Solution
(a) C1 is in series with the parallel combination of C2 and C3. Thus,

    C = C1(C2 + C3)=(C1 + C2 + C3 ) = (0.02 µF) ×      (1 + 2)=(2 + 1 + 2) = 0.012 µF.  (b) The net charge on the
entire combination is   Q = CV = (0.012 µF)(100 V) = 1.2 µC.  Since C1 is in series with the capacitors in
parallel,   Q = 1.2 µC = Q1 = Q2 + Q3.  Moreover, for the parallel capacitors,     V2 = Q2=C2 = V3 = Q3=C3,
so       Q3=Q2 = C3=C2 = 2.  Thus,     Q2 = (1=3)Q = 0.4 µC  and     Q3 = (2=3)Q = 0.8 µC. (In general, for two
capacitors in parallel,       Q2 = C2Q=(C2 + C3 )  etc.) (c) Equation 26-5, applied to each capacitor, gives

    V1 = Q1=C1 =      1.2 µC=0.02 µF = 60 V,  and   V2 = V3 = 40 V. (Alternatively, one can first use the general
result in the solution to
Problem 51 (with C2 replaced by   C2 + C3 )  to obtain the voltages,



      V1 = (C2 + C3 )V=(C1 + C2 + C3) = (3=5)(100 V),    V2 = V3 =        C1V=(C1 + C2 + C3 ) = (2=5)(100 V),  and
then use Equation 26-5 to find the charges.)

FIGURE 26-30 Problem 52 Solution.

Problem
54. What is the equivalent capacitance of the four identical capacitors in Fig. 26-31, measured between A

and B?

Solution
Relative to points A and B, the combination of capacitors 2, 3, and 4 is in parallel with 1 (see numbering
added to
Fig. 26-28), so   Ctot = C1 + C234.  However, C234 consists of 2 in series with the parallel combination of 3
and 4, so     C234 = C2C3 4=(C2 + C3 4) = C2(C3 + C4)=(C2 + C3 + C4 ). Since each individual capacitance is
equal to C,

  C234 =
2
3 C  and   Ctot =

5
3 C.

FIGURE 26-31 Problem 54 Solution.

Problem
63. A   5.0-µF capacitor is charged to 50 V, and a   2.0-µF  capacitor is charged to 100 V. The two are

disconnected from their charging batteries and connected in parallel, positive to positive. (a) What is
the common voltage across each after they are connected? Hint: Charge is conserved. (b) Compare the
total electrostatic energy before and after the capacitors are connected. Speculate on the discrepancy.

Solution
(a) The charge on the parallel combination is the sum of the original charges,

  Q|| = Q1 + Q2 = C1V1 + C2V2 =    (5 µF)(50 V) + (2 µF)(100 V) = 450 µC,  while the capacitance is

  C|| = C1 + C2 = 7 µF. Thus, the voltage is       V|| = Q||=C|| = 450 µC=7 µF = 64.3 V.  (b) The total energy
stored in both capacitors before they are connected is

  
1
2 C1V1

2 + 1
2 C2V2

2 = 1
5 (5 µF)(50 V)2 + 1

2 (2 µF)(100 V)2 = 16.3 mJ. After the connection,   U|| =
1
2 C|| V ||

2 =

  
1
2 (7  uF)(64.3 V)2 = 14.5 mJ, a difference of 1.79 mJ. It takes work to redistribute the original charges

when the capacitors are connected. (The new charges are

  ′ Q 1 = (5 µF)(64.3 V) = 321 µC,  and  ′ Q 2 = 129 µC,  respectively.)



Problem
65. A 470-pF capacitor consists of two circular plates 15 cm in radius, separated by a sheet of polystyrene.

(a) What is the thickness of the sheet? (b) What is the working voltage?

Solution
(a) With reference to Equations 26-6, 26-11, and Table 26-1, one finds that     C = κC0 = κ ε0A=d ,  or

    d = κε0A=C =      (2.6)(8.85 pF/m)π (0.15 m)2=470 pF = 3.46 mm.  (Since this is much less than the radius
of the plates, the parallel plate approximation (plane symmetry) is a good one.) (b) The dielectric
breakdown field for polystyrene is   Emax = 25 kV/mm,  so the maximum voltage for this capacitor is

  Vmax = Emaxd = (25 kV/mm)(3.46 mm) = 86.5 kV. (Note: in practice, the working voltage would be less
than this by a comfortable safety margin.)

Problem
68. An air-insulated parallel-plate capacitor has plate area   76 cm2  and spacing 1.2 mm. It is charged to
900 V and then disconnected from the charging battery. A plexiglass sheet is then inserted to fill the space
between the plates. What are  (a) the capacitance, (b) the potential difference between the plates, and (c) the
stored energy both before and after the plexiglass is inserted?

Solution
Before the plexiglass is inserted, (a) the capacitance is

    C0 = ε0A=d = (8.85 pF/m)(76 cm2)=(1.2 mm) = 56.1 pF,
(b) the voltage is   V0 = 900 V,  and (c) the stored energy is   U0 = 1

2 C0V0
2 = 22.7 µ J.  With the plexiglass

insulation inserted, (a) the capacitance is   C = κC0 =    (3.4)(56.1 pF) = 191 pF.  Since the capacitor was
disconnected before the process of insertion, i.e., the plates are isolated and their charge Q is constant, (b)
the voltage is reduced by a factor of     1=κ ,      V = V0=κ = 900 V=3.4 = 265 V  (see the discussion in the text
preceding Equation 26-11), and (c) so is the stored energy,     U = U0=κ = 22.7 µ J=3.4 = 6.68 µ J  (see
Equation 26-12).

Problem
69. The capacitor of the preceding problem is connected to its 900-V charging battery and left connected

as the plexiglass sheet is inserted, so the potential difference remains at 900 V. What are (a) the charge
on the plates and (b) the stored energy both before and after the plexiglass is inserted?

Solution
(a) The capacitances before and after the insertion of the plexiglass insulation are

    C0 = ε0A=d = (8.85 pF/m)(76 cm2) ÷    (1.2  mm) = 56.1 pF,  and   C = κC0 = (3.4)(56.1 pF) = 191 pF,  as
found previously. Therefore, since the voltage stays at
900 V in this case (due to the battery),   Q0 = C0(900 V) = 50.4 nC,  and   Q = C(900 V) = κQ0 = 172 nC,
before and after insertion, respectively. (b) The stored energy is   U0 = 1

2 C0(900 V)2 = 22.7 µ J  before, and

  U = 1
2 C(900 V)2 =    κU0 = 77.2 µ J after. (The difference between this situation and the one in the

previous problem is that the battery does additional work moving more charge to the capacitor plates, while
maintaining the constant voltage. Equation 26-12 applies to an isolated capacitor only.)



Problem
73. A   20-µF  air-insulated parallel-plate capacitor is charged to 300 V. The capacitor is then disconnected

from the charging battery, and its plate separation is doubled. Find the stored energy (a) before and (b)
after the plate separation increases. Where does the extra energy come from?

Solution
(a) Initially, the stored energy is   U0 = 1

2 C0V0
2 = 1

2 (20 µF)(300 V)2 = 0.9 J. (b) Disconnected from the
battery, the charge stays constant, but the capacitance is halved when the separation is doubled
    (C = ε0A=2d = C0=2).  Therefore, the stored energy is doubled, since

    U = Q2=2C = Q2=2(C0=2) = 2U0 = 1.8 J. Work must be done, against the attractive force between the
oppositely charged plates, to increase their separation.


