Formulas:

$$\sin 30^{\circ} = \cos 60^{\circ} = 1/2$$
, $\cos 30^{\circ} = \sin 60^{\circ} = \sqrt{3}/2$, $\sin 45^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$

$$F = k \frac{q_1 q_2}{r^2} \quad \text{Coulomb's law} \quad ; \quad k = 9 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2 \qquad ; \quad \vec{F}_{12} = \frac{k q_1 q_2}{|\vec{r}_2 - \vec{r}_1|^3} (\vec{r}_2 - \vec{r}_1)$$

Electric field due to charge q at distance r: $\vec{E} = \frac{kq}{r^2}\hat{r}$; Force on charge Q: $\vec{F} = Q\vec{E}$

Electric field of_dipole, along dipole axis: $E = \frac{2kp}{x^3}$ (p=qd)

Electric field of dipole, along direction perpendicular to dipole axis: $E = \frac{kp}{y^3}$

Energy of and torque on dipole in E-field: $U = -\vec{p} \cdot \vec{E}$, $\vec{\tau} = \vec{p} \times \vec{E}$

Linear, surface, volume charge density: $dq = \lambda ds$, $dq = \sigma dA$, $dq = \rho dV$

Electric field of infinite: line of charge: $E = \frac{2k\lambda}{r}$; sheet of charge: $E = 2\pi k\sigma$