(1)  (a)  Applying conservation of relativistic momentum we have
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Conservation of total energy gives
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Using Eq. (1) we get
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so     
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(b) Fraction of mass converted to K.E. = ( 1 – 0.55 – 0.32) = 0.13

(c) K.E. of  
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     K.E. of  
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Total K.E.  =  0.13 Mc2  as expected.

(2) We have for an electron moving in a circular orbit perpendicular to a magnetic field,
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Total energy of electron is 
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Total energy of positron at rest is 0.511 MeV

Total energy = (0.788 + 0.511) MeV = 1.3 MeV

Total momentum = 0.6 MeV/c (to right, say)  (before annihilation)

Let us assume 2 emitted (-rays have momenta to the right of  p1 and –p2 respectively.

By momentum conservation,   p1 – p2 = 0.6 MeV/c

By energy conservation,  p1c + p2c  = 1.3 MeV or  p1 + p2  = 1.3 MeV/c

Solving the above 2 linear equations, we get  p1c = 0.95 MeV

 and p2c = 0.35 MeV as the energies of the  (-rays.
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