
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Consider the contraption in Fig. 1. At each of k steps, a particle can fork to either the
left (nj = 1) or to the right (nj = 0). The final location is then a k-digit binary number.

(a) Assume the probability for moving to the left is p and the probability for moving to
the right is q ≡ 1 − p at each fork, independent of what happens at any of the other
forks. I.e. all the forks are uncorrelated. Compute 〈Xk〉. Hint: Xk can be represented

as a k-digit binary number, i.e. Xk = nk−1nk−2 · · ·n1n0 =
∑k−1

j=0 2jnj .

(b) Compute 〈X2
k〉 and the variance 〈X2

k〉 − 〈Xk〉2.

(c) Xk may be written as the sum of k random numbers. Does Xk satisfy the central
limit theorem as k → ∞? Why or why not?

Figure 1: Generator for a k-digit random binary number (k = 4 shown).

Solution :

(a) The position after k forks can be written as a k-digit binary number: nk−1nk−2 · · ·n1n0.
Thus,

Xk =

k−1
∑

j=0

2j nj ,

where nj = 0 or 1 according to Pn = p δn,1 + q δn,0. Now it is clear that 〈nj〉 = p, and
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therefore

〈Xk〉 = p

k−1
∑

j=0

2j = p ·
(

2k − 1
)

.

(b) The variance in Xk is

Var(Xk) = 〈X2
k〉 − 〈Xk〉2 =

k−1
∑

j=0

k−1
∑

j′=0

2j+j′
(

〈njnj′〉 − 〈nj〉〈nj′〉
)

= p(1 − p)

k−1
∑

j=0

4j = p(1 − p) · 1
3

(

4k − 1
)

,

since 〈njnj′〉 − 〈nj〉〈nj′〉 = p(1 − p) δjj′ .

(c) Clearly the distribution of Xk does not obey the CLT, since 〈Xk〉 scales exponentially
with k. Also note

lim
k→∞

√

Var(Xk)

〈Xk〉
=

√

1 − p

3p
,

which is a constant. For distributions obeying the CLT, the ratio of the rms fluctuations
to the mean scales as the inverse square root of the number of trials. The reason that this
distribution does not obey the CLT is that the variance of the individual terms is increasing
with j.

(2) Let P (x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

. Compute the following integrals:

(a) I =
∞
∫

−∞

dx P (x)x3.

(b) I =
∞
∫

−∞

dx P (x) cos(Qx).

(c) I =
∞
∫

−∞

dx
∞
∫

−∞

dy P (x)P (y) exy . You may set µ = 0 to make this somewhat simpler.

Under what conditions does this expression converge?

Solution :

(a) Write
x3 = (x − µ + µ)3 = (x − µ)3 + 3(x − µ)2µ + 3(x − µ)µ2 + µ3 ,

so that

〈x3〉 =
1√

2πσ2

∞
∫

−∞

dt e−t2/2σ2
{

t3 + 3t2µ + 3tµ2 + µ3
}

.
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Since exp(−t2/2σ2) is an even function of t, odd powers of t integrate to zero. We have
〈t2〉 = σ2, so

〈x3〉 = µ3 + 3µσ2 .

A nice trick for evaluating 〈t2k〉:

〈t2k〉 =

∞
∫

−∞

dt e−λt2 t2k

∞
∫

−∞

dt e−λt2
=

(−1)k dk

dλk

∞
∫

−∞

dt e−λt2

∞
∫

−∞

dt e−λt2
=

(−1)k√
λ

dk
√

λ

dλk

∣

∣

∣

∣

∣

λ=1/2σ2

= 1
2 · 3

2 · · ·
(2k−1)

2 λ−k
∣

∣

λ=1/2σ2
=

(2k)!

2k k!
σ2k .

(b) We have

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= Re

[

eiQµ e−Q2σ2/2
]

= cos(Qµ) e−Q2σ2/2 .

Here we have used the result

1√
2πσ2

∞
∫

−∞

dt e−αt2−βt =

√

π

α
eβ2/4α

with α = 1/2σ2 and β = −iQ. Another way to do it is to use the general result derive
above in part (a) for 〈t2k〉 and do the sum:

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= cos(Qµ)

∞
∑

k=0

(−Q2)k

(2k)!
〈t2k〉 = cos(Qµ)

∞
∑

k=0

1

k!

(

− 1
2Q2σ2

)k

= cos(Qµ) e−Q2σ2/2 .

(c) We have

I =

∞
∫

−∞

dx

∞
∫

−∞

dy P (x)P (y) eκ2xy =
e−µ2/2σ2

2πσ2

∫

d2x e−
1

2
Aij xi xj ebi xi ,

where x = (x, y),

A =

(

σ2 −κ2

−κ2 σ2

)

, b =

(

µ/σ2

µ/σ2

)

.

3



Using the general formula for the Gaussian integral,

∫

dnx e−
1

2
Aij xi xj ebi xi =

(2π)n/2

√

det(A)
exp

(

1
2A−1

ij bi bj

)

,

we obtain

I =
1√

1 − κ4σ4
exp

(

µ2κ2

1 − κ2σ2

)

.

Convergence requires κ2σ2 < 1.

(3) The binomial distribution,

BN (n, p) =

(

N

n

)

pn (1 − p)N−n ,

tells us the probability for n successes in N trials if the individual trial success probability

is p. The average number of successes is ν =
∑N

n=0 n BN (n, p) = Np. Consider the limit
N → ∞.

(a) Show that the probability of n successes becomes a function of n and ν alone. That
is, evaluate

Pν(n) = lim
N→∞

BN (n, ν/N) .

This is the Poisson distribution.

(b) Show that the moments of the Poisson distribution are given by

〈nk〉 = e−ν
(

ν
∂

∂ν

)k
eν .

(c) Evaluate the mean and variance of the Poisson distribution.

The Poisson distribution is also known as the law of rare events since p = ν/N → 0 in the
N → ∞ limit. See http://en.wikipedia.org/wiki/Poisson distribution#Occurrence

for some amusing applications of the Poisson distribution.

Solution :

(a) We have

Pν(n) = lim
N→∞

N !

n! (N − n)!

(

ν

N

)n(

1 − ν

N

)N−n

.

Note that

(N − n)! ≃ (N − n)N−n en−N = NN−n
(

1 − n

N

)N
en−N → NN−n eN ,
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where we have used the result limN→∞

(

1 + x
N

)N
= ex. Thus, we find

Pν(n) =
1

n!
νn e−ν ,

the Poisson distribution. Note that
∑

∞

n=0 Pn(ν) = 1 for any ν.

(b) We have

〈nk〉 =
∞
∑

n=0

Pν(n)nk =
∞

∑

n=0

1

n!
nkνn e−ν

= e−ν
(

ν
d

dν

)k
∞
∑

n=0

νn

n!
= e−ν

(

ν
∂

∂ν

)k
eν .

(c) Using the result from (b), we have 〈n〉 = ν and 〈n2〉 = ν + ν2, hence Var(n) = ν.

(4) Consider a D-dimensional random walk on a hypercubic lattice. The position of a parti-
cle after N steps is given by

RN =

N
∑

j=1

n̂j ,

where n̂j can take on one of 2D possible values: n̂j ∈
{

± ê1, . . . ,±êD

}

, where êµ is the
unit vector along the positive xµ axis. Each of these possible values occurs with probability
1/2D, and each step is statistically independent from all other steps.

(a) Consider the generating function SN (k) =
〈

eik·R
N

〉

. Show that

〈

R
α

1

N · · ·Rα
J

N

〉

=
1

i

∂

∂kα
1

· · · 1

i

∂

∂kα
J

∣

∣

∣

∣

k=0

SN (k) .

For example, 〈Rα
NRβ

N 〉 = −
(

∂2SN (k)/∂kα∂kβ

)

k=0
.

(b) Evaluate SN (k) for the case D = 3 and compute the quantities 〈X4
N 〉 and 〈X2

N Y 2
N 〉.

Solution :

(a) The result follows immediately from

1

i

∂

∂kα

eik·R = Rα eik·R

1

i

∂

∂kα

1

i

∂

∂kβ

eik·R = Rα Rβ eik·R ,

et cetera. Keep differentiating with respect to the various components of k.
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(b) For D = 3, there are six possibilities for n̂j : ±x̂, ±ŷ, and ±ẑ. Each occurs with a

probability 1
6 , independent of all the other n̂j′ with j′ 6= j. Thus,

SN (k) =

N
∏

j=1

〈eik·n̂j 〉 =

[

1

6

(

eikx + e−ikx + eiky + e−iky + eikz + e−ikz

)

]N

=

(

cos kx + cos ky + cos kz

3

)N

.

We have

〈X4
N 〉 =

∂4S(k)

∂k4
x

∣

∣

∣

∣

∣

k=0

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

(

1 − 1
6 k2

x + 1
72 k4

x + . . .
)N

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

[

1 + N
(

− 1
6 k2

x + 1
72 k4

x + . . .
)

+ 1
2N(N − 1)

(

− 1
6 k2

x + 1
72 k4

x + . . .
)2

+ . . .
]

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

[

1 − 1
6Nk2

x + 1
72N2k4

x + . . .
]

= 1
3N2 .

Similarly, we have

〈X2
N Y 2

N 〉 =
∂4S(k)

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

k=0

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=0

(

1 − 1
6 (k2

x + k2
y) + 1

72 (k4
x + k4

y) + . . .
)N

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=ky=0

[

1 + N
(

− 1
6 (k2

x + k2
y) + 1

72 (k4
x + k4

y) + . . .
)

+ 1
2N(N − 1)

(

− 1
6 (k2

x + k2
y) + . . .

)2
+ . . .

]

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=ky=0

[

1 − 1
6N(k2

x + k2
y) + 1

72N2(k4
x + k + y4) + 1

36 k2
x k2

y + . . .
]

= 1
9N(N − 1) .

(5) A rare disease is known to occur in f = 0.02% of the general population. Doctors have
designed a test for the disease with ν = 99.90% sensitivity and ρ = 99.95% specificity.

(a) What is the probability that someone who tests positive for the disease is actually
sick?

(b) Suppose the test is administered twice, and the results of the two tests are indepen-
dent. If a random individual tests positive both times, what are the chances he or she
actually has the disease?

(c) For a binary partition of events, find an expression for P (X|A ∩ B) in terms of
P (A|X), P (B|X), P (A|¬X), P (B|¬X), and the priors P (X) and P (¬X) = 1−P (X).
You should assume A and B are independent, so P (A ∩ B|X) = P (A|X) · P (B|X).
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Solution :

(a) Let X indicate that a person is infected, and A indicate that a person has tested positive.
We then have ν = P (A|X) = 0.9990 is the sensitivity and ρ = P (¬A|¬X) = 0.9995 is the
specificity. From Bayes’ theorem, we have

P (X|A) =
P (A|X) · P (X)

P (A|X) · P (X) + P (A|¬X) · P (¬X)
=

νf

νf + (1 − ρ)(1 − f)
,

where P (A|¬X) = 1 − P (¬A|¬X) = 1 − ρ and P (X) = f is the fraction of infected
individuals in the general population. With f = 0.0002, we find P (X|A) = 0.2856.

(b) We now need

P (X|A2) =
P (A2|X) · P (X)

P (A2|X) · P (X) + P (A2|¬X) · P (¬X)
=

ν2f

ν2f + (1 − ρ)2(1 − f)
,

where A2 indicates two successive, independent tests. We find P (X|A2) = 0.9987.

(c) Assuming A and B are independent, we have

P (X|A ∩ B) =
P (A ∩ B|X) · P (X)

P (A ∩ B|X) · P (X) + P (A ∩ B|¬X) · P (¬X)

=
P (A|X) · P (B|X) · P (X)

P (A|X) · P (B|X) · P (X) + P (A|¬X) · P (B|¬X) · P (¬X)
.

This is exactly the formula used in part (b).

(6) Compute the entropy of the F08 Physics 140A grade distribution (in bits). The distri-
bution is available from http://physics.ucsd.edu/students/courses/fall2008/physics140.
Assume 11 possible grades: A+, A, A-, B+, B, B-, C+, C, C-, D, F.

Solution :

Assuming the only possible grades are A+, A, A-, B+, B, B-, C+, C, C-, D, F (11 possibilities),
then from the chart we produce the entries in Tab. 1. We then find

S = −
11
∑

n=1

pn log2 pn = 2.82 bits

The maximum information content would be for pn = 1
11 for all n, leading to Smax =

log2 11 = 3.46 bits.
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∑

n Nn = 38 A+ A A- B+ B B- C+ C C- D F

Nn 2 9 7 3 9 3 1 2 0 2 0

−pn log2 pn 0.224 0.492 0.450 0.289 0.492 0.289 0.138 0.224 0 0.224 0

Table 1: F08 Physics 140A final grade distribution.
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