
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider the matrix

M =

(
4 4
−1 9

)

.

(a) Find the characteristic polynomial P (λ) = det(λI − M) and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigenvector Rα
i and left eigenvector

Lα
i . Normalize your eigenvectors so that 〈Lα |Rβ 〉 = δαβ .

(c) Show explicitly that Mij =
∑

α λα Rα
i Lα

j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(
λ − 4 −4

1 λ − 9

)

= λ2 − 13λ + 40 = (λ − 5)(λ − 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(
Rα

1

Rα
2

)

and the left eigenvectors as ~Lα =
(
Lα

1 Lα
2

)
. Having found the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations

〈Lα |Rβ 〉 = Lα
i Rβ

i = δαβ . We then find

~R1 =

(
1
1
4

)

, ~R2 =

(
1
1

)

, ~L1 =
(

4
3

−4
3

)
, ~L2 =

(
−1

3
4
3

)
.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =





4
3

−4
3

1
3

−1
3



 , P2 = |R2 〉〈L2 | =





−1
3

4
3

−1
3

4
3



 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(
4 4
−1 9

)

,

as expected.
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(2) A Markov chain is a probabilistic process which describes the transitions of discrete
stochastic variables in time. Let Pi(t) be the probability that the system is in state i at time
t. The time evolution equation for the probabilities is

Pi(t + 1) =
∑

j

Yij Pj(t) .

Thus, we can think of Yij = P (i , t + 1 | j , t) as the conditional probability that the system is
in state i at time t+1 given hat it was in state j at time t. Y is called the transition matrix. It
must satisfy

∑

i Yij = 1 so that the total probability
∑

i Pi(t) is conserved.

Suppose I have two bags of coins. Initially bag A contains two quarters and bag B contains
five dimes. Now I do an experiment. Every minute I exchange a random coin chosen from
each of the bags. Thus the number of coins in each bag does not fluctuate, but their values
do fluctuate.

(a) Label all possible states of this system, consistent with the initial conditions. (I.e.
there are always two quarters and five dimes shared among the two bags.)

(b) Construct the transition matrix Yij .

(c) Show that the total probability is conserved is
∑

i Yij = 1, and verify this is the case
for your transition matrix Y . This establishes that (1, 1, . . . , 1) is a left eigenvector of
Y corresponding to eigenvalue λ = 1.

(d) Find the eigenvalues of Y .

(e) Show that as t → ∞, the probability Pi(t) converges to an equilibrium distribution
P eq

i which is given by the right eigenvector of i corresponding to eigenvalue λ = 1.
Find P eq

i , and find the long time averages for the value of the coins in each of the
bags.

Solution :

(a) There are three possible states consistent with the initial conditions. In state | 1 〉, bag A
contains two quarters and bag B contains five dimes. In state | 2 〉, bag A contains a quarter
and a dime while bag B contains a quarter and five dimes. In state | 3 〉, bag A contains
two dimes while bag B contains three dimes and two quarters. We list these states in the
table below, along with their degeneracies. The degeneracy of a state is the number of
configurations consistent with the state label. Thus, in state | 2 〉 the first coin in bag A
could be a quarter and the second a dime, or the first could be a dime and the second a
quarter. For bag B, any of the five coins could be the quarter.

(b) To construct Yij , note that transitions out of state | 1 〉, i.e. the elements Yi1, are particu-
larly simple. With probability 1, state | 1 〉 always evolves to state | 2 〉. Thus, Y21 = 1 and
Y11 = Y31 = 0. Now consider transitions out of state | 2 〉. To get to state | 1 〉, we need
to choose the D from bag A (probability 1

2
) and the Q from bag B (probability 1

5
). Thus,
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Y12 = 1
2
× 1

5
= 1

10
. For transitions back to state | 2 〉, we could choose the Q from bag

A (probability 1
2

) if we also chose the Q from bag B (probability 1
5
). Or we could choose

the D from bag A (probability 1
2
) and one of the D’s from bag B (probability 4

5
). Thus,

Y22 = 1
2
× 1

5
+ 1

2
× 4

5
= 1

2
. Reasoning thusly, one obtains the transition matrix,

Y =









0 1
10

0

1 1
2

2
5

0 2
5

3
5









.

Note that
∑

i Yij = 1.

| j 〉 bag A bag B gA

j gB

j gTOT

j

| 1 〉 QQ DDDDD 1 1 1

| 2 〉 QD DDDDQ 2 5 10

| 3 〉 DD DDDQQ 1 10 10

Table 1: States and their degeneracies.

(c) Our explicit form for Y confirms the sum rule
∑

i Yij = 1 for all j. Thus, ~L1 = (1 1 1) is
a left eigenvector of Y with eigenvalue λ = 1.

(d) To find the other eigenvalues, we compute the characteristic polynomial of Y and find,
easily,

P (λ) = det(λ I − Y ) = λ3 − 11
10

λ2 + 1
25

λ + 3
50

.

This is a cubic, however we already know a root, i.e. λ = 1, and we can explicitly verify
P (λ = 1) = 0. Thus, we can divide P (λ) by the monomial λ−1 to get a quadratic function,
which we can factor. One finds after a small bit of work,

P (λ)

λ − 1
= λ2 − 3

10
λ − 3

50
=

(
λ − 3

10

)(
λ + 1

5

)
.

Thus, the eigenspectrum of Y is λ1 = 1, λ2 = 3
10

, and λ3 = −1
5
.

(e) We can decompose Y into its eigenvalues and eigenvectors, like we did in problem (1).
Write

Yij =

3∑

α=1

λαRα
i Lα

j .

Now let us start with initial conditions Pi(0) for the three configurations. We can always
decompose this vector in the right eigenbasis for Y , viz.

Pi(t) =

3∑

α=1

Cα(t)Rα
i ,
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The initial conditions are Cα(0) =
∑

i Lα
i Pi(0). But now using our eigendecomposition of

Y , we find that the equations for the discrete time evolution for each of the Cα decouple:

Cα(t + 1) = λαCα(t) .

Clearly as t → ∞, the contributions from α = 2 and α = 3 get smaller and smaller, since
Cα(t) = λt

α Cα(0), and both λ2 and λ3 are smaller than unity in magnitude. Thus, as t → ∞
we have C1(t) → C1(0), and C2,3(t) → 0. Note C1(0) =

∑

i L
1
i Pi(0) =

∑

i Pi(0) = 1, since
~L1 = (1 1 1). Thus, we obtain Pi(t → ∞) → R1

i , the components of the eigenvector ~R1. It
is not too hard to explicitly compute the eigenvectors:

~L1 =
(
1 1 1

)
~L2 =

(
10 3 −4

)
~L3 =

(
10 −2 1

)

~R1 = 1
21





1
10
10



 ~R2 = 1
35





1
3
−4



 ~R3 = 1
15





1
−2
1



 .

Thus, the equilibrium distribution P eq
i = limt→∞ Pi(t) satisfies detailed balance:

P eq
j =

gTOT

j
∑

l g
TOT

l

.

Working out the average coin value in bags A and B under equilibrium conditions, one
finds A = 200

7
and B = 500

7
(centa), and B/A is simply the ratio of the number of coins in

bag B to the number in bag A. Note A+B = 100 cents, as the total coin value is conserved.

(3) Poincar’e recurrence is guaranteed for phase space dynamics that are invertible, volume
preserving, and acting on a bounded phase space.

(a) Give an example of a map which is volume preserving on a bounded phase space,
but which is not invertible and not recurrent.

(b) Give an example of a map which is invertible on a bounded phase space, but which
is not volume preserving and not recurrent.

(c) Give an example of a map which is invertible and volume preserving, but on an
unbounded phase space and not recurrent.

Solution :

(a) Consider the map f(x) = frac(x), where frac(x) = x − gint(x) is the fractional part of
x, obtained by subtracting from x the greatest integer less than x. Acting on any set of
width less than unity, this map is volume-preserving. However it is many-to-one hence
not invertible. For example, f(π) = f(π − 1) = f(π − 2) = π − 3. For sufficiently small
ǫ, the interval [π − ǫ , π + ǫ] gets mapped onto the interval [π − 3 − ǫ , π − 3 + ǫ], never to
return to the original interval.
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(b) Any dissipative dynamical system will do. For example, consider ẋ = p/m, ṗ = −γp,
on some finite region of (x, p) space which contains the origin.

(c) Consider ẋ = p/m, ṗ = 0 on the infinite phase space (x, p) ∈ R
2. If p 6= 0 the x-motion

is monotonically increasing or decreasing (i.e. either to the right or to the left along the real
line).

(4) Consider a toroidal phase space (x, p) ∈ T
2. You can describe the torus as a square

[0, 1] × [0, 1] with opposite sides identified. Design your own modified Arnold cat map
acting on this phase space, i.e. a 2 × 2 matrix with integer coefficients and determinant 1.

(a) Start with an initial distribution localized around the center – say a disc centered
at (1

2
, 1

2
). Show how these initial conditions evolve under your map. Can you tell

whether your dynamics are mixing?

(b) Now take a pixelated image. For reasons discussed in the lecture notes, this image
should exhibit Poincaré recurrence. Can you see this happening?

Solution :

(a) Any map

(
x′

p′

)

=

M
︷ ︸︸ ︷
(

a b
c d

) (
x
p

)

,

will due, provided det M = ad − bc = 1. Arnold’s cat map has M =

(
1 1
1 2

)

. Consider the

generalized cat map with M =

(
1 1
p p + 1

)

. Starting from an initial square distribution, we

iterate the map up to three times and show the results in Figs. 1, 3, and 5. The numerical
results are consistent with a mixing flow. (With just a few further interations, almost the
entire torus is covered.)

(c) A pixelated image exhibits Poincaré recurrence, as we see in Figs. 2, 4, and 6.

(5) Consider a spin singlet formed by two S = 1
2

particles, |Ψ 〉 = 1√
2

(
|↑

A
↓
B
〉 − |↓

A
↑
B
〉
)
.

Find the reduced density matrix, ρ
A

= Tr
B
|Ψ 〉〈Ψ |.

Solution :

We have

|Ψ 〉〈Ψ | = 1
2
|↑A ↓B 〉〈 ↑A ↓B | +

1
2
|↓A ↑B 〉〈 ↓A ↑B | −

1
2
|↑A ↓B 〉〈 ↓A ↑B | −

1
2
|↓A ↑B 〉〈 ↑A ↓B | .
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Figure 1: Zeroth, first, second, and third iterates of the generalized cat map with p = 1 (i.e.
Arnold’s cat map), acting on an initial square distribution (clockwise from upper left).

Figure 2: Evolution of a pixelated blobfish under the Arnold cat map.

Now take the trace over the spin degrees of freedom on site B. Only the first two terms
contribute, resulting in the reduced density matrix

ρA = Tr
B

|Ψ 〉〈Ψ | = 1
2
|↑A 〉〈 ↑A | +

1
2
|↓A 〉〈 ↓A | .

Note that Tr ρ
A

= 1, but whereas the full density matrix ρ = Tr
B
|Ψ 〉〈Ψ | had one eigen-

value of 1, corresponding to eigenvector |Ψ 〉, and three eigenvalues of 0 (any state or-
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Figure 3: Zeroth, first, second, and third iterates of the generalized cat map with p = 2,
acting on an initial square distribution (clockwise from upper left).

Figure 4: Evolution of a pixelated blobfish under the p = 2 generalized cat map.

thogonal to |Ψ 〉, the reduced density matrix ρ
A

does not correspond to a ‘pure state’
in that it is not a projector. It has two degenerate eigenvalues at λ = 1

2
. The quantity

S
A

= −Tr ρ
A

ln ρ
A

= ln 2 is the quantum entanglement entropy for the spin singlet.
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Figure 5: Zeroth, first, second, and third iterates of the generalized cat map with p = 3,
acting on an initial square distribution (clockwise from upper left).

Figure 6: Evolution of a pixelated blobfish under the p = 3 generalized cat map.
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