PHYSICS 140A : STATISTICAL PHYSICS
HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a generalization of the situation in §4.4 of the notes where now three reser-
voirs are in thermal contact, with any pair of systems able to exchange energy.

(a)

(b)

(©)

(d)

Assuming interface energies are negligible, what is the total density of states D(E)?
Your answer should be expressed in terms of the densities of states functions D, , 3
for the three individual systems.

Find an expression for P(E,, E,), which is the joint probability distribution for sys-
tem 1 to have energy E, while system 2 has energy £, and the total energy of all
three systemsis I, + E, + F3 = E.

Extremize P(F), E,) with respect to E; 5. Show that this requires the temperatures
for all three systems must be equal: T} = T, = T5. Writing £, = E + §E;, where E7
is the extremal solution (j = 1, 2), expand In P(E} 4+ 0E, , E5 + 0E,) to second order
in the variations 0 E;. Remember that
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Assuming a Gaussian form for P(E,, E,) as derived in part (c), find the variance of
the energy of system 1,
Var(Ey) = ((Ey — Eik)2> :

Solution :

(a) The total density of states is a convolution:

)= [ir, [a; / 0B, D, (E,) Dy(Ey) Dy(Ey) 6(E — B, — By — Fy)

—00 — 00

(b) The joint probability density P(E,, E,) is given by

Dy(Ey) Dy(Ey) Dy(E — By — Ey)

P(E17E2) = D(E)

(c) We set the derivatives 9 In P/OE, , = 0, which gives
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where E; = E — E, — E, in the argument of D,(E;). Thus, we have
OlmD; 90lnD, 0OmlmD; 1
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Expanding In P(E} + 0E; , E5 + 0E,) to second order in the variations §E;, we find the
first order terms cancel, leaving

(0E,)? (0E,)? (0E, 4 0E,)?

InP(E] + 6By, B +0E,) = P(E{ B3) = g = b = et b
B B B

where 9*In D;/0E? = —1/2k,T°C;, with C; the heat capacity at constant volume and
particle number. Thus,
det(C—1) 4

where the matrix C~! is defined as
o (O GGt
Cy Cy +C5
One finds
det(c )y =cyloyt+erteyt oyt ot
The prefactor in the above expression for P(E,, E,) has been fixed by the normalization
condition [dE, [dE, P(E,,E,) = 1.
(d) Integrating over E,, we obtain P(E)):

[e.9]

P(E,) = /dE2 P(E,,E,) = %e—(aElﬁ/sz@w ,
—00 27T/€BC1T2
where
G, = Cy' +Cy! .
Yortoy b votest v ot est
Thus,
(0B,)%) = /dE1 (0E)? = kBé1T2 .

(2) Consider a two-dimensional gas of identical classical, noninteracting, massive rela-

tivistic particles with dispersion e(p) = /p?c? + m2c*.

(a) Compute the free energy F'(T,V, N).



(b) Find the entropy S(T',V, N).

(c) Find an equation of state relating the fugacity z = e*/*s” to the temperature 7" and
the pressure p.

Solution :

(a) We have Z = (CA)V /N! where A is the area and

d 2021 m2ch 2
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To obtain this result it is convenient to change variables to u = (31/p?c? + m2c?, in which
case pdp = udu/3*c?, and the lower limit on u is mc?. The free energy is then
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where we are taking the thermodynamic limit with N — oc.

(b) We have

oF 2h2c2 N me> mc® + 2k. T
=——=—Nk.In| ——— Nk, In( 1 N — "B ).
5= 57 ks n((kBT)2A>+ B n< +I<:BT>+ kB<mC2+k‘BT>

(c) The grand partition function is

E(T,V,p) = e PP =PV = Z Zn(T,V,N) N
N=0

We then find =" = exp (CA eﬁ"), and

. (kBT)g <1 n mc2> e(ﬂ_mcz)/kBT '

P= 27 (he)? kT
Note that 8(6p)
P p
=7 = =nk.T .
n o BT = p=nk,

(3) A three-level system has energy levels ¢, = 0, &, = A, and £, = 4A. Find the free
energy F'(T), the entropy S(7') and the heat capacity C(T').

Solution :

We have
Z=Tre P =1 + e PA + e 48A



The free energy is
F = —kBTan = _kBTln(l + e—A/kBT + 6—4A/kBT) )
To find the entropy S, we differentiate with respect to temperature:

=k In(1 4+ e &/FT 4 e48/ksT) 4 A e B/heT 4 gemaB kT :
) T 1+ e A/kgT 4 o—4A/kgT
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Now differentiate with respect to 7" one last time to find

o . A 2 e—A/kBT +16 €—4A/kBT + 96—5A/kBT
VN kT (1+ e~ A/kpT | 6—4A/kBT)2

(4) Consider a many-body system with Hamiltonian # = LN(N — 1)U, where N is the
particle number and U > 0 is an interaction energy. Assume the particles are identical and
can be described using Maxwell-Boltzmann statistics, as we have discussed. Assuming
i = 0, plot the entropy S and the average particle number N as functions of the scaled
temperature k,7'/U. (You will need to think about how to impose a numerical cutoff in
your calculations.)

Solution :

The grand partition function is
(T, p) = e PP = PPV = Ze (N-1)BU/2

where we have taken ;1 = 0 and we have assumed that each state of definite particle
number ,| NV ), is nondegenerate. We then have the grand potential

QT p)=—k,TIn=E=—kg Tln(Ze (N-1)U/2kg T)
The entropy is

g_ 6 _ ln< Z o~ N(N=1)U/2ky, T> n U YR N(N — 1) e NIN=DU/2ks T

2T Z?VO:O e—N(N—l) U/2kgT

This must be evaluated numerically. The results are shown in Fig. 1. Note that limr_,o S(T') =
ky In 2, which indicates a doubly degenerate ground state. This is because both | N =0)
and | N = 1) have energy E, = E, = 0.
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Figure 1: Entropy as a function of dimensionless temperature for problem #4. Note that
S(T' = 0) = In2 because the states | N = 0) and | N = 1) are degenerate.



