1) We consider front propagation for the modified Fisher equation u; =
Ugze +u(1 —u?). We want to study the system as a propagating front so we let
u(x,t) = u(x — ct) where ¢ is the front propagation speed. Then with £ = z — ¢,

d*u du 9
As in the text, we can see that we have the two-dimensional dynamical
system

=

¢ @
@ = —u(l fuz) —cv
dg§

Then we have fixed points at (u*,v*) = (0,0) and (u*,v*) = (£1,0). The

Jacobian matrix is
0 1
J = (3u2 -1 —c) (3)

The trace is always —c. For (u*,v*) = (£1,0), the determinant is -2, so
we have a saddle point. For (u*,v*) = (0,0), the determinant is 1. If u(x,t)
describe a density, it must be positive and, as described in the text (at the end
of 8.1.3) , we rule out ¢ < 2, so the fixed point is a stable node.

For the stability, we write u(z,t) = U(x —ct) +du(z, t), with U(§) a solution.
Linearizing in du, we obtain the PDE

dou 0%ou

ot 022

We shift to a moving frame defined by £ = x — ¢t and s = t. We then get
the equation (using egs. (8.31) and (8.32) from the notes):

+ (1 — 3U%)du (4)

du  0%5u
—_—= 1— 26
= G+ (13U o)
This is a linear and autonomous PDE and solutions can be written in the
form u(€, s) = f(§)exp(—As), where

f"Hef+(A+1-3UHf=0 (6)

To get rid of f/, we right f(§) = w(g)e:vp(—%) to obtain —% + W () =

\tp, where W (€) = 3U?(€) + % — 1 is the ’potential’. Then if || > 2 we get all
positive eigenvalues and otherwise get negative eigenvalues. Therefore solutions
with |c| < 2 are unstable.

2 For the predator-prey model given by



Uy = Dugye — uv

7
vy = ADwvg, + uv (7)

If we examine the possibility of a traveling front solution, with u(z,t) =
u(x — ct) and v(z,t) = v(x — ct), we obtain the coupled ode system:

DU +cu —uwv =0

ADV + e +uv =0

We now have a four dimensional system:

¢
D% = —cz+uv
* (9
o,
d¢
d
)\DCTZJ = —cw — uv
We then get a Jacobian that looks like (in the order u, v, z, w):
0 0 1 0
0 0 0 1
J= v/D u/D  —¢/D 0 (10)
—v/DX  —u/DA 0 —c/DA

We observe that fixed points exist at (0,0, 0,0), (m1,0,0,0), and (0, m2,0,0),
with my, mg arbitrary. First examine the Jacobian evaluated at (0,0,0,0):

0 0 1 0
0 0 0 1

J0000= | ¢ —¢/D 0 (11)
00 0 —¢/Dx

The eigenvalues are 0 (double), —¢/D, and —¢/DL. For the other two, we
let m1 = my = K, because that’s our boundary condition. This gives Jacobians
of:

J(K,0,0,0) =

o O o o

and



0 0 1 0

0o 0 0 1
Jorkon =1 g/p 0 -¢/p 0 (13)
~K/DX 0 0  —¢/DX

Using MATLAB, Mathematica, or by hand, we find that the eigenvalues for
the (K,0,0,0) are 0, —¢/D and =<V +iKD VQCZJAKD. For (0, K,0,0) we similarly find
0, —¢/DX\ and =¢£VC—4DKXA W\.

We have three special cases: where D ~ 0, where \ ~ 0, and where D is
very small but ) is very large such that DA ~ O(1). First examine when D = 0.
Then we have a 2D system:

du
C— = Uuv
a4 (14)
v _
Cdé_ uv

with Jacobian
(25, 0s) (15)

with eigenvalues 0 and (u - v)/c and fixed points at (K,0) and (0, K).
For A = 0, we have a 3D system

du _
T
dz
D— =— 1
s cz + uv (16)
c@——uv
dg

with eigenvalues 0 and 525 (uD + z¢® + Vu?D? — 2uDzc? + ¢*2% + 4Dvc?)
with fixed points at (0, K,0), (K,0,0), and (0,0,0).
Finally, we have the system where AD ~ O(1) when D = 0. This system is

cd—u = uv
¢
dv
dw
)\Dch = —cw —uv

with all the same fixed points as before.



3 We compute the ”growth rate” n for the Brusselator within a purely
linearized treatment of the problem. First, compute 7 at fixed Q(e = 0) =
a//D,D,. We have the coupled RDE’s:

g = Dytiye + f(u,0) = Dytige +a — (1 + b)u + u?v

) (18)

vy = DyVzy + g(u, v) = DyVgy + bu — uv

The fixed point occurs at (u*,v*) = (a,b/a). Linearizing and Fourier-
decomposing, we get

g (fu—qQDu fo > _ <—(1—|—b)—2uv—q2Du u? > _ <b—1—q2Du
- G gu —¢*D, ) b — 2uv w2 —¢*D, ) —b
(19)
Let ¢ = £Q, so Q2 = 2 '“qujg:f v = —D“a;jguDBibfl). Additionally, note that
the trace and determinant of the above Jacobian are Tr = b—1—a?—q?(D,+D,)
and D = —bg?’D,, + a® + ¢°D,, + ¢*a*D,, + ¢* D, D,, respectively.
Now let’s examine the growth rate at a fixed . Then D,Q? = ¢, D,Q? =
a/c, and (c + 1)2 = bp. With € = b — by, we can simplify our trace and

determinant to Tr = (1 + 1)(c* —a?) + e and D = —%. Then

7° _ (A4 1o —a®))? €, @’ 2 2
T_D_ T -|-§( +c—a—?)—|—ea/c+e/4
e)(c? —a? €
— ((1+1/ )2( ))2+§(62(1+1/C) 7(12(17 1/6)) (20)
@), A1+ 1/e) — (- 1/0))
= 2 SOt T AT /g@ —ae )
T2 A+ 1/o)(? =a?)  e(P(1+1/c) —a*(1—-1/c))
Z_DN 2 2 (I+1/¢)(c? — a?) @)

So the (-) eigenvalue gives us

T T2 B ea’ ~a*(b—bp)
eI e T [ R e e B

which is what the notes have for (9.67).
Now we allow Q to vary. Then

Dugv + vau o _aszu + Dv(b - 1)

2 = =
@) = 2D, D, 2D, D,




So D,Q* = c+¢/2 and D,Q* = “ (1 + ¢/2c). Then

Tr:(1+1/c)(02—a2)+%(1—a2/02) (24)
D = ((e+1)*+e—1—c=£)(—a? = T (14 D)) +ad(et (e+1)?) = - - T
(25)

If this all gets plugged in to determine the eigenvalues, we get

_g - \/m ~ —%(1 + 1/c)(02 - ag)_
e(1—a?/)(A+1/c)(c* —a?) +4a%/c, € 272
2 (1+1/c)(c? — a?))? )—1(1—(1 /c2)

__a*b—br)
(et 1)(a2 =)
(26)

%(1 +1/¢)(a® — ) (1 +

4
We consider the real Ginsburg-Landau equation, v; = uth + V.. — ||*,
with ¥ a complex field. We investigate the stability of static solutions of the

form (x) = \/pu — Q2e'9%. We first write 1(z,t) = \/p — Q2’97 + n(x)eM =
&(x) + n(z)er. Then by only keeping terms that are linear in 7 we get
A = )+ N — 21€°n — E2° (27)

We can define n by its expansion

n = ape’® + Z(akei@"‘kﬂ + bel (@R (28)
Then
ar) _ (n—(Q+Fk)?*—2(n—Q?) (1 — Q?) an
ST )
29

which gives us Apx = —(p — Q?) — k% £ /(2Qk)%2 + (1 — @2)2. To make
&(x) stable, we require the eigenvalue A1 to be negative, which gives us our
Eckhaus instability.



