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Outline
• What uncertainty (error) analysis can for 

you
• Issues with measurement and observation
• What does a model do?
• General error propagation formula with 

example
• Overview of Experiment # 1
• Homework



What is uncertainty (error)?

• Uncertainty (or error) in a measurement is 
not the same as a mistake

• Uncertainty results from:
– Limits of instruments

• finite spacing of markings on ruler
– Design of measurement

• using stopwatch instead of photogate
– Less-well defined quantities

• composition of materials



Understanding uncertainty is 
important

• for comparing values
• for distinguishing between models
• for designing to specifications/planning

Measurements are less useful (often useless) 
without a statement of their uncertainty



An example

Batteries
rated for 1.5 V potential difference across 

terminals
in reality…



Utility of uncertainty analysis

• Evaluating uncertainty in a measurement
• Propagating errors – ability to extend results 

through calculations or to other 
measurements 

• Analyzing a distribution of values
• Quantifying relationships between 

measured values



Evaluating error in measurements

• To measure height of building, drop rock 
and measure time to fall:

• Measure times
2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 2.9s

• What is the “best” value
• How certain are we of it?

d =
1
2

gt 2



Calculate “best” value of the time

• Calculate average value (2.6s, 2.4s, 2.5s, 
2.4s, 2.3s, 2.9s)

– t   =  ∑ ti/n

– t  = 2.51666666666666666666666  s

• Is this reasonable?

i = 1

n

Significant figures



Uncertainty in time

• Measured values - (2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 
2.9s)

• By inspection can say uncertainty < 0.4 s

• Calculate standard deviation
σ =   ∑ (ti – t)2/(n-1)
σ =  0.2137288 s
σ = 0.2 s   (But what does this mean???)



How to quote best value

• What is uncertainty in average value?
– Introduce standard deviation of the mean

σt = σ/ n = 0.08725 s = 0.09 s
• Now what is best quote of average value

– t  = 2.51666666666666666666666  s
– t = 2.52 s

• Best value is 
– t =  2.52 ± 0.09 s



Propagation of error

• Same experiment, continued…
• From best estimate of time, get best estimate of 

distance: 31 meters
• Know uncertainty in time, what about uncertainty 

in distance?
• From error analysis tells us how errors propagate 

through mathematical functions
(2 meters)



Expected uncertainty in a 
calculated sum a = b + c

– Each value has an uncertainty
• b = b ± δb
• c = c ± δc

– Uncertainty for a (δa) is at most the sum of the 
uncertainties

δa = δb + δc

– Better value for δa is 
δa =  (δb2 + δc2)

– Best value is
• a = a ± δa



Expected uncertainty in a 
calculated product a = b*c

– Each value has an uncertainty
• b = b ± δb
• c = c ± δc

– Relative uncertainty for a (εa) is at most the sum of the 
RELATIVE uncertainties

εa = δa/a = εb + εc

– Better value for δa is 
εa =  (εb2 + εc2)

– Best value is
• a = a ± εa  (fractional uncertainty)



What about powers in a product 
a = b*c2

– Each value has an uncertainty
• b = b ± δb
• c = c ± δc

• εa = δa/a     (relative uncertainty)
– powers become a prefactor (weighting) in the error 

propagation
• εa2 =  (εb2 + (2*εc)2)



How does uncertainty in t effect 
the calculated parameter d ?

– d = ½ g t2

 εd =   (2*εt)2 = 2*εt

 εd =   2*(.09/2.52) = 0.071

 δd =   .071*31 m  = 2.2 m = 2 m

Statistical error



Relationships

• Know there is a functional relation between 
d and t d = ½ g t2

• d is directly proportional to t2

• Related through a constant ½ g
• Can measure time of drop (t) at different heights 

(d)
• plot d versus t to obtain constant



Quantifying relationships
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Measurement and Observation

• Measurement: deciding the amount of a 
given property by observation

• Empirical
• Not logical deduction
• Not all measurements are created equal…



Reproducibility

• Same results under similar circumstances
– Reliable/precise

• ‘Similar’ - a slippery thing
– Measure resistance of metal

• need same sample purity for repeatable measurement
• need same people in room?
• same potential difference?

– Measure outcome of treatment on patients
• Can’t repeat on same patient
• Patients not the same



Precision and Accuracy

• Precise - reproducible
• Accurate - close to true value
• Example - temperature measurement

– thermometer with 
• fine divisions
• or with coarse divisions

– and that reads
• 0 C in ice water
• or 5 C in ice water



AccuracyAccuracy vs. Precision
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Random and Systematic Errors

• Accuracy and precision are related to types 
of errors
– random (thermometer with coarse scale)

• can be reduced with repeated measurements, careful 
design

– systematic (calibration error)
• difficult to detect with error analysis
• compare to independent measurement



Observations in Practice

• Does a measurement measure what you 
think it does? Validity

• Are scope of observations appropriate?
– Incidental circumstances
– Sample selection bias

• Depends on model



Models

• Model is a construction that represents a 
subject or imitates a system

• Used to predict other behaviors 
(extrapolation)

• Provides context for measurements and 
design of experiments
– guide to features of significance during 

observation



Testing model

• Models must be consistent with data
• Decide between competing models

– elaboration: extend model to region of 
disagreement

– precision: prefer model that is more precise
– simplicity: Ockham’s razor



Experiment 1 Overview:
Density of Earth

Mass/volume Force =              = mgGMEm
RE

2density

measure ∆t between sunset on cliff and at sea level



Experiment 1: Height of Cliff

Sextant to get θrangefinder to get L

Make sure you use
θ and not (90 – θ)

Wear comfortable shoes
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Eratosthenes
angular deviation = angle subtended

From Yagil



Experiment 1:
Determine g

pendulum F = -mgsin(φ) = -mgφ

F = mα = mlφ
..

period



Experiment 1: Pendulum

Grading rubric uploaded on website
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Reminder
• Prepare for lab
• Read Taylor chapter 4
• Homework due next week (Jan. 18-20) -

Taylor 4.6, 4.14, 4.18, 4.26  (separate sheet)
• No lecture next Monday which is Martin 

Luther King Day
• Next lecture (Jan. 24) on Gaussian 

Distributions, lab #2, confidnece in data
• Homework for lab #2 starting the following 

week (Jan. 25-27) - read Taylor through 
Chapter 5 and do problems 5.2, 5.36.
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