Establishing Relationships, Confidence of Data, Propagation of Uncertainties for Racket Balls and Rods

Lecture # 4 Physics 2BL Summer 2010

Outline

- Review of Gaussian distributions
- Rejection of data?
- Determining the relationship between measured values
- Uncertainties for lab 2
 - Propagate errors
 - Minimize errors

Schedule

Meeting	Experiment				
1 (Jan. 1-4)	none				
2 (Jan. 10-13)	1				
3 (Jan. 17-20)	1				
4 (Jan. 24-27)	2				
5 (Feb. 1-3)	2				
6 (Feb. 7-10)	3				
7 (Feb. 14-17)	3				
8 (Feb. 21-24)	4				
9 (Mar. 1-3)	4				

The Gauss, or Normal Distribution

the limiting distribution for a measurement subject to many small random errors is bell shaped and centered on the true value of x

the mathematical function that describes the bell-shape curve is called the <u>normal distribution</u>, or <u>Gauss function</u>

Chapter 5

The Gaussian Distribution

- A bell-shaped distribution curve that approximates many physical phenomena - even when the underlying physics is not known.
- Assumes that many small, independent effects are additively contributing to each observation.
- Defined by two parameters: Location and scale, i.e., mean and standard deviation (or variance, σ²).
- Importance due (in part) to central-limit theorem:

The sum of a large number of independent and identically-distributed random variables will be approximately normally distributed (i.e.,following a Gaussian distribution, or bell-shaped curve) if the random variables have a finite variance.

The Gauss, or Normal Distribution

standard deviation σ_x = width parameter of the Gauss function σ the mean value of x = true value X

Gauss distribution: changing X

Gauss distribution: changing σ

Accuracy vs. Precision

Precision

σ

points fall within σ from the best estimate $\overline{x} = X$

120²⁶ 20 60 100 40 80

What about the probabilities to find a point within 0.5σ from *X*, 1.7σ from *X*, or in general $t\sigma$ from *X*?

$$G_{X,\sigma} = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-X)^2/2\sigma^2}$$

Table A. The percentage probability, $Prob(\text{within } t\sigma) = \int_{X-t\sigma}^{X+t\sigma} G_{X,\sigma}(x) dx,$ as a function of t.					Χ-ισ Χ Χ+ισ					
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80

t = 1

p. 287 Taylor

Compatibility of a measured result(s): t-score

Best estimate of x:

$$x_{best} \pm \sigma_{\overline{X}}$$

Compare with expected answer x_{exp} and compute t-score:

$$t = \frac{\left| x_{best} - x_{exp\,ected} \right|}{\sigma_{x}}$$

- This is the number of standard deviations that x_{best} differs from x_{exp}.
- Therefore, the probability of obtaining an answer that differs from x_{exp} by t or more standard deviations is:

Prob(outside $t\sigma$) = 1-Prob(within $t\sigma$))

"Acceptability" of a measured result Conventions

- Large probability means likely outcome and hence reasonable discrepancy.
- "reasonable" is a matter of convention...

↓
< 5 % - significant discrepancy, t > 1.96
< 1 % - highly significant discrepancy, t > 2.58
↑
boundary for unreasonable improbability

If the discrepancy is beyond the <u>chosen</u> boundary for unreasonable improbability, ==> the theory and the measurement are incompatible (at the stated level)

Example: Confidence Level

Two students measure the radius of a planet.

- Student A gets *R*=9000 km and estimates an error of σ = 600 km
- Student B gets R=6000 km with an error of σ =1000 km
- What is the probability that the two measurements would disagree by more than this (given the error estimates)?

==> Define the quantity $q = R_A - R_B = 3000$ km. The expected q is zero. Use propagation of errors to determine the error on q.

$$\sigma_q = \sqrt{\sigma_A^2 + \sigma_B^2} = 1170 \text{ km}$$

• Compute *t* the number of standard deviations from the expected *q*.

$$t = \frac{q}{\sigma_q} = \frac{9000 - 6000}{1170} = 2.56$$

Now we look at Table A ==> 2.56 σ corresponds to 98.95%
 So, The probability to get a worse result is 1.05% (=100-98.95)
 We call this the <u>Confidence Level</u>, and this is a bad one.

Rejection of Data ? Chapter 6

- Consider series 3.8s, 3.5s, 3.9s, 3.9s, 3.4s, 1.8s
- Reject 1.8s ?
 - Bad measurement
 - New effect
 - Something new
- Make more measurements so that it does not matter

How different is the data point?

• From series obtain

$$- = 3.4s$$

- $\sigma = 0.8s$

- How does 1.8s data point apply?
- How far from average is it?

 $-x - \langle x \rangle = \Delta x = 1.6 \text{ s} = 2 \text{ s}$

• How probable is it?

- Prob ($|\Delta x| > 2 \sigma$) = 1 - 0.95 = 0.05

Chauvenet's Criterion

- Given our series, what is prob of measuring a value 2 σ off ?
 - Multiply Prob by number of measurement
 - Total Prob = 6 x 0.05 = 0.3

• If chances < 50% discard

Strategy

- $t_{sus} = \Delta x$ (in σ)
- Prob of x outside Δx
- Total Prob = N x Prob
- If total Prob < 50% then reject

Refinement

- When is it useful
 - Best to identify suspect point
 - remeasure
- When not to reject data
 - When repeatable
 - May indicate insufficient model
 - Experiment may be sensitive to other effects
 - May lead to something new (an advance)

Rejection of other data points

- If more than one data point suspect, consider that model is incorrect
- Look at distribution
- Additional analysis
 - Such as χ^2 testing (chapter 12)
 - Remeasure/ repeatable
 - Determine circumstances were effect is observed.

Useful concept for complicated formula

• Often the quickest method is to calculate with the extreme values

$$-q = q(x)$$

$$-q_{max} = q(\overline{x} + \delta x)$$

$$-q_{min} = q(\overline{x} - \delta x)$$

$$\Box \, \delta q = (q_{max} - q_{min})/2 \qquad (3.39)$$

The Four Experiments

- Determine the average density of the earth
- Weigh the Earth, Measure its volume
- Measure simple things like lengths and times
- Learn to estimate and propagate errors

• Non-Destructive measurements of densities, inner structure of objects

- Absolute measurements vs. Measurements of variability
- Measure moments of inertia
- Use repeated measurements to reduce random errors
- Construct and tune a shock absorber
- Adjust performance of a mechanical system
- Demonstrate critical damping of your shock absorber
- Measure coulomb force and calibrate a voltmeter.
- Reduce systematic errors in a precise measurement.

Racquet Balls

We should check if the variation in *d* is much less than 10%.

- 1 Measure M and R
- 2. Using photo gate timer measure the time, t, to travel distance x

 $\frac{I}{MR'^2} = \left(\frac{ght^2}{2x^2} - 1\right)$

$$\tilde{I} = \frac{I}{MR^2} = \frac{{R'}^2}{R^2} \left(\frac{ght^2}{2x^2} - 1\right)$$

Measuring the Variation in Thickness of the Shell

• 1. Measure rolling time of one ball many times to determine the measurement error in *t*,

$\sigma_{measurement}$

- 2. Measure rolling time of many balls to determine the total spread in *t*, σ_{total}
- 3. Calculate the spread in time due to ball manufacture,
 σ_{manufacture}, by subtracting the measurement error
- 4. Propagate error on *t* into error on *I* and then into error on thickness *d*

to see a to see a to see a to see a to

Propagate Error from I to d

J

$$I = \frac{2}{5}M\frac{R^5 - r^5}{R^3 - r^3}$$
measured thickness and

$$z = \frac{r}{R} \approx \frac{28.25 - 4.5 \text{ mm}}{28.25 \text{ mm}} \approx 0.841 \longleftarrow d=4.5 \text{ mm} R=28.25 \text{ mm}$$

$$\tilde{I}(0.841) \equiv \frac{I}{MR^2} = \frac{2}{5}\frac{1 - z^5}{1 - z^3} \approx 0.571892$$

$$\tilde{I}(0.840) \equiv \frac{I}{MR^2} = \frac{2}{5}\frac{1 - z^5}{1 - z^3} \approx 0.571366$$

$$\frac{\partial z}{\partial \tilde{I}} = \frac{0.841 - 0.840}{0.571892 - 0.571366} = \frac{0.001}{0.00526} = 1.901$$

$$\frac{\sigma_d}{d} = \frac{\sigma_r}{d} = \frac{R\tilde{I}}{d} = \frac{R\tilde{I}}{d} \frac{\partial z}{\partial \tilde{I}} \frac{\sigma_I}{\tilde{I}} \approx \frac{(28.25 \text{ mm})(0.572)}{4.5 \text{ mm}} (1.901) \frac{\sigma_I}{\tilde{I}} = 6.826 \frac{\sigma_I}{\tilde{I}} \approx 6.8 \frac{\sigma_I}{\tilde{I}}$$

Propagate Error from t to I

$$\tilde{I} = \frac{I}{MR^2} = \frac{R'^2}{R^2} \left(\frac{ght^2}{2x^2} - 1\right) \approx 0.572$$
$$\partial \tilde{I} \qquad R'^2 (ght)$$

compute derivative

from previous page

 $\sigma_{\tilde{I}} = \frac{R'^2}{R^2} \left(\frac{ght}{x^2}\right) \sigma_t$

 $\left(\frac{ght}{x^2}\right) = \frac{2}{t} \left(\frac{R^2}{R'^2}\tilde{I} + 1\right)$

 $\frac{1}{\partial t} = \frac{1}{R^2} \left(\frac{U}{x^2} \right)$

propagate error

$$\frac{\sigma_{\tilde{I}}}{\tilde{I}} = \frac{\left(\frac{ght}{x^2}\right)}{\left(\frac{ght^2}{2x^2} - 1\right)} \sigma_t \approx \frac{\left(\frac{ght}{x^2}\right)}{\frac{R^2}{R'^2}(0.572)} \sigma_t$$

 $\frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx \frac{\frac{2}{t} \left(\frac{R^2}{R'^2} \tilde{I} + 1\right)}{\frac{R^2}{D'^2} \left(0.572\right)} \sigma_t = \frac{2 \left(0.572 + \frac{R'^2}{R^2}\right)}{\left(0.572\right)} \frac{\sigma_t}{t} \approx 4 \frac{\sigma_t}{t}$

work out fractional error numerically $\frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 4 \frac{\sigma_t}{t}$ $\frac{\sigma_d}{d} \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 27 \frac{\sigma_t}{t}$

to get a 10% error on the thickness we need 0.37% error on the rolling time

accuracy can be improved by rolling each ball many times

the set of the set of

Remember

- Lab Writeup
- Read lab description, prepare
- Read Taylor through Chapter 8