Quiz 7

Problem 1 (Ch. 35, Problem # 7)

If a slit diffracts 580-nm light so that the diffraction maximum is 6 cm wide on a screen 2.2 m away, what will be the width of the diffraction maximum for light with a wavelength of 460 nm?

Solution:
$$\tan \theta_1 = \frac{\frac{1}{2} \Delta y_1}{l} \Rightarrow \theta_1 \approx 0.78^\circ$$

 $\sin \theta_1 = \frac{\lambda_1}{D} \Rightarrow 42, 537 \text{ nm} = D$
 $\sin \theta_2 = \frac{\lambda_2}{D} \Rightarrow \theta_2 = 0.62^\circ$
 $\tan \theta_2 = \frac{\frac{1}{2} \Delta y_2}{l} \Rightarrow \Delta y_2 = 2l \tan \theta_2 = 4.8 \text{ cm}$

Problem 2 (Ch. 35, Problem # 35)

Red laser light from He-Ne laser ($\lambda = 632.8$ nm) is used to calibrate a diffraction grating. The light creates a second-order fringe at 53.2° after passing through the grating. The light of an unknown wavelength λ creates a first-order fringe at 20.6°. Find λ .

Solution:
$$\begin{cases} \theta_1 = 20.6^{\circ}, & \begin{cases} \theta_2 = 53.2^{\circ} \\ \lambda_1 = ? \end{cases} \\ \lambda_2 = 632.8 \text{ nm} \end{cases}$$

$$\begin{cases} d \sin \theta_1 = 1 \cdot \lambda_1 \\ d \sin \theta_2 = 2 \cdot \lambda_2 \end{cases} \Rightarrow \lambda_1 = 2 \frac{\sin \theta_1}{\sin \theta_2} \cdot \lambda_2 = 2 \cdot \frac{\sin 20.6^{\circ}}{\sin 53.2^{\circ}} \cdot 632.8 \text{ nm} = 556 \text{ nm} \end{cases}$$

Problem 3 (Ch. 35, Problem # 42)

The first-order line of 589-nm light falling on a diffraction grating is observed at a 16.5° angle. How far apart are the slits? At what angle will the third order be observed?

Solution:
$$d \sin \theta = m \lambda$$

$$d \sin \theta_1 = 1 \cdot \lambda$$

$$\Rightarrow d = \frac{\lambda}{\sin \theta_1} = \frac{589 \text{ nm}}{\sin (6.5^\circ)} = 2.07 \mu\text{m}. \frac{d}{d} = \frac{3.3 \cdot \lambda}{10.5 \cdot 10.5}$$

$$\Rightarrow \theta_3 = \sin^{-1}\left(\frac{3 \times 589 \text{ nm}}{2.074 \text{ nm}}\right) = 58.4^\circ.$$