PHYSICS 140A : STATISTICAL PHYSICS
FINAL EXAMINATION SOLUTIONS

Instructions: Do problem 4 (34 points) and any two of problems 1, 2, and 3 (33 points each)

(1) A noninteracting system consists of N dimers. Each dimer consists of two spins, S and o,
where S € {—1,0,+1} and o € {—1,+1}. The Hamiltonian is

N N
H= —JZSiai —,uOHZSZ- .
i=1 i=1

Thus, the individual dimer Hamiltonian is h = —JSo — poHS.

(a) Find the N-dimer free energy F'(T, N).

(b) Find the average (S) and the zero field susceptibility X4(7") = % ‘H—O
(c) Find the average (o) and the zero field susceptibility X, (7") = % et

(d) Examine the J — 0 limits of X 4(7") and X, (7") and interpret your results physically.

Solution :

(a) There are six energy states for each dimer, listed in Tab. 1

| s|o] WMSo | S| o] So |
U1 =T —poH [ 1] =1 J—pH
0 | +1 0 0 | —1 0

—1 | +1 | +T+pH || =1 =1 | =T+ poH

Table 1: Energy table for problem 1.

Thus, the single dimer partition function is

¢ = Tre Bh — oI ool 4 | 4 o8 o=BugH  =BJ BuoH | | 4 B o=BuoH
= 2 + 4 cosh(BpgJ) cosh(BugH) .

For N noninteracting dimers, Z = (" (the dimers are regarded as distinguishable). Thus,

F(T,N) = —Nk,Tln (2 + 4 cosh (J/k,T) cosh(,uOH/kBT)>

(b) We have

Tr e—Bh(S0) 2 + 4 cosh(BJ) cosh(SH) '




SO

cosh(J/kyT) sinh(uyH/k,T)

(5) = cosh(J/k,T) cosh(pgH/k,T) + %

Expanding to linear order in H and taking the coefficient, we have

‘ cosh(J/k,T) o
~ 0H ln=0  cosh(J/k,T) + 1 kT

Note that usually we define X = 22 with M = p (S), so our result above differs by a factor of .

(c) We have

 TroeBhS0) (BT ePugH =BT o= BugH _ =B oBuoH _ BT o= BugH

(o) = Tr e—Bh(S0) 2 + 4 cosh(BJ) cosh(SH) ’

SO

~ sinh(J/kT) sinh(ugH /k;T)
~ cosh(J/k,T) cosh(pgH/k,T) + 1

Expanding to linear order in H and taking the coefficient, we have

X.(T) = 8(0)\ _ sinh(J/ksT) Mg
777 OH lm=0  cosh(J/k,T) + 3 kT
(d) As J — 0 we have
X(T, T =0) = 2\ (1,7 =0)=0
3k, T

The physical interpretation of these results is as follows. When J = 0, the individual dimer
Hamiltonian is & = —yH S. The factor of 2 in X4 is due to the fact that S = 0 in £ of the states.
The o spins don’t couple to the field at all in this limit, so X, = 0.

(2) Recall that a van der Waals gas obeys the equation of state

a
(p—i-ﬁ)(v—b) — RT,
where v is the molar volume. We showed that the energy per mole of such a gas is given by
e(T,v) =LfRT - % ,

where 7' is temperature and f is the number of degrees of freedom per particle.



(a) For an ideal gas, the adiabatic equation of state is
vT//? = const. Find the adiabatic equation of state (at
fixed particle number) for the van der Waals gas.

(b) One mole of a van der Waals gas is used as the working D
substance in a Carnot engine (see Fig. 1). Find the molar
volume at v in terms of vg, T}, T, , and constants.

(c) Find the heat Qg absorbed by the gas from the upper
reservoir.

(d) Find the work done per cycle, Weyc. Hint: you only need v

to know Q ag and the cycle efficiency 7. Figure 1: The Carnot cycle.
Solution :

(a) We have

0=Tds=de+ pdv
_1 a
— LfRdT + <p+v2>dv

RT dv
v—2>

= 1fRAT + = LfRT dIn[(v - b)T'/?]

where s = N,.S/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals
gas is

ds=0 = (v—b)T7/? = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

f/2 1/2 T, //2
(vg = b) 15" = (vc — b) T} = ve =b+ (vg — b) <?>
1

(c) We have, from the First Law,

Qag = Eg — Ep + Wag

a a
:1/<———>+V/dvp
Un U
Ua
FrRT
:1/<i—i>+l//dv[ 2—%],
vy Vg v—>b w
Ua



hence

Up —

with v = 1.

(d) Since the cycle is reversible, we must have

Weye vg — b
T]:Q—AyB = WCVC:VR(TZ_Tl)In(@i_b>

(3) In homework assignment #9, you showed that the grand partition function for a gas of ¢-state
parafermions is

_ 1 — elatD)(u—ea)/kpT
\:(Ta ‘/7/’[/) == H < 1 _ e(llz_aa)/kBT 9

where the product is over all single particle states. Consider now the case where the number of
parafermions is not conserved, hence p = 0. We call such particles paraphotons.

(a) What is the occupancy n(e, T') of ¢-state paraphotons of energy ?

(b) Suppose the dispersion is the usual e(k) = hck. Assuming g = 1, find the single particle
density of states g(¢) in three space dimensions.

(c) Find the pressure p(T'). You may find the following useful:

7dt e’f:ll “T(r)C0r) 7dt g1 ln<1 _1e_t> —T(r)C(r+1).
0 0

(d) Show that p = C,nk,T, where n is the number density, and C,, is a dimensionless constant
which depends only on gq.

Solution :

(a) For pu # 0, for a single parafermion state, we have

02 10mlnE

o B ou
- 1 B q+1
eBle—p) — 1 elat)Ble—p) —1°

Setting = 0, we find

_ 1 B q+1
et/kT 1 elatl)e/kpT _q

n(e,T)




(b) With g = 1, we have

e P Bk o KAk
g - B T = o2 g ~ 272 (he)?

(c) The pressure is

p= —g = kT [de g(e) { In(1— e_(qH)a/kBT) —In(1 - e_a/kBT)}
%2 o /ds R R )

_C()(/fBT). 1
- (! <q+1>s>-

p1) = (1- @+ 1)) L

Thus,

(d) We need to evaluate

d qg+1
n= [deg(e s/kT 1 elarDe/ksT _

d B g+1
27T2 PE e e’ s/k T_1 olatDe/bsT _ 1
0

A R L

From this we derive

o P _<@ q*+3q+3
q— - )
nkgT  ((3) ¢*+3q+2

(4) Provide brief but substantial answers to the following:

(a) A particle in d = 3 dimensions has the dispersion £(k) = ¢, exp(ka). Find the density of states
per unit volume g(¢). Sketch your result.

(b) Find the information entropy in the distribution p,, = C e, where n € {0,1,2,...}. Choose
C so as to normalize the distribution.



(c) Anideal gas at temperature 7' = 300 K undergoes an adiabatic free expansion which results in
a doubling of its volume. What is the final temperature?

(d) For an N-particle noninteracting system, sketch the contributions AC, to the heat capacity
versus temperature for (i) a vibrational mode at energy fw,, and (ii) a two-level (Schottky) defect
with energy splitting A = ¢, — ¢,. Take care to identify any relevant characteristic temperatures,
as well as the limiting values of ACY,.

Solution :

0.03

(a) Inverting the dispersion relation, we obtain the expres-
sion k(e) = a~'In(e/egy) O(e — ;). We then have

k2 dk k2 1 0.02; ;
o) = T = | |
21 de 2w agye 0
Thus, ’
0.01 —
1 1 €
= ~In? = -
Q(E) 27203 ¢ n <EO> 9(5 EO)
PRI T S N S ST N N AN ST N N
The result is plotted in Fig. 2. "o : v 15 &0
(b) Normalizing the distribution, Figure 2: DOS for problem 4.a.
1= ip =C i e = ¢
" 1—e X’
n=0 n=0
hence C' = 1 — e~ *. The information entropy is
S = —anlnpn =—In(1- e_A) +C)\Zne_)‘" .
n=0 n=0
Now
> 1 > df 1
. —n\ __ -\ _ Y —
fm_ﬂ;f 1 n;)”e T @D e

Thus, the information entropy is

S(A) = e>‘/\— i In(1— e_A) :

Note that S(A — 0) ~ 1 — In A which diverges logarithmically with 1/\. This is approaching the
uniform distribution. For A — oo, we have p,, = 4,, 5, and S(A — o0) = 0.

(c) Under an adiabatic free expansion, AE = Q = W = 0 with N conserved. Since E = §fNk,T
is independent of volume for the ideal gas, there is no change in temperature, i.e.

Tﬁnal =1

initial

= 100K \




1.2 _\ LI ‘ LI ‘ L | LI |_ 0.5 _\ T 17T ‘ LI ‘ T T 17T | LI I_
- vibron . i Schottky .
1 ? ? 0.4 |- —
_08 [ - - ]
A - {1 03[ ]
> 08 - i ]
3 : 1 o02F -
0.4 - - B ]
0.2 F 4 olr g
O : 111 l L1 1 1 j L 11 1 | | | [: O : 111 l 1 1 1 l 111 1 | L1 1 l:
0 0.5 1 1.5 2 0 0.5 1 1.5 2

T/0 T/0

Figure 3: Heat capacities for a NV identical vibrational modes (left) and Schottky defects (right).

(d) The characteristic temperatures for the vibrational mode (vibron) and Schottky defect are given
by © = hw,/k, and © = A/kg, respectively. A detailed derivation of the heat capacity for these
systems is provided in §§ 4.10.5-6 of the Lecture Notes. One finds
oV e@/T
v =4(7 ) o

where the top sign is for the vibron and the bottom sign for the Schottky defect. All you were
asked to do, however, was to provide a sketch (see Fig. 3). The T" — oo limit of the vibron result is
given by the Dulong-Petit value of k;, per oscillator mode. For the Schottky defect, AC|, vanishes
in both the 7' — 0 and 7" — oo limits.

(5) Write a well-defined expression for the greatest possible number expressible using only five
symbols. Examples: 1+ 2 + 3,100, T'(99). [50 quatloos extra credit]
Solution :

Using conventional notation, my best shot would be

9
99

99

99 3.7x108
This is a very big number indeed: 9° ~ 3.7 x 108, s0 99" ~ 1035%1° and 9% ~ 100"

But in the world of big numbers, this is still tiny. For a fun diversion, use teh google to learn
about the Ackermann sequence and Knuth’s up-arrow notation. Using Knuth’s notation (see
http://en.wikipedia.org/wiki/Knuth’s up-arrow notation), one could write 9 199 9, which
is vastly larger. But even these numbers are modest compared with something called the "Busy
Beaver sequence”, which is a concept from computer science and Turing machines. For a very en-
gaging essay on large numbers, seehttp://www.scottaaronson.com/writings/bignumbers.html.



