PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #8

(1) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z. The Hamiltonian is

$$\hat{H} = -J \sum_{\langle ij\rangle} \sigma_i \, \sigma_j - \mu_0 H \sum_i \sigma_i \; , \label{eq:hamiltonian}$$

where $\sigma \in \{-S, -S+1, \ldots, +S\}$ with $2S \in \mathbb{Z}$.

- (a) Find the mean field Hamiltonian $\hat{H}_{\rm MF}$.
- (b) Adimensionalize by setting $\theta \equiv k_{\rm B}T/zJ$, $h \equiv \mu_0 H/zJ$, and $f \equiv F/NzJ$. Find the dimensionless free energy per site f(m, h) for arbitrary *S*.
- (c) Expand the free energy as

$$f(m,h) = f_0 + \frac{1}{2}am^2 + \frac{1}{4}bm^4 - chm + \mathcal{O}(h^2, hm^3, m^6)$$

and find the coefficients f_0 , a, b, and c as functions of θ and S.

- (d) Find the critical point (θ_c, h_c) .
- (e) Find $m(\theta_{\rm c}, h)$ to leading order in *h*.

(2) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j + \Delta \sum_i S_i^2 ,$$

where $J_{ij} = J(\mathbf{R}_i - \mathbf{R}_j)$ and $S_i \in \{-1, 0, +1\}$. The mean field theory for this model is discussed in section 7.11 of the Lecture Notes, using the 'neglect of fluctuations' method. Consider instead a variational density matrix approach. Take $\varrho(S_1, \ldots, S_N) = \prod_i \tilde{\varrho}(S_i)$, where

$$\tilde{\varrho}(S) = \left(\frac{n+m}{2}\right)\delta_{S,+1} + (1-n)\,\delta_{S,0} + \left(\frac{n-m}{2}\right)\delta_{S,-1}\,.$$

- (a) Find $\langle 1 \rangle$, $\langle S_i \rangle$, and $\langle S_i^2 \rangle$.
- (b) Find $E = \text{Tr}(\varrho H)$.
- (c) Find $S = -k_{\rm B} \operatorname{Tr} (\rho \ln \rho)$.
- (d) Adimensionalizing by writing $\theta = k_{\rm B}T/\hat{J}(0)$, $\delta = \Delta/\hat{J}(0)$, and $f = F/N\hat{J}(0)$, find the dimensionless free energy per site $f(m, n, \theta, \delta)$.
- (e) Write down the mean field equations.

- (f) Show that m = 0 always permits a solution to the mean field equations, and find $n(\theta, \delta)$ when m = 0.
- (g) To find θ_c , set m = 0 but use both mean field equations. You should recover eqn. 7.322 of the Lecture Notes.
- (h) Show that the equation for θ_c has two solutions for $\delta < \delta_*$ and no solutions for $\delta > \delta_*$, and find the value of δ_* .¹
- (i) Assume $m^2 \ll 1$ and solve for $n(m, \theta, \delta)$ using one of the mean field equations. Plug this into your result for part (d) and obtain an expansion of f in terms of powers of m^2 alone. Find the first order line. You may find it convenient to use Mathematica here.

¹This problem has been corrected: (θ_*, δ_*) is not the tricritical point.