PHYSICS 210A : STATISTICAL PHYSICS FINAL EXAMINATION SOLUTIONS

All parts are worth 5 points each

(1) [40 points total] Consider a noninteracting gas of bosons in d dimensions. Let the single particle dispersion be $\varepsilon(\mathbf{k}) = A |\mathbf{k}|^{\sigma}$, where $\sigma > 0$.

(a) Find the single particle density of states per unit volume $g(\varepsilon)$. Show that $g(\varepsilon)$ = $C \varepsilon^{p-1} \Theta(\varepsilon)$, and find C and p in terms of A, d, and σ . You may abbreviate the total solid angle in *d* dimensions as $\Omega_d = 2\pi^{d/2}/\Gamma(d/2)$.

We have

$$
g(\varepsilon) d\varepsilon = \frac{d^d k}{(2\pi)^d} = (2\pi)^{-d} \Omega_d k^{d-1} dk
$$

and hence

$$
g(\varepsilon) = (2\pi)^{-d} \Omega_d k^{d-1} \frac{dk}{d\varepsilon} = C \, \varepsilon^{p-1} \,,
$$

where $p = d/\sigma$ and

$$
C = \frac{\Omega_d A^{-d/\sigma}}{\sigma (2\pi)^d} = \frac{A^{-d/\sigma}}{2^{d-1}\pi^{d/2}\,\Gamma(d/2)\,\sigma}
$$

.

(b) Under what conditions will there be a finite temperature T_c for Bose condensation? The number density is

$$
n(T, z) = \int_{0}^{\infty} d\varepsilon \, \frac{g(\varepsilon)}{z^{-1} e^{\beta \varepsilon} - 1} = C \,\Gamma(p) \,\beta^{-p} \,\mathsf{Li}_p(z) \; .
$$

The RHS is a monotonically increasing function of the fugacity z. It vanishes for $z = 0$. In the limit $z \to 1^-$, the RHS diverges for $p \le 1$. In this case, we can invert this equation to obtain a unique solution for $z(T, n)$. In this case, there is no Bose condensation. If $p > 1$, the RHS is finite for $z = 1$, which establishes a maximum density $n_{\text{max}}(T)$ at each temperature, above which the system must be in a condensed phase. Thus, the criterion for a finite $T_{\rm c}$ is $p > 1$, *i.e.* $d > \sigma$.

(c) For $T > T_c$, find an expression for the number density $n(T, z)$. You may find the following useful:

$$
\int\limits_0^\infty\!d\varepsilon\;\frac{\varepsilon^{q-1}}{z^{-1}e^{\beta\varepsilon}-1}=\Gamma(q)\,\beta^{-q}\,\mathrm{Li}_q(z)\;,
$$

where $\text{Li}_q(z) = \sum_{j=1}^{\infty} z^j / j^q$ is the polylogarithm function. Note that $\text{Li}_q(1) = \zeta(q)$. This has been computed in part (b) above: $n(T, z) = C \Gamma(p) (k_B T)^p \text{Li}_p(z)$.

(d) Assuming $T_c > 0$, find an expression for $T_c(n)$. Set $z = 1$ and $T = T_c$. We then have

$$
k_{\mathrm{B}}T_{\mathrm{c}}=\left(\frac{n}{C\,\Gamma(p)\,\zeta(p)}\right)^{\!\!1/p}.
$$

(e) For $T < T_c$, find an expression for the condensate number density $n_0(T, n)$. We set $z = 1$. Then $n_0 = n - n_{\text{max}}(T)$, *i.e.*

$$
n_0(T) = n \cdot \left\{ 1 - \left(\frac{T}{T_{\rm c}(n)}\right)^p \right\}.
$$

where $T_{\rm c}(n)$ is given in part (d).

(f) For $T < T_c$, compute the molar heat capacity at constant volume and particle number $c_{V,N}(T,n)$. Recall that $c_{V,N} = \frac{N_A}{N}$ $\frac{N_{\!A}}{N} \big(\frac{\partial E}{\partial T}\big)_{\!V\!,N}.$

The energy density is

$$
E = V \int_{0}^{\infty} d\varepsilon \frac{\varepsilon g(\varepsilon)}{e^{\beta \varepsilon} - 1} = C V \Gamma(p+1) \zeta(p+1) (k_{\mathrm{B}} T)^{p+1}.
$$

Thus,

$$
C_{V,N} = \left(\frac{\partial E}{\partial T}\right)_{V,N} = C k_{\rm B} V \Gamma(p+2) \zeta(p+1) (k_{\rm B} T)^p.
$$

As we have derived above, the particle number is related to the critical temperature by

$$
N = C V \Gamma(p) \zeta(p) (k_{\rm B}T_{\rm c})^p.
$$

Therefore the molar heat capacity is

$$
c_{V,N}(T,n) = \frac{N_A}{N} \cdot C_{V,N} = R \cdot \frac{p(p+1)\,\zeta(p+1)}{\zeta(p)} \cdot \left(\frac{T}{T_c(n)}\right)^p.
$$

where $R = N_A k_B$ is the gas constant.

(g) For $T > T_c$, compute the molar heat capacity at constant volume and particle number $c_{V,N}(T, z)$.

In this regime,

$$
N(T, V, z) = V \int_{0}^{\infty} d\varepsilon \frac{g(\varepsilon)}{z^{-1} e^{\beta \varepsilon} - 1} = C V \Gamma(p) (k_{\mathrm{B}} T)^p \mathrm{Li}_p(z)
$$

$$
E(T, V, z) = V \int_{0}^{\infty} d\varepsilon \frac{\varepsilon g(\varepsilon)}{z^{-1} e^{\beta \varepsilon} - 1} = C V \Gamma(p + 1) (k_{\mathrm{B}} T)^{p+1} \mathrm{Li}_{p+1}(z) .
$$

Now take the differentials:

$$
dN = C V \Gamma(p) (k_{\mathrm{B}}T)^p \cdot \left\{ p \operatorname{Li}_p(z) \frac{dT}{T} + \operatorname{Li}_{p-1}(z) \frac{dz}{z} \right\}
$$

$$
dE = C V \Gamma(p+1) (k_{\mathrm{B}}T)^{p+1} \cdot \left\{ (p+1) \operatorname{Li}_{p+1}(z) \frac{dT}{T} + \operatorname{Li}_p(z) \frac{dz}{z} \right\}.
$$

Since $dN = 0$, we can use the first of these to solve for dz in terms of dT:

$$
\left. \frac{dz}{z} \right|_{N} = -\frac{p \operatorname{Li}_p(z)}{\operatorname{Li}_{p-1}(z)} \cdot \frac{dT}{T}.
$$

Inserting this into the equation for dE , we have

$$
\begin{split} dE\big|_N & = C\,V\,\Gamma(p+1)\,(k_\mathrm{B}T)^{p+1}\cdot\Bigg\{(p+1)\,\mathsf{Li}_{p+1}(z)-\frac{p\,\mathsf{Li}_p^2(z)}{\mathsf{Li}_{p-1}(z)}\Bigg\}\cdot\frac{dT}{T} \\ & = pNk_\mathrm{B}T\cdot\Bigg\{\frac{(p+1)\,\mathsf{Li}_{p+1}(z)}{\mathsf{Li}_p(z)}-\frac{p\,\mathsf{Li}_p(z)}{\mathsf{Li}_{p-1}(z)}\Bigg\}\cdot\frac{dT}{T}\,, \end{split}
$$

and hence

$$
c_{V,N}(T,z)=pR\cdot\left\{\frac{(p+1)\operatorname{Li}_{p+1}(z)}{\operatorname{Li}_p(z)}-\frac{p\operatorname{Li}_p(z)}{\operatorname{Li}_{p-1}(z)}\right\}\,.
$$

(h) Show that under certain conditions the heat capacity is discontinuous at T_c , and evaluate $c_{V,N}(T_{\rm c}^{\pm})$ just above and just below the transition.

Setting $z = 1$ and $T = T_c$, the results from parts (f) and (g) yield

$$
c_{V,N}(T_c^-) = \frac{p(p+1)\zeta(p+1)R}{\zeta(p)}
$$

$$
c_{V,N}(T_c^+) = \frac{p(p+1)\zeta(p+1)R}{\zeta(p)} - \frac{p^2\zeta(p)R}{\zeta(p-1)}.
$$

Subtracting these values we obtain the discontinuity at the transition,

$$
\Delta c \equiv c_{V,N}(T_{\rm c}^+) - c_{V,N}(T_{\rm c}^-) = -\frac{p^2 \,\zeta(p)\,R}{\zeta(p-1)}\,.
$$

For $1 < p < 2$ we have $T_c > 0$ and $\Delta c = 0$, since $\zeta(p-1) = \infty$. For $p > 2$, however, there is a finite discontinuity in the specific heat at the transition.

(2) [30 points total] Consider the following model Hamiltonian,

$$
\hat{H} = \sum_{\langle ij \rangle} E(\sigma_i, \sigma_j) ,
$$

where each σ_i may take on one of three possible values, and

$$
E(\sigma, \sigma') = \begin{pmatrix} -J & +J & 0 \\ +J & -J & 0 \\ 0 & 0 & +K \end{pmatrix} ,
$$

with $J > 0$ and $K > 0$. Consider a variational density matrix $\varrho_{\rm v}(\sigma_1,\ldots,\sigma_N) = \prod_i \tilde{\varrho}(\sigma_i)$, where the normalized single site density matrix has diagonal elements

$$
\tilde{\varrho}(\sigma) = \left(\frac{n+m}{2}\right)\delta_{\sigma,1} + \left(\frac{n-m}{2}\right)\delta_{\sigma,2} + (1-n)\,\delta_{\sigma,3}.
$$

(a) What is the global symmetry group for this Hamiltonian?

The global symmetry group is \mathbb{Z}_2 . If we label the spin values as $\sigma \in \{1, 2, 3\}$, then the group elements can be written as permutations, $1 = \begin{pmatrix} 123 \\ 123 \end{pmatrix}$ and $\mathcal{J} = \begin{pmatrix} 123 \\ 213 \end{pmatrix}$, with $\mathcal{J}^2=1.$

(b) Evaluate $E = Tr(\rho_v \hat{H})$.

For each nearest neighbor pair (ij) , the distribution of $\{\sigma_{,\sigma_j}\}\$ is according to the product $\tilde{\varrho}(\sigma_i)$ $\tilde{\varrho}(\sigma_j).$ Thus, we have

$$
E = \frac{1}{2}NzJ\sum_{\sigma,\sigma'}\tilde{\varrho}(\sigma)\tilde{\varrho}(\sigma')\varepsilon(\sigma,\sigma')
$$

= $\frac{1}{2}NzJ\cdot\left\{\left(\frac{n+m}{2}\right)^2(-J)+\left(\frac{n-m}{2}\right)^2(-J)+\left(\frac{n+m}{2}\right)^2(-J)+\left(\frac{n+m}{2}\right)\left(\frac{n-m}{2}\right)(+J)+\left(\frac{\tilde{\varrho}^2(3)}{(1-n)^2}(+K)\right)\right\}$
= $-\frac{1}{2}Nz\left[Jm^2-K(1-n)^2\right].$

(c) Evaluate $S = -k_{\rm B}$ Tr $(\varrho_{\rm v} \ln \varrho_{\rm v})$.

The entropy is

$$
S = -Nk_{\rm B} \operatorname{Tr} (\tilde{\varrho} \ln \tilde{\varrho})
$$

=
$$
-Nk_{\rm B} \left\{ \left(\frac{n+m}{2} \right) \ln \left(\frac{n+m}{2} \right) + \left(\frac{n-m}{2} \right) \ln \left(\frac{n-m}{2} \right) + (1-n) \ln(1-n) \right\}.
$$

(d) Adimensionalize by writing $\theta = k_{\rm B}T / zJ$ and $c = K / J$, where z is the lattice coordination number. Find $f(n, m, \theta, c) = F/NzJ$.

This can be solved by inspection from the results of parts (b) and (c):

$$
f = -\frac{1}{2}m^2 + \frac{1}{2}c(1-n)^2 + \theta \left[\left(\frac{n+m}{2} \right) \ln \left(\frac{n+m}{2} \right) + \left(\frac{n-m}{2} \right) \ln \left(\frac{n-m}{2} \right) + (1-n) \ln(1-n) \right].
$$

(e) Find all the mean field equations.

There are two mean field equations, obtained by extremizing with respect to n and to m , respectively:

$$
\frac{\partial f}{\partial n} = 0 = c(n-1) + \frac{1}{2}\theta \ln\left(\frac{n^2 - m^2}{4(1-n)^2}\right)
$$

$$
\frac{\partial f}{\partial m} = 0 = -m + \frac{1}{2}\theta \ln\left(\frac{n-m}{n+m}\right).
$$

These may be recast as

$$
n^{2} = m^{2} + 4(1 - n)^{2} e^{-2c(n-1)/\theta}
$$

$$
m = n \tanh(m/\theta).
$$

(f) Find an equation for the critical temperature θ_c , and show graphically that it has a unique solution.

To find θ_c , we take the limit $m \to 0$. The second mean field equation then gives $n = \theta$. Substituting this into the first mean field equation yields

$$
\theta = 2(1 - \theta) e^{-2c(\theta - 1)/\theta}.
$$

If we define $u \equiv \theta^{-1} - 1$, this equation becomes

$$
2u = e^{-cu}.
$$

It is clear that for $c > 0$ this equation has a unique solution, since the LHS is monotonically increasing and the RHS is monotonically decreasing, and the difference changes sign for some $u > 0$. The low temperature phase is the ordered phase, which spontaneously breaks the aforementioned \mathbb{Z}_2 symmetry. In the high temperature phase, the \mathbb{Z}_2 symmetry is unbroken.

(3) [30 points total] Provide clear, accurate, and brief answers for each of the following:

(a) Explain what is meant by (i) recurrent, (ii) ergodic, and (iii) mixing phase flows.

(i) In a recurrent system, for every neighborhood N of phase space there exists a point $\varphi_0 \in \mathcal{N}$ which will return to \mathcal{N} after a finite number of application of the τ -advance map g_{τ} , where τ is finite. (ii) An ergodic system is one in which time averages may be replaced by phase space averages. (iii) A mixing system is one for which, as $t \to \infty$, the *instantaneous* time average of a quantity may be replaced by its phase space average.

(b) Why is it more accurate to compute response functions $X_{ij} = \partial m_i / \partial H_j$ rather than correlation functions $C_{ij}=\langle\sigma_i\,\sigma_j\rangle-\langle\sigma_i\rangle\langle\sigma_j\rangle$ in mean field theory? What is the exact thermodynamic relationship between χ_{ij} and C_{ij} ?

Within the conventional mean field theory approach we have discussed, $C_{ii} = 0$ because each site is independent, as the trial density matrix is a direct product of individual single site density matrices. Extremizing the free energy, though yields a set of coupled nonlinear equations for m_i in terms of all the local fields $\{H_j\}$, so χ_{ij} is nonzero. Another way to look at it is that $X_{ij} = -\partial^2 F/\partial H_i \partial H_j$, and the variational approach assures us that F is accurate up to terms of order $(\delta \rho)^2$, where $\rho = \rho_v + \delta \rho$. Using this expression, we see that C_{ij} is only accurate up to terms of order $\delta \rho$. The exact relation between correlation and response functions is $C_{ij} = k_B T X_{ij}$.

(c) What is a tricritical point?

A critical point T_c may be extended to a critical *curve* in an extended parameter space (T, λ) , where λ is an additional parameter which does not explicitly break the symmetry group G which is spontaneously broken in the ordered phase. At a specific point $(T_{\mathrm{t}},\lambda_{\mathrm{t}})$ along this critical curve, the transition may change from first to second order. The confluence of the first and second order boundaries lies at a *tricritical point*.

(d) Sketch what the radial distribution function $g(r)$ looks like for a simple fluid like liquid Argon. Identify any relevant length scales, as well as the proper limiting value for $g(r \to \infty)$.

See Fig. 6.13 of the Lecture Notes. Note that $g(\infty) = 1$, and $g(r) = 0$ for $r < a$, where a is the hard sphere core diameter.

(e) Discuss the First Law of Thermodynamics from the point of view of statistical mechanics.

The thermodynamic energy is $E = \sum_n P_n E_n$, where $P_n = Z^{-1} e^{-E_n/k_\text{B}T}$. Thus $dE =$ $dQ = dW$, with $dQ = \sum_n E_n dP_n$ and $dW = -\sum_n P_n dE_n$. The differential heat is due to changes in the probability distribution P_n , while the differential work is due to changes in the energy eigenvalues E_n .

(f) Explain what is meant by the Dulong-Petit limit of the heat capacity of a solid.

In the high temperature limit (but below the melting point), the ion cores of any solid behave classically. Each of the N ion cores has $2d$ degrees of freedom: d coordinates and d momenta. The potential energy can be modeled as a harmonic potential (in all the coordinates), and the kinetic energy is the usual ballistic expression. Thus, from equipartition, the energy is $N \times 2d \times \frac{1}{2}$ $\frac{1}{2}k_{\rm B}T = N d k_{\rm B}T$, and the heat capacity in this \lim it is $C_{V,N} = N d k_{\rm B}$.