
PHYSICS 210A : STATISTICAL PHYSICS

FINAL EXAMINATION SOLUTIONS

All parts are worth 5 points each

(1) [40 points total] Consider a noninteracting gas of bosons in d dimensions. Let the
single particle dispersion be ε(k) = A |k|σ, where σ > 0.

(a) Find the single particle density of states per unit volume g(ε). Show that g(ε) =
C εp−1 Θ(ε), and find C and p in terms of A, d, and σ. You may abbreviate the total
solid angle in d dimensions as Ωd = 2πd/2/Γ(d/2).

We have

g(ε) dε =
ddk

(2π)d
= (2π)−dΩd kd−1 dk

and hence

g(ε) = (2π)−dΩd kd−1 dk

dε
= C εp−1 ,

where p = d/σ and

C =
Ωd A−d/σ

σ(2π)d
=

A−d/σ

2d−1πd/2 Γ(d/2)σ
.

(b) Under what conditions will there be a finite temperature Tc for Bose condensation?

The number density is

n(T, z) =

∞∫

0

dε
g(ε)

z−1 eβε − 1
= C Γ(p)β−p

Lip(z) .

The RHS is a monotonically increasing function of the fugacity z. It vanishes for
z = 0. In the limit z → 1−, the RHS diverges for p ≤ 1. In this case, we can invert this
equation to obtain a unique solution for z(T, n). In this case, there is no Bose con-
densation. If p > 1, the RHS is finite for z = 1, which establishes a maximum density
nmax(T ) at each temperature, above which the system must be in a condensed phase.
Thus, the criterion for a finite Tc is p > 1, i.e. d > σ.

(c) For T > Tc, find an expression for the number density n(T, z). You may find the
following useful:

∞∫

0

dε
εq−1

z−1eβε − 1
= Γ(q)β−q

Liq(z) ,

where Liq(z) =
∑∞

j=1 zj/jq is the polylogarithm function. Note that Liq(1) = ζ(q).

This has been computed in part (b) above: n(T, z) = C Γ(p) (k
B
T )p Lip(z).
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(d) Assuming Tc > 0, find an expression for Tc(n).

Set z = 1 and T = Tc. We then have

k
B
Tc =

(
n

C Γ(p) ζ(p)

)1/p

.

(e) For T < Tc, find an expression for the condensate number density n0(T, n).

We set z = 1. Then n0 = n − nmax(T ), i.e.

n0(T ) = n ·

{

1 −

(
T

Tc(n)

)p
}

.

where Tc(n) is given in part (d).

(f) For T < Tc, compute the molar heat capacity at constant volume and particle number
cV,N (T, n). Recall that cV,N = NA

N

(
∂E
∂T

)

V,N
.

The energy density is

E = V

∞∫

0

dε
ε g(ε)

eβε − 1
= C V Γ(p + 1) ζ(p + 1) (k

B
T )p+1 .

Thus,

CV,N =

(
∂E

∂T

)

V,N

= C k
B

V Γ(p + 2) ζ(p + 1) (k
B
T )p .

As we have derived above, the particle number is related to the critical temperature
by

N = C V Γ(p) ζ(p) (k
B
Tc)

p .

Therefore the molar heat capacity is

cV,N (T, n) =
NA

N
· CV,N = R ·

p(p + 1) ζ(p + 1)

ζ(p)
·

(
T

Tc(n)

)p

.

where R = NAk
B

is the gas constant.

(g) For T > Tc, compute the molar heat capacity at constant volume and particle number
cV,N (T, z).

In this regime,

N(T, V, z) = V

∞∫

0

dε
g(ε)

z−1eβε − 1
= C V Γ(p) (k

B
T )p Lip(z)

E(T, V, z) = V

∞∫

0

dε
ε g(ε)

z−1 eβε − 1
= C V Γ(p + 1) (k

B
T )p+1

Lip+1(z) .
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Now take the differentials:

dN = C V Γ(p) (k
B
T )p ·

{

p Lip(z)
dT

T
+ Lip−1(z)

dz

z

}

dE = C V Γ(p + 1) (k
B
T )p+1 ·

{

(p + 1)Lip+1(z)
dT

T
+ Lip(z)

dz

z

}

.

Since dN = 0, we can use the first of these to solve for dz in terms of dT :

dz

z

∣
∣
∣
∣
∣
N

= −
p Lip(z)

Lip−1(z)
·
dT

T
.

Inserting this into the equation for dE, we have

dE
∣
∣
N

= C V Γ(p + 1) (k
B
T )p+1 ·

{

(p + 1)Lip+1(z) −
p Li

2
p(z)

Lip−1(z)

}

·
dT

T

= pNk
B
T ·

{

(p + 1)Lip+1(z)

Lip(z)
−

p Lip(z)

Lip−1(z)

}

·
dT

T
,

and hence

cV,N (T, z) = pR ·

{

(p + 1)Lip+1(z)

Lip(z)
−

p Lip(z)

Lip−1(z)

}

.

(h) Show that under certain conditions the heat capacity is discontinuous at Tc, and eval-
uate cV,N (T±

c ) just above and just below the transition.

Setting z = 1 and T = Tc, the results from parts (f) and (g) yield

cV,N (T−
c ) =

p(p + 1) ζ(p + 1)R

ζ(p)

cV,N (T+
c ) =

p(p + 1) ζ(p + 1)R

ζ(p)
−

p2ζ(p)R

ζ(p − 1)
.

Subtracting these values we obtain the discontinuity at the transition,

∆c ≡ cV,N (T+
c ) − cV,N (T−

c ) = −
p2 ζ(p)R

ζ(p − 1)
.

For 1 < p < 2 we have Tc > 0 and ∆c = 0, since ζ(p − 1) = ∞. For p > 2, however,
there is a finite discontinuity in the specific heat at the transition.

(2) [30 points total] Consider the following model Hamiltonian,

Ĥ =
∑

〈ij〉

E(σi, σj) ,
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where each σi may take on one of three possible values, and

E(σ, σ′) =





−J +J 0
+J −J 0
0 0 +K



 ,

with J > 0 and K > 0. Consider a variational density matrix ̺v(σ1, . . . , σN ) =
∏

i ˜̺(σi),
where the normalized single site density matrix has diagonal elements

˜̺(σ) =

(
n + m

2

)

δσ,1 +

(
n − m

2

)

δσ,2 + (1 − n) δσ,3 .

(a) What is the global symmetry group for this Hamiltonian?

The global symmetry group is Z2. If we label the spin values as σ ∈ {1, 2, 3}, then
the group elements can be written as permutations, 1 =

(123
123

)
and J =

(123
213

)
, with

J 2 = 1.

(b) Evaluate E = Tr (̺v Ĥ).

For each nearest neighbor pair (ij), the distribution of {σ,σj} is according to the
product ˜̺(σi) ˜̺(σj). Thus, we have

E = 1
2NzJ

∑

σ,σ′

˜̺(σ) ˜̺(σ′) ε(σ, σ′)

= 1
2NzJ ·

{

˜̺2(1)
︷ ︸︸ ︷
(

n + m

2

)2

(−J)+

˜̺2(2)
︷ ︸︸ ︷
(

n − m

2

)2

(−J)+

2 ˜̺(1) ˜̺(2)
︷ ︸︸ ︷

2

(
n + m

2

)(
n − m

2

)

(+J)+

˜̺2(3)
︷ ︸︸ ︷

(1 − n)2 (+K)

}

= −1
2Nz

[

Jm2 − K(1 − n)2
]

.

(c) Evaluate S = −k
B

Tr (̺v ln ̺v).

The entropy is

S = −Nk
B

Tr
(
˜̺ ln ˜̺

)

= −Nk
B

{(
n + m

2

)

ln

(
n + m

2

)

+

(
n − m

2

)

ln

(
n − m

2

)

+ (1 − n) ln(1 − n)

}

.

(d) Adimensionalize by writing θ = k
B
T/zJ and c = K/J , where z is the lattice coordi-

nation number. Find f(n,m, θ, c) = F/NzJ .

This can be solved by inspection from the results of parts (b) and (c):

f = −1
2m2+1

2c (1−n)2+θ

[(
n + m

2

)

ln

(
n + m

2

)

+

(
n − m

2

)

ln

(
n − m

2

)

+(1−n) ln(1−n)

]

.
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(e) Find all the mean field equations.

There are two mean field equations, obtained by extremizing with respect to n and
to m, respectively:

∂f

∂n
= 0 = c (n − 1) + 1

2θ ln

(
n2 − m2

4 (1 − n)2

)

∂f

∂m
= 0 = −m + 1

2θ ln

(
n − m

n + m

)

.

These may be recast as

n2 = m2 + 4 (1 − n)2 e−2c(n−1)/θ

m = n tanh(m/θ) .

(f) Find an equation for the critical temperature θc, and show graphically that it has a
unique solution.

To find θc, we take the limit m → 0. The second mean field equation then gives n = θ.
Substituting this into the first mean field equation yields

θ = 2 (1 − θ) e−2c(θ−1)/θ .

If we define u ≡ θ−1 − 1, this equation becomes

2u = e−cu .

It is clear that for c > 0 this equation has a unique solution, since the LHS is mono-
tonically increasing and the RHS is monotonically decreasing, and the difference
changes sign for some u > 0. The low temperature phase is the ordered phase,
which spontaneously breaks the aforementioned Z2 symmetry. In the high tempera-
ture phase, the Z2 symmetry is unbroken.

(3) [30 points total] Provide clear, accurate, and brief answers for each of the follow-
ing:

(a) Explain what is meant by (i) recurrent, (ii) ergodic, and (iii) mixing phase flows.

(i) In a recurrent system, for every neighborhood N of phase space there exists a
point ϕ0 ∈ N which will return to N after a finite number of application of the
τ -advance map gτ , where τ is finite. (ii) An ergodic system is one in which time
averages may be replaced by phase space averages. (iii) A mixing system is one for
which, as t → ∞, the instantaneous time average of a quantity may be replaced by its
phase space average.
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(b) Why is it more accurate to compute response functions χ
ij = ∂mi/∂Hj rather than

correlation functions Cij = 〈σi σj〉 − 〈σi〉〈σj〉 in mean field theory? What is the exact
thermodynamic relationship between χ

ij and Cij?

Within the conventional mean field theory approach we have discussed, Cij = 0
because each site is independent, as the trial density matrix is a direct product of
individual single site density matrices. Extremizing the free energy, though yields a
set of coupled nonlinear equations for mi in terms of all the local fields {Hj}, so χ

ij is

nonzero. Another way to look at it is that χ
ij = −∂2F/∂Hi ∂Hj , and the variational

approach assures us that F is accurate up to terms of order (δρ)2, where ρ = ρv + δρ.
Using this expression, we see that Cij is only accurate up to terms of order δρ. The
exact relation between correlation and response functions is Cij = k

B
T χ

ij .

(c) What is a tricritical point?

A critical point Tc may be extended to a critical curve in an extended parameter space
(T, λ), where λ is an additional parameter which does not explicitly break the sym-
metry group G which is spontaneously broken in the ordered phase. At a specific
point (Tt, λt) along this critical curve, the transition may change from first to second
order. The confluence of the first and second order boundaries lies at a tricritical point.

(d) Sketch what the radial distribution function g(r) looks like for a simple fluid like
liquid Argon. Identify any relevant length scales, as well as the proper limiting value
for g(r → ∞).

See Fig. 6.13 of the Lecture Notes. Note that g(∞) = 1, and g(r) = 0 for r < a, where
a is the hard sphere core diameter.

(e) Discuss the First Law of Thermodynamics from the point of view of statistical me-
chanics.

The thermodynamic energy is E =
∑

n PnEn, where Pn = Z−1e−E
n
/k

B
T . Thus dE =

d̄Q = d̄W , with d̄Q =
∑

n En dPn and d̄W = −
∑

n Pn dEn. The differential heat is
due to changes in the probability distribution Pn, while the differential work is due
to changes in the energy eigenvalues En.

(f) Explain what is meant by the Dulong-Petit limit of the heat capacity of a solid.

In the high temperature limit (but below the melting point), the ion cores of any solid
behave classically. Each of the N ion cores has 2d degrees of freedom: d coordinates
and d momenta. The potential energy can be modeled as a harmonic potential (in all
the coordinates), and the kinetic energy is the usual ballistic expression. Thus, from
equipartition, the energy is N × 2d × 1

2k
B
T = Ndk

B
T , and the heat capacity in this

limit is CV,N = Ndk
B

.
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