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Chapter 5

Noninteracting Quantum Systems

5.1 References

– F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

– A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

– D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I’ve come across, but only 40% of the book
treats statistical mechanics.

– C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key con-
cepts and examples. Published by Dover, so you can’t beat the price.

– R. K. Pathria, Statistical Mechanics (2nd edition, Butterworth-Heinemann, 1996)
This popular graduate level text contains many detailed derivations which are helpful for the
student.

– M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rd edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

– E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3rd edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics . Though dated,
it still contains a wealth of information and physical insight.
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2 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

5.2 Statistical Mechanics of Noninteracting Quantum Systems

5.2.1 Bose and Fermi systems in the grand canonical ensemble

A noninteracting many-particle quantum Hamiltonian may be written as1

Ĥ =
∑

α

εα n̂α , (5.1)

where n̂α is the number of particles in the quantum state α with energy εα. This form is called the
second quantized representation of the Hamiltonian. The number eigenbasis is therefore also an energy
eigenbasis. Any eigenstate of Ĥ may be labeled by the integer eigenvalues of the n̂α number operators,
and written as

∣∣n1 , n2 , . . .
〉

. We then have

n̂α
∣∣~n
〉
= nα

∣∣~n
〉

(5.2)

and
Ĥ
∣∣~n
〉
=
∑

α

nα εα
∣∣~n
〉

. (5.3)

The eigenvalues nα take on different possible values depending on whether the constituent particles are
bosons or fermions, viz.

bosons : nα ∈
{
0 , 1 , 2 , 3 , . . .

}

fermions : nα ∈
{
0 , 1

}
.

(5.4)

In other words, for bosons, the occupation numbers are nonnegative integers. For fermions, the occupa-
tion numbers are either 0 or 1 due to the Pauli principle, which says that at most one fermion can occupy
any single particle quantum state. There is no Pauli principle for bosons.

The N -particle partition function ZN is then

ZN =
∑

{nα}
e−β

∑
α nαεα δN ,

∑
α nα

, (5.5)

where the sum is over all allowed values of the set {nα}, which depends on the statistics of the particles.
Bosons satisfy Bose-Einstein (BE) statistics, in which nα ∈ {0 , 1 , 2 , . . .}. Fermions satisfy Fermi-Dirac
(FD) statistics, in which nα ∈ {0 , 1}.

The OCE partition sum is difficult to perform, owing to the constraint
∑

α nα = N on the total number
of particles. This constraint is relaxed in the GCE, where

Ξ =
∑

N

eβµN ZN

=
∑

{nα}
e−β

∑
α nαεα eβµ

∑
α nα

=
∏

α

(
∑

nα

e−β(εα−µ)nα

)
.

(5.6)

1For a review of the formalism of second quantization, see the appendix in §5.9.
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Note that the grand partition function Ξ takes the form of a product over contributions from the indi-
vidual single particle states.

We now perform the single particle sums:

∞∑

n=0

e−β(ε−µ)n =
1

1− e−β(ε−µ)
(bosons) (5.7)

1∑

n=0

e−β(ε−µ)n = 1 + e−β(ε−µ) (fermions) . (5.8)

Therefore we have

ΞBE =
∏

α

1

1− e−(εα−µ)/kBT

ΩBE = kBT
∑

α

ln
(
1− e−(εα−µ)/kBT

) (5.9)

and

ΞFD =
∏

α

(
1 + e−(εα−µ)/kBT

)

ΩFD = −kBT
∑

α

ln
(
1 + e−(εα−µ)/kBT

)
.

(5.10)

We can combine these expressions into one, writing

Ω(T, V, µ) = ±kBT
∑

α

ln
(
1∓ e−(εα−µ)/kBT

)
, (5.11)

where we take the upper sign for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics.
Note that the average occupancy of single particle state α is

〈n̂α〉 =
∂Ω

∂εα
=

1

e(εα−µ)/kBT ∓ 1
, (5.12)

and the total particle number is then

N(T, V, µ) =
∑

α

1

e(εα−µ)/kBT ∓ 1
. (5.13)

We will henceforth write nα(µ, T ) = 〈n̂α〉 for the thermodynamic average of this occupancy.

5.2.2 Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of N noninteracting particles. The Hamiltonian is

Ĥ =

N∑

j=1

ĥj . (5.14)
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The single particle Hamiltonian ĥ has eigenstates |α〉 with corresponding energy eigenvalues εα. What
is the partition function? Is it

Z
?
=
∑

α1

· · ·
∑

αN

e
−β
(
ε
α
1
+ ε

α
2
+ ... + ε

α
N

)
= ζN , (5.15)

where ζ is the single particle partition function, ζ =
∑

α e
−βεα . For systems where the individual parti-

cles are distinguishable, such as spins on a lattice which have fixed positions, this is indeed correct. But
for particles free to move in a gas, this equation is wrong. The reason is that for indistinguishable parti-
cles the many particle quantum mechanical states are specified by a collection of occupation numbers nα,
which tell us how many particles are in the single-particle state |α 〉. The energy is E =

∑
α nα εα and

the total number of particles isN =
∑

α nα . That is, each collection of occupation numbers {nα} labels a
unique many particle state

∣∣ {nα}
〉
. In the product ζN , the collection {nα} occurs many times. We have

therefore overcounted the contribution to ZN due to this state. By what factor have we overcounted? It is
easy to see that the overcounting factor is

degree of overcounting =
N !∏
α nα!

,

which is the number of ways we can rearrange the labels αj to arrive at the same collection {nα}. This
follows from the multinomial theorem,

(
K∑

α=1

xα

)N
=
∑

n1

∑

n2

· · ·
∑

n
K

N !

n1!n2! · · · nK !
x
n1
1 x

n2
2 · · · xnK

K δN,n1 + ...+nK
. (5.16)

Thus, the correct expression for ZN is

ZN =
∑

{nα}
e−β

∑
α nαεα δN,

∑
α nα

=
∑

α1

∑

α2

· · ·
∑

αN

(∏
α nα!

N !

)
e
−β(εα

1
+ εα

2
+ ... + εα

N
)

.
(5.17)

In the high temperature limit, almost all the nα are either 0 or 1, hence ZN ≈ ζN/N ! . This is the classical
Maxwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the 1/N ! term which
is so important in the thermodynamics of entropy of mixing.

Finally, starting with the expressions for the grand partition function for Bose-Einstein or Fermi-Dirac
particles, and working in the low density limit where nα(µ, T ) ≪ 1 , we have εα − µ ≫ kBT , and
consequently

Ω
BE/FD

= ±kBT
∑

α

ln
(
1∓ e−(εα−µ)/kBT

)

≈ −kBT
∑

α

e−(εα−µ)/kBT ≡ ΩMB .
(5.18)

This is the Maxwell-Boltzmann limit of quantum statistical mechanics. The occupation number average
in the Maxwell-Boltzmann limit is then

〈n̂α〉 = e−(εα−µ)/kBT . (5.19)
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5.2.3 Single particle density of states

The single particle density of states per unit volume g(ε) is defined as

g(ε) =
1

V

∑

α

δ(ε − εα) . (5.20)

The concept of density of states is an important one and the student should develop some facility with
it. Note that the dimensions of g(ε) and

[
g(ε)

]
= E−1L−d, where E stands for energy and L for length.

We may now write

Ω(T, V, µ) = ±V kBT

∞∫

−∞

dε g(ε) ln
(
1∓ e−(ε−µ)/kBT

)
. (5.21)

For particles with a dispersion ε(k), with p = ~k, we have

g(ε) = g

∫
ddk

(2π)d
δ(ε− ε(k)

)
=

gΩd

(2π)d
kd−1

dε/dk
. (5.22)

where g = 2S+1 is the spin degeneracy, and where we assume that ε(k) is both isotropic and a mono-
tonically increasing function of k. Thus, we have

gd=1(ε) =
g

π

dk

dε
, gd=2(ε) =

g

2π
k
dk

dε
, gd=3(ε) =

g

2π2
k2
dk

dε
. (5.23)

In order to obtain g(ε) as a function of the energy ε one must invert the dispersion relation ε = ε(k) to
obtain k = k(ε). A quick way to derive the above results is to write

g(ε) dε = g
ddk

(2π)d
=

gΩd

(2π)d
kd−1 dk . (5.24)

For a spin-S particle with ballistic dispersion ε(k) = ~
2k2/2m, we have g = 2S + 1 and

g(ε) =
2S+1

Γ(d/2)

(
m

2π~2

)d/2
ε(d−2)/2 Θ(ε) , (5.25)

where Θ(ε) is the step function, which takes the value 0 for ε < 0 and 1 for ε ≥ 0. The appearance
of Θ(ε) simply says that all the single particle energy eigenvalues are nonnegative. Note that we are
assuming a box of volume V but we are ignoring the quantization of kinetic energy, and assuming that
the difference between successive quantized single particle energy eigenvalues is negligible so that g(ε)
can be replaced by the average in the above expression. Note that

n(ε, T, µ) =
1

e(ε−µ)/kBT ∓ 1
. (5.26)

This result holds true independent of the form of g(ε). The average total number of particles is then

N(T, V, µ) = V

∞∫

−∞

dε g(ε)
1

e(ε−µ)/kBT ∓ 1
, (5.27)

which does depend on g(ε).
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5.3 Quantum Ideal Gases : Low Density Expansions

5.3.1 Expansion in powers of the fugacity

From eqn. 5.27, we have that the number density n = N/V is

n(T, z) =

∞∫

−∞

dε
g(ε)

z−1 eε/kBT ∓ 1
=

∞∑

j=1

Cj(T ) z
j , (5.28)

where z = exp(µ/kBT ) is the fugacity and

Cj(T ) = (±1)j−1

∞∫

−∞

dε g(ε) e−jε/kBT . (5.29)

Note that [Cj ] = V −1 for all j. From Ω = −pV and our expression above for Ω(T, V, µ), we have

p(T, z) = ∓ kBT

∞∫

−∞

dε g(ε) ln
(
1∓ z e−ε/kBT

)
= kBT

∞∑

j=1

j−1Cj(T ) z
j . (5.30)

5.3.2 Virial expansion of the equation of state

Eqns. 5.28 and 5.30 express n(T, z) and p(T, z) as power series in the fugacity z, with T -dependent
coefficients. In principal, we can eliminate z using eqn. 5.28, writing z = z(T, n) as a power series in
the number density n, and substitute this into eqn. 5.30 to obtain an equation of state p = p(T, n) of the
form

p(T, n) = n kBT
(
1 +B2(T )n +B3(T )n

2 + . . .
)

. (5.31)

Note that the low density limit n → 0 yields the ideal gas law independent of the density of states g(ε).
This follows from expanding n(T, z) and p(T, z) to lowest order in z, yielding n = C1 z + O(z2) and
p = kBT C1 z + O(z2). Dividing the second of these equations by the first yields p = n kBT + O(n2),
which is the ideal gas law. Note that z = n/C1 +O(n2) can formally be written as a power series in n.

Unfortunately, there is no general analytic expression for the virial coefficients Bj(T ) in terms of the
expansion coefficients nj(T ). However our work is made somewhat easier by appealing to a method of
Lagrange. We regard the series

π(T, n) ≡ p(T, n)

kBT
=

∞∑

l=1

Bk n
k (5.32)

as a power series in a complex variable n. We then have

Bk =

∮
dn

2πi

π(n)

nk+1
=

∮
dz

2πi

n′(z)π(z)
[
n(z)

]k+1
= −1

k

∮
dz

2πi
π(z)

d

dz

[
n(z)

]−k
, (5.33)
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where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
z π′(z) = n(z), we obtain2

Bk =
1

k

∮
dz

2πi
π′(z)

[
n(z)

]−k
=

1

k

∮
dz

2πi

1

z

[
n(z)

]−(k−1)
. (5.34)

Defining the dimensionless ratios γj ≡ Cj/C1 , we have the result

Bk =
1

k Ck−1
1

∮
dz

2πi

fk(z)

zk
, (5.35)

where
fk(z) ≡

(
1 + γ2 z + γ3 z

2 + . . .
)−(k−1)

. (5.36)

Note that [Bk] = V k−1. Expanding by hand to order z2 isn’t so difficult, and we obtain

fk(z) = 1− (k − 1)γ2z + (k − 1)
(
1
2 kγ

2
2 − γ3

)
z2 +O(z3) . (5.37)

From this, we may now read off B1 = 1, which we already showed above, and

B2 = − γ2
2C1

= − C2

2C2
1

, B3 =
γ22 − 2

3γ3
C2
1

=
C2
2

C4
1

− 2C3

C3
1

. (5.38)

It is easy to see that, in general, BF
j = (−1)j−1BB

j , where the superscripts denote Fermi (F) or Bose (B)
statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded
in terms of virial coefficients. Consider, for example, the van der Waals equation of state,

(
p+

aN2

V 2

)(
V −Nb) = NkBT . (5.39)

This may be recast as

p =
nkBT

1− bn
− an2

= nkBT +
(
b kBT − a

)
n2 + kBT b

2n3 + kBT b
3n4 + . . . ,

(5.40)

where n = N/V . Thus, for the van der Waals system, we have B2 = (b kBT − a) and Bk = kBT b
k−1 for

all k ≥ 3.

5.3.3 Ballistic dispersion

For the ballistic dispersion ε(p) = p2/2m we computed the density of states in eqn. 5.25. One finds

Cj(T ) =
gS λ

−d
T

Γ(d/2)

∞∫

0

dt t
d
2
−1 e−jt = gS λ

−d
T j−d/2 , (5.41)

2Since there is no term proportional to ln z in the Laurent expansion of π(z)
[

n(z)
]−k

, there is no residue arising from
integrating its derivative around the unit circle.
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where λT =
√

2π~2/mkBT is the thermal wavelength. We then have

B2(T ) = ∓ 2−(
d
2
+1) · g−1

S λdT

B3(T ) =
(
2−(d+1) − 3−(

d
2
+1)
)
· 2 g−2

S λ2dT .
(5.42)

Note thatB2(T ) is negative for bosons and positive for fermions. This is because bosons have a tendency
to bunch and under certain circumstances may exhibit a phenomenon known as Bose-Einstein conden-
sation (BEC). Fermions, on the other hand, obey the Pauli principle, which results in an extra positive
correction to the pressure in the low density limit.

We may also write

n(T, z) = ±gS λ
−d
T Li d

2

(±z) (5.43)

and

p(T, z) = ±gS kBT λ
−d
T Li d

2
+1

(±z) , (5.44)

where

Lis(z) ≡
∞∑

n=1

zn

ns
(5.45)

is the polylogarithm function3. Note that Lis(z) obeys a recursion relation in its index, viz.

z
∂

∂z
Lis(z) = Lis−1(z) , (5.46)

and that

Lis(1) =

∞∑

n=1

1

ns
= ζ(s) . (5.47)

To evaluate Lis(z) for |z| ≪ 1, we use the series expansion in eqn. 5.45. For |z| ≫ 1, use4

Lis(z) =

∞∑

j=0

(−1)j
(
1− 21−2j

)(2π)2jB2j

(2j)!

[
ln(−z)

]s−2j

Γ(1 + s− 2j)
, (5.48)

where B2j is a Bernoulli number, with B0 = 1, B2 = 1
6 , B4 = − 1

30 , B6 =
1
42 , etc. For intermediate values

of z, where | ln z| < 2π, one has5

Lis(z) = Γ(1− s) (− ln z)s−1 +

∞∑

k=0

ζ(s− k)

k!
(ln z)k . (5.49)

where s /∈ {1, 2, 3, . . .}.

3Several texts, such as Pathria and Reichl, write gs(z) for Lis(z). I adopt the latter notation since we are already using the
symbol g for the density of states function g(ε) and for the internal degeneracy g.

4See the Wikipedia entry on “Polylogarithm.”
5See Digital Library of Mathematical Functions §25.12.12.
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5.4 Entropy and Counting States

Suppose we are to partition N particles among J possible distinct single particle states. How many
ways Ω are there of accomplishing this task? The answer depends on the statistics of the particles. If the
particles are fermions, the answer is easy: ΩFD =

(J
N

)
. For bosons, the number of possible partitions can

be evaluated via the following argument. Imagine that we line up all the N particles in a row, and we
place J − 1 barriers among the particles, as shown below in fig. 5.1. The number of partitions is then the
total number of ways of placing the N particles among these N + J − 1 objects (particles plus barriers),
hence we have ΩBE =

(N+J−1
N

)
. For Maxwell-Boltzmann statistics, we take ΩMB = JN/N ! Note that

ΩMB is not necessarily an integer, so Maxwell-Boltzmann statistics does not represent any actual state
counting. Rather, it manifests itself as a common limit of the Bose and Fermi distributions, as we have
seen and shall see again shortly.

Figure 5.1: Partitioning N bosons into J possible states (N = 14 and J = 5 shown). The N black dots
represent bosons, while the J − 1 white dots represent markers separating the different single particle
populations. Here n1 = 3, n2 = 1, n3 = 4, n4 = 2, and n5 = 4.

The entropy in each case is simply S = kB ln Ω. We assume N ≫ 1 and J ≫ 1, with n ≡ N/J finite.
Then using Stirling’s approximation, ln(K!) = K lnK −K +O(lnK), we have

SMB = −JkB n lnn

SBE = −JkB

[
n lnn− (1 + n) ln(1 + n)

]

SFD = −JkB

[
n lnn+ (1− n) ln(1− n)

]
.

(5.50)

In the Maxwell-Boltzmann limit, n≪ 1, and all three expressions agree. Note that

(
∂SMB

∂N

)

J

= −kB

(
1 + lnn

)
,

(
∂SBE

∂N

)

J

= kB ln
(
n−1 + 1

)
,

(
∂SFD

∂N

)

J

= kB ln
(
n−1 − 1

)
. (5.51)

Now let’s imagine grouping the single particle spectrum into intervals of J consecutive energy states.
If J is finite and the spectrum is continuous and we are in the thermodynamic limit, then these states
will all be degenerate. Therefore, using α as a label for the energies, we have that the grand potential
Ω = E − TS − µN is given in each case by

ΩMB = J
∑

α

[
(εα − µ)nα + kBT nα lnnα

]

ΩBE = J
∑

α

[
(εα − µ)nα + kBT nα lnnα − kBT (1 + nα) ln(1 + nα)

]

ΩFD = J
∑

α

[
(εα − µ)nα + kBT nα lnnα + kBT (1− nα) ln(1− nα)

]
.

(5.52)

Now - lo and behold! - treating Ω as a function of the distribution {nα} and extremizing in each case,
subject to the constraint of total particle number N = J

∑
α nα, one obtains the Maxwell-Boltzmann,
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Bose-Einstein, and Fermi-Dirac distributions, respectively:

δ

δnα

(
Ω − λJ

∑

α′

nα′

)
= 0 ⇒





nMB
α = e(µ−εα)/kBT

nBE
α =

[
e(εα−µ)/kBT − 1

]−1

nFD
α =

[
e(εα−µ)/kBT + 1

]−1
.

(5.53)

As long as J is finite, so the states in each block all remain at the same energy, the results are independent
of J .

5.5 Photon Statistics

5.5.1 Thermodynamics of the photon gas

There exists a certain class of particles, including photons and certain elementary excitations in solids
such as phonons (i.e. lattice vibrations) and magnons (i.e. spin waves) which obey bosonic statistics
but with zero chemical potential. This is because their overall number is not conserved (under typical
conditions) – photons can be emitted and absorbed by the atoms in the wall of a container, phonon and
magnon number is also not conserved due to various processes, etc. In such cases, the free energy attains
its minimum value with respect to particle number when

µ =

(
∂F

∂N

)

T.V

= 0 . (5.54)

The number distribution, from eqn. 5.12, is then

n(ε) =
1

eβε − 1
. (5.55)

The grand partition function for a system of particles with µ = 0 is

Ω(T, V ) = V kBT

∞∫

−∞

dε g(ε) ln
(
1− e−ε/kBT

)
, (5.56)

where g(ε) is the density of states per unit volume.

Suppose the particle dispersion is ε(k) = A |k|σ. We can compute the density of states g(ε):

g(ε) =
gΩd

(2π)d
kd−1

dε/dk
=
Cd,σ

Ad/σ
ε

d
σ
−1 Θ(ε) (5.57)

where

Cd,σ =
gΩd

(2π)d σ
. (5.58)

is a dimensionless constant and g is the internal degeneracy of the state at wavevector k. Recall that
Ωd = 2πd/2

/
Γ(d/2) for the solid angle in d dimensions. The step function Θ(ε) reminds us that the

energy spectrum is bounded from below by ε = 0, i.e. there are no negative energy states.
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For the photon, we have ε(k) = ~ck, so σ = 1 and A = ~c, whence, with Cd ≡ Cd,σ=1,

g(ε) =
Cd

(hc)d
εd−1 Θ(ε) , Cd =

2 g πd/2

Γ(d/2)
. (5.59)

In d = 3 dimensions the degeneracy is g = 2, i.e. the number of independent polarization states. The
pressure p(T ) is then obtained using Ω = −pV . We have

p(T ) = −kBT

∞∫

−∞

dε g(ε) ln
(
1− e−ε/kBT

)

= − Cd

(hc)d
kBT

∞∫

0

dε εd−1 ln
(
1− e−ε/kBT

)

= − Cd

(hc)d
(kBT )

d+1

∞∫

0

dt td−1 ln
(
1− e−t

)
.

(5.60)

We can make some progress with the dimensionless integral:

Id ≡ −
∞∫

0

dt td−1 ln
(
1− e−t

)
=

∞∑

n=1

1

n

∞∫

0

dt td−1 e−nt = Γ(d)

∞∑

n=1

1

nd+1
= Γ(d) ζ(d+ 1) . (5.61)

We also may invoke a result from the mathematics of the gamma function known as the doubling formula,

Γ(z) =
2z−1

√
π

Γ
(
z
2

)
Γ
(
z+1
2

)
, (5.62)

and define

Bd ≡ Γ(d) · Cd

(2π)d
= gπ−(d+1)/2 Γ

(
d+1
2

)
. (5.63)

Putting it all together, we find

p(T ) = ζ(d+ 1)Bd

(kBT )
d+1

(~c)d
(5.64)

as well as

n(T ) =

∞∫

−∞

dε
g(ε)

eε/kBT − 1
= ζ(d)Bd

(kBT )
d

(~c)d
. (5.65)

Dividing these two equations, we obtain the equation of state

p =
ζ(d+ 1)

ζ(d)
nkBT . (5.66)

For photons in d = 3 dimensions, we have g = 2 and Bd=3 = 2π−2, thus

n(T ) =
2 ζ(3)

π2
(kBT )

3

(~c)3
, p(T ) =

2 ζ(4)

π2
(kBT )

4

(~c)3
. (5.67)
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It turns out that ζ(4) = π4

90 . Note that ~c/kB = 0.22855 cm ·K, so

kBT

~c
= 4.3755T [K] cm−1 =⇒ n(T ) = 20.405 × T 3[K3] cm−3 . (5.68)

To find the entropy, we use Gibbs-Duhem:

dµ = 0 = −s dT + v dp =⇒ s = v
dp

dT
, (5.69)

where s is the entropy per particle and v = n−1 is the volume per particle. In d space dimensions,

s(T ) = (d+1)
ζ(d+1)

ζ(d)
kB . (5.70)

The entropy per particle is constant. The internal energy is

E = −∂ lnΞ
∂β

= − ∂

∂β

(
βpV ) = d p V , (5.71)

and hence the energy per particle is

ε =
E

N
= d pv =

d ζ(d+1)

ζ(d)
kBT . (5.72)

5.5.2 Classical arguments for the photon gas

A number of thermodynamic properties of the photon gas can be determined from purely classical
arguments. Here we recapitulate a few important ones.

1. Suppose our photon gas is confined to a rectangular box of dimensions Lx×Ly×Lz. Suppose fur-

ther that the dimensions are all expanded by a factor λ1/3, i.e. the volume is isotropically expanded
by a factor of λ. The cavity modes of the electromagnetic radiation have quantized wavevectors,
even within classical electromagnetic theory, given by

k =

(
2πnx
Lx

,
2πny
Ly

,
2πnz
Lz

)
. (5.73)

Since the energy for a given mode is ε(k) = ~c|k|, we see that the energy changes by a factor λ−1/3

under an adiabatic volume expansion V → λV , where the distribution of different electromagnetic
mode occupancies remains fixed. Thus,

V

(
∂E

∂V

)

S

= λ

(
∂E

∂λ

)

S

= −1
3E . (5.74)

Thus,

p = −
(
∂E

∂V

)

S

=
E

3V
, (5.75)

as we found in eqn. 5.71. Since E = E(T, V ) is extensive, we must have p = p(T ) alone.
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2. Since p = p(T ) alone, we have

(
∂E

∂V

)

T

=

(
∂E

∂V

)

p

= 3p

= T

(
∂p

∂T

)

V

− p ,

(5.76)

where the second line follows the Maxwell relation
(
∂S
∂V

)
p
=
( ∂p
∂T

)
V

, after invoking the First Law

dE = TdS − p dV . Thus,

T
dp

dT
= 4p =⇒ p(T ) = AT 4 , (5.77)

where A is a constant. Thus, we recover the temperature dependence found microscopically in
eqn. 5.64.

3. Given an energy density E/V , the differential energy flux emitted in a direction θ relative to a
surface normal is

djε = c · E
V

· cos θ · dΩ
4π

, (5.78)

where dΩ is the differential solid angle. Thus, the power emitted per unit area is

dP

dA
=

cE

4πV

π/2∫

0

dθ

2π∫

0

dφ sin θ · cos θ = cE

4V
= 3

4 c p(T ) ≡ σ T 4 , (5.79)

where σ = 3
4cA, with p(T ) = AT 4 as we found above. From quantum statistical mechanical

considerations, we have

σ =
π2k4B

60 c2 ~3
= 5.67 × 10−8 W

m2K4
(5.80)

is Stefan’s constant.

5.5.3 Surface temperature of the earth

We derived the result P = σT 4 · A where σ = 5.67 × 10−8 W/m2 K4 for the power emitted by an
electromagnetic ‘black body’. Let’s apply this result to the earth-sun system. We’ll need three lengths:
the radius of the sun R⊙ = 6.96× 108 m, the radius of the earth Re = 6.38× 106 m, and the radius of the
earth’s orbit ae = 1.50 × 1011 m. Let’s assume that the earth has achieved a steady state temperature of
Te. We balance the total power incident upon the earth with the power radiated by the earth. The power
incident upon the earth is

Pincident =
πR2

e

4πa2e
· σT 4

⊙ · 4πR2
⊙ =

R2
e R

2
⊙

a2e
· πσT 4

⊙ . (5.81)

The power radiated by the earth is

Pradiated = σT 4
e · 4πR2

e . (5.82)
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Figure 5.2: Spectral density ρε(ν, T ) for blackbody radiation at three temperatures.

Setting Pincident = Pradiated, we obtain

Te =

(
R⊙
2 ae

)1/2
T⊙ . (5.83)

Thus, we find Te = 0.04817T⊙ , and with T⊙ = 5780K, we obtain Te = 278.4K. The mean surface
temperature of the earth is T̄e = 287K, which is only about 10K higher. The difference is due to the fact
that the earth is not a perfect blackbody, i.e. an object which absorbs all incident radiation upon it and
emits radiation according to Stefan’s law. As you know, the earth’s atmosphere retraps a fraction of the
emitted radiation – a phenomenon known as the greenhouse effect.

5.5.4 Distribution of blackbody radiation

Recall that the frequency of an electromagnetic wave of wavevector k is ν = c/λ = ck/2π. Therefore the
number of photons NT (ν, T ) per unit frequency in thermodynamic equilibrium is (recall there are two
polarization states)

N (ν, T ) dν =
2V

8π3
· d3k

e~ck/kBT − 1
=
V

π2
· k2 dk

e~ck/kBT − 1
. (5.84)

We therefore have

N (ν, T ) =
8πV

c3
· ν2

ehν/kBT − 1
. (5.85)

Since a photon of frequency ν carries energy hν, the energy per unit frequency E(ν) is

E(ν, T ) = 8πhV

c3
· ν3

ehν/kBT − 1
. (5.86)



5.5. PHOTON STATISTICS 15

Note what happens if Planck’s constant h vanishes, as it does in the classical limit. The denominator can
then be written

ehν/kBT − 1 =
hν

kBT
+O(h2) (5.87)

and

ECL(ν, T ) = lim
h→0

E(ν) = V · 8πkBT

c3
ν2 . (5.88)

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This
is known as the ultraviolet catastrophe, since the divergence comes from the large ν part of the integral,
which in the optical spectrum is the ultraviolet portion. With quantization, the Bose-Einstein factor
imposes an effective ultraviolet cutoff kBT/h on the frequency integral, and the total energy, as we
found above, is finite:

E(T ) =

∞∫

0

dν E(ν) = 3pV = V · π
2

15

(kBT )
4

(~c)3
. (5.89)

We can define the spectral density ρε(ν) of the radiation as

ρε(ν, T ) ≡
E(ν, T )
E(T )

=
15

π4
h

kBT

(hν/kBT )
3

ehν/kBT − 1
(5.90)

so that ρε(ν, T ) dν is the fraction of the electromagnetic energy, under equilibrium conditions, between

frequencies ν and ν + dν, i.e.
∞∫
0

dν ρε(ν, T ) = 1. In fig. 5.2 we plot this in fig. 5.2 for three different

temperatures. The maximum occurs when s ≡ hν/kBT satisfies

d

ds

(
s3

es − 1

)
= 0 =⇒ s

1− e−s
= 3 =⇒ s = 2.82144 . (5.91)

5.5.5 What if the sun emitted ferromagnetic spin waves?

We saw in eqn. 5.78 that the power emitted per unit surface area by a blackbody is σT 4. The power law
here follows from the ultrarelativistic dispersion ε = ~ck of the photons. Suppose that we replace this
dispersion with the general form ε = ε(k). Now consider a large box in equilibrium at temperature T .
The energy current incident on a differential area dA of surface normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz
· 1

eε(k)/kBT − 1
. (5.92)

Let us assume an isotropic power law dispersion of the form ε(k) = Ckα. Then after a straightforward
calculation we obtain

dP

dA
= σ̃ T 2+2/α , (5.93)

where

σ̃ = ζ(2 + 2/α) Γ(2 + 2/α) · g k
2+2/α
B

8π2~C2/α
. (5.94)
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One can check that for g = 2, C = ~c, and α = 1 that this result reduces to that of eqn. 5.80. For the case
of ferromagnetic spin waves, α = 2, in which case dP

dA = σ̃T 3. What would be the surface temperature
of the earth if the photon dispersion were ε = Ckα? Generalizing the results from §5.5.3, we find

Te =

(
R⊙
2 ae

) α
1+α

T⊙ . (5.95)

With R⊙/2 ae = 2.32 × 10−3, assuming the same value for T⊙ = 5780K, and with α = 2, we obtain
Te = 101K.

5.6 Lattice Vibrations : Einstein and Debye Models

Crystalline solids support propagating waves called phonons, which are quantized vibrations of the

lattice. Recall that the quantum mechanical Hamiltonian for a single harmonic oscillator, Ĥ = p2

2m +
1
2mω

2
0q

2, may be written as Ĥ = ~ω0(a
†a+ 1

2), where a and a† are ‘ladder operators’ satisfying commu-
tation relations

[
a , a†

]
= 1.

5.6.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 5.3. We assume that our system consists
of N mass points on a large ring of circumference L. In equilibrium, the masses are spaced evenly by a
distance b = L/N . That is, x0n = nb is the equilibrium position of particle n. We define un = xn − x0n to
be the difference between the position of mass n and The Hamiltonian is then

Ĥ =
∑

n

[
p2n
2m

+ 1
2κ (xn+1 − xn − a)2

]

=
∑

n

[
p2n
2m

+ 1
2κ (un+1 − un)

2

]
+ 1

2Nκ(b− a)2 ,

(5.96)

where a is the unstretched length of each spring,m is the mass of each mass point, κ is the force constant
of each spring, and N is the total number of mass points. If b 6= a the springs are under tension in
equilibrium, but as we see this only leads to an additive constant in the Hamiltonian, and hence does
not enter the equations of motion.

The classical equations of motion are

u̇n =
∂Ĥ

∂pn
=
pn
m

ṗn = − ∂Ĥ

∂un
= κ

(
un+1 + un−1 − 2un

)
.

(5.97)

Taking the time derivative of the first equation and substituting into the second yields

ün =
κ

m

(
un+1 + un−1 − 2un

)
. (5.98)
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Figure 5.3: A linear chain of masses and springs. The black circles represent the equilibrium positions
of the masses. The displacement of mass n relative to its equilibrium value is un.

We now write

un =
1√
N

∑

k

ũk e
ikna , (5.99)

where periodicity uN+n = un requires that the k values are quantized so that eikNa = 1, i.e. k = 2πj/Na
where j ∈ {0, 1, . . . , N−1}. The inverse of this discrete Fourier transform is

ũk =
1√
N

∑

n

un e
−ikna . (5.100)

Note that ũk is in general complex, but that ũ∗k = ũ−k. In terms of the ũk, the equations of motion take
the form

¨̃uk = −2κ

m

(
1− cos(ka)

)
ũk ≡ −ω2

k ũk . (5.101)

Thus, each ũk is a normal mode, and the normal mode frequencies are

ωk = 2

√
κ

m

∣∣sin
(
1
2ka

)∣∣ . (5.102)

The density of states for this band of phonon excitations is

g(ε) =

π/a∫

−π/a

dk

2π
δ(ε − ~ωk) =

2

πa

(
J2 − ε2

)−1/2
Θ(ε)Θ(J − ε) , (5.103)

where J = 2~
√
κ/m is the phonon bandwidth. The step functions require 0 ≤ ε ≤ J ; outside this range

there are no phonon energy levels and the density of states accordingly vanishes.

The entire theory can be quantized, taking
[
pn , un′

]
= −i~δnn′ . We then define

pn =
1√
N

∑

k

p̃k e
ikna , p̃k =

1√
N

∑

n

pn e
−ikna , (5.104)

in which case
[
p̃k , ũk′

]
= −i~δkk′ . Note that ũ†k = ũ−k and p̃†k = p̃−k. We then define the ladder operator

ak =

(
1

2m~ωk

)1/2
p̃k − i

(
mωk

2~

)1/2
ũk (5.105)
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and its Hermitean conjugate a†k, in terms of which the Hamiltonian is

Ĥ =
∑

k

~ωk

(
a†kak +

1
2

)
, (5.106)

which is a sum over independent harmonic oscillator modes. Note that the sum over k is restricted to
an interval of width 2π, e.g. k ∈

[
− π

a ,
π
a

]
, which is the first Brillouin zone for the one-dimensional chain

structure. The state at wavevector k + 2π
a is identical to that at k, as we see from eqn. 5.100.

5.6.2 General theory of lattice vibrations

The most general model of a harmonic solid is described by a Hamiltonian of the form

Ĥ =
∑

R,i

p2
i (R)

2Mi

+
1

2

∑

i,j

∑

α,β

∑

R,R′

uαi (R)Φαβ
ij (R−R′)uβj (R

′) , (5.107)

where the dynamical matrix is

Φαβ
ij (R−R′) =

∂2U

∂uαi (R) ∂uβj (R
′)

, (5.108)

where U is the potential energy of interaction among all the atoms. Here we have simply expanded the
potential to second order in the local displacements uαi (R). The lattice sites R are elements of a Bravais
lattice. The indices i and j specify basis elements with respect to this lattice, and the indices α and β range
over {1, . . . , d}, the number of possible directions in space. The subject of crystallography is beyond the
scope of these notes, but, very briefly, a Bravais lattice in d dimensions is specified by a set of d linearly
independent primitive direct lattice vectors al, such that any point in the Bravais lattice may be written as

a sum over the primitive vectors with integer coefficients: R =
∑d

l=1 nl al. The set of all such vectors
{R} is called the direct lattice. The direct lattice is closed under the operation of vector addition: if R and
R′ are points in a Bravais lattice, then so is R+R′.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called the unit cell.
Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are special crystals in which there
is only one atom per unit cell. Consider, for example, the structure in fig. 5.4. The blue dots form a square
Bravais lattice with primitive direct lattice vectors a1 = a x̂ and a2 = a ŷ, where a is the lattice constant,
which is the distance between any neighboring pair of blue dots. The red squares and green triangles,
along with the blue dots, form a basis for the crystal structure which label each sublattice. Our crystal in
fig. 5.4 is formally classified as a square Bravais lattice with a three element basis. To specify an arbitrary site
in the crystal, we must specify both a direct lattice vector R as well as a basis index j ∈ {1, . . . , r}, so
that the location is R + ηj . The vectors {ηj} are the basis vectors for our crystal structure. We see that a
general crystal structure consists of a repeating unit, known as a unit cell. The centers (or corners, if one
prefers) of the unit cells form a Bravais lattice. Within a given unit cell, the individual sublattice sites are
located at positions ηj with respect to the unit cell position R.

Upon diagonalization, the Hamiltonian of eqn. 5.107 takes the form

Ĥ =
∑

k,a

~ωa(k)
(
A†

a(k)Aa(k) +
1
2

)
, (5.109)
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Figure 5.4: A crystal structure with an underlying square Bravais lattice and a three element basis.

where [
Aa(k) , A

†
b(k

′)
]
= δab δkk′ . (5.110)

The eigenfrequencies are solutions to the eigenvalue equation

∑

j,β

Φ̃αβ
ij (k) e

(a)
jβ (k) =Mi ω

2
a(k) e

(a)
iα (k) , (5.111)

where
Φ̃αβ
ij (k) =

∑

R

Φαβ
ij (R) e−ik·R . (5.112)

Here, k lies within the first Brillouin zone, which is the unit cell of the reciprocal lattice of points G satis-
fying eiG·R = 1 for all G and R. The reciprocal lattice is also a Bravais lattice, with primitive reciprocal

lattice vectors bl, such that any point on the reciprocal lattice may be written G =
∑d

l=1ml bl. One also
has that al ·bl′ = 2πδll′ . The index a ranges from 1 to d ·r and labels the mode of oscillation at wavevector

k. The vector e
(a)
iα (k) is the polarization vector for the ath phonon branch. In solids, along directions of of

high symmetry, phonon modes can be classified as longitudinal or transverse excitations.

For a crystalline lattice with an r-element basis, there are then d · r phonon modes for each wavevector k
lying in the first Brillouin zone. If we impose periodic boundary conditions, then the k points within the
first Brillouin zone are themselves quantized, as in the d = 1 case where we found k = 2πn/N . There
are N distinct k points in the first Brillouin zone – one for every direct lattice site. The total number
of modes is than d · r · N , which is the total number of translational degrees of freedom in our system:
rN total atoms (N unit cells each with an r atom basis) each free to vibrate in d dimensions. Of the d · r
branches of phonon excitations, d of them will be acoustic modes whose frequency vanishes as k → 0. The



20 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

remaining d(r − 1) branches are optical modes and oscillate at finite frequencies. Basically, in an acoustic
mode, for k close to the (Brillouin) zone center k = 0, all the atoms in each unit cell move together in the
same direction at any moment of time. In an optical mode, the different basis atoms move in different
directions.

There is no number conservation law for phonons – they may be freely created or destroyed in anhar-
monic processes, where two photons with wavevectors k and q can combine into a single phonon with
wavevector k + q, and vice versa. Therefore the chemical potential for phonons is µ = 0. We define the
density of states ga(ω) per unit cell for the ath phonon mode to be

ga(ω) =
1

N

∑

k

δ
(
ω − ωa(k)

)
= V0

∫

BZ

ddk

(2π)d
δ
(
ω − ωa(k)

)
, (5.113)

where N is the number of unit cells, V0 is the unit cell volume of the direct lattice, and the k sum
and integral are over the first Brillouin zone only. Note that ω here has dimensions of frequency. The

functions ga(ω) is normalized to unity:
∞∫
0

dω ga(ω) = 1 . The total phonon density of states per unit cell

is given by6 g(ω) =
∑dr

a=1 ga(ω) .

The grand potential for the phonon gas is

Ω(T, V ) = −kBT ln
∏

k,a

∞∑

na(k)=0

e−β~ωa(k)
(
na(k)+

1
2

)

= kBT
∑

k,a

ln

[
2 sinh

(
~ωa(k)

2kBT

)]
= NkBT

∞∫

0

dω g(ω) ln

[
2 sinh

(
~ω

2kBT

)]
.

(5.114)

Note that V = NV0 since there are N unit cells, each of volume V0. The entropy is given by S = −
(
∂Ω
∂T

)
V

and thus the heat capacity is

CV = −T ∂2Ω

∂T 2
= NkB

∞∫

0

dω g(ω)

(
~ω

2kBT

)2
csch2

(
~ω

2kBT

)
(5.115)

Note that as T → ∞ we have csch
(

~ω
2kBT

)
→ 2kBT

~ω , and therefore

lim
T→∞

CV (T ) = NkB

∞∫

0

dω g(ω) = rdNkB . (5.116)

This is the classical Dulong-Petit limit of 1
2kB per quadratic degree of freedom; there are rN atoms

moving in d dimensions, hence d · rN positions and an equal number of momenta, resulting in a high
temperature limit of CV = rdNkB.

6Note the dimensions of g(ω) are (frequency)−1. By contrast, the dimensions of g(ε) in eqn. 5.25 are (energy)−1 ·(volume)−1.
The difference lies in the a factor of V0 · ~, where V0 is the unit cell volume.
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Figure 5.5: Upper panel: phonon spectrum in elemental rhodium (Rh) at T = 297K measured by high
precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998). Note the three
acoustic branches and no optical branches, corresponding to d = 3 and r = 1. Lower panel: phonon
spectrum in gallium arsenide (GaAs) at T = 12K, comparing theoretical lattice-dynamical calculations
with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three
acoustic branches and three optical branches, corresponding to d = 3 and r = 2. The Greek letters along
the x-axis indicate points of high symmetry in the Brillouin zone.

5.6.3 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-called Einstein
model, in which there is no dispersion to the individual phonon modes. We approximate ga(ω) ≈ δ(ω −
ωa), in which case

CV (T ) = NkB

∑

a

(
~ωa

2kBT

)2
csch2

(
~ωa

2kBT

)
. (5.117)

At low temperatures, the contribution from each branch vanishes exponentially, since csch2
(

~ωa

2kBT

)
≃

4 e−~ωa/kBT → 0. Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches. Since the
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acoustic phonon dispersion vanishes linearly with |k| as k → 0, there is no temperature at which the
acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons. Indeed, the Einstein
model is appropriate in describing the d (r−1) optical phonon branches, though it fails miserably for the
acoustic branches.

In the vicinity of the zone center k = 0 (also called Γ in crystallographic notation) the d acoustic modes
obey a linear dispersion, with ωa(k) = ca(k̂) k. This results in an acoustic phonon density of states in
d = 3 dimensions of

g̃(ω) =
V0 ω

2

2π2

∑

a

∫
dk̂

4π

1

c3a(k)
Θ(ωD − ω) =

3V0

2π2c̄3
ω2 Θ(ωD − ω) , (5.118)

where c̄ is an average acoustic phonon velocity (i.e. speed of sound) defined by

3

c̄3
=
∑

a

∫
dk̂

4π

1

c3a(k)
(5.119)

and ωD is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon branch does
not extend forever, but only to the boundaries of the Brillouin zone. Thus, ωD should roughly be equal to
the energy of a zone boundary phonon. Alternatively, we can define ωD by the normalization condition

∞∫

0

dω g̃(ω) = 3 =⇒ ωD = (6π2/V0)
1/3 c̄ . (5.120)

This allows us to write g̃(ω) =
(
9ω2/ω3

D

)
Θ(ωD − ω).

The specific heat due to the acoustic phonons is then

CV (T ) =
9NkB

ω3
D

ωD∫

0

dω ω2

(
~ω

2kBT

)2
csch2

(
~ω

2kBT

)

= 9NkB

(
2T

ΘD

)3
φ
(
ΘD/2T

)
,

(5.121)

where ΘD = ~ωD/kB is the Debye temperature and

φ(x) =

x∫

0

dt t4 csch2t =

{
x3/3 x→ 0

π4/30 x→ ∞ .
(5.122)

Therefore,

CV (T ) =

{
12
5 π

4NkB (T/ΘD)
3 T ≪ ΘD

3NkB T ≫ ΘD .
(5.123)

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that CV (T → ∞) =
3NkB, corresponding to the three acoustic degrees of freedom per unit cell. The remaining contribution
of 3(r − 1)NkB to the high temperature heat capacity comes from the optical modes not considered in
the Debye model. The low temperature T 3 behavior of the heat capacity of crystalline solids is a generic
feature, and its detailed description is a triumph of the Debye model.
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Element Ag Al Au C Cd Cr Cu Fe Mn

ΘD (K) 227 433 162 2250 210 606 347 477 409

Tmelt (K) 962 660 1064 3500 321 1857 1083 1535 1245

Element Ni Pb Pt Si Sn Ta Ti W Zn

ΘD (K) 477 105 237 645 199 246 420 383 329

Tmelt (K) 1453 327 1772 1410 232 2996 1660 3410 420

Table 5.1: Debye temperatures (at T = 0) and melting points for some common elements (carbon is
assumed to be diamond and not graphite). (Source: the internet!)

5.6.4 Melting and the Lindemann criterion

Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 5.105 gives

ũk = i

(
~

2mωk

)1/2(
ak − a†−k

)
. (5.124)

Therefore the RMS fluctuations at each site are given by

〈u2n〉 =
1

N

∑

k

〈ũk ũ−k〉 =
1

N

∑

k

~

mωk

(
n(k) + 1

2

)
, (5.125)

where n(k, T ) =
[
exp(~ωk/kBT )− 1

]−1
is the Bose occupancy function.

Let us now generalize this expression to the case of a d-dimensional solid. The appropriate expression
for the RMS position fluctuations of the ith basis atom in each unit cell is

〈u2
i (R)〉 = 1

N

∑

k

dr∑

a=1

~

Mia(k)ωa(k)

(
na(k) +

1
2

)
. (5.126)

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes a. There are
dr normal modes per unit cell i.e. d branches of the phonon dispersion ωa(k). (For the one-dimensional
chain with d = 1 and r = 1 there was only one such branch to consider). Note also the quantity Mia(k),

which has units of mass and is defined in terms of the polarization vectors e
(a)
iα (k) as

1

Mia(k)
=

d∑

µ=1

∣∣e(a)iµ (k)
∣∣2 . (5.127)

The dimensions of the polarization vector are [mass]−1/2, since the generalized orthonormality condition
on the normal modes is ∑

i,µ

Mi e
(a)
iµ

∗
(k) e

(b)
iµ (k) = δab , (5.128)
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where Mi is the mass of the atom of species i within the unit cell (i ∈ {1, . . . , r}). For our purposes we
can replace Mia(k) by an appropriately averaged quantity which we call Mi ; this ‘effective mass’ is then
independent of the mode index a as well as the wavevector k. We may then write

〈u2
i 〉 ≈

∞∫

0

dω g(ω)
~

Mi ω
·
{

1

e~ω/kBT − 1
+

1

2

}
, (5.129)

where we have dropped the site label R since translational invariance guarantees that the fluctuations
are the same from one unit cell to the next. Note that the fluctuations 〈u2

i 〉 can be divided into a
temperature-dependent part 〈u2

i 〉th and a temperature-independent quantum contribution 〈u2
i 〉qu ,

where

〈u2
i 〉th =

~

Mi

∞∫

0

dω
g(ω)

ω
· 1

e~ω/kBT − 1

〈u2
i 〉qu =

~

2Mi

∞∫

0

dω
g(ω)

ω
.

(5.130)

Let’s evaluate these contributions within the Debye model, where we replace g(ω) by

ḡ(ω) =
d2 ωd−1

ωd
D

Θ(ωD − ω) . (5.131)

We then find

〈u2
i 〉th =

d2~

Mi ωD

(
kBT

~ωD

)d−1

Fd(~ωD/kBT )

〈u2
i 〉qu =

d2

d− 1
· ~

2Mi ωD

,

(5.132)

where

Fd(x) =

x∫

0

ds
sd−2

es − 1
=

{
xd−2/(d− 2) x→ 0

ζ(d− 1) x→ ∞
. (5.133)

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, 〈u2
i 〉qu, diverges in d = 1 dimensions. Therefore

there are no one-dimensional quantum solids.

2) The thermal contribution to the fluctuations, 〈u2
i 〉th, diverges for any T > 0 whenever d ≤ 2.

This is because the integrand of Fd(x) goes as sd−3 as s → 0. Therefore, there are no two-dimensional
classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a cutoff
on the frequency integrals, because there is a smallest wavevector kmin ∼ 2π/L, where L is the
(finite) linear dimension of the system. This leads to a low frequency cutoff ωmin = 2πc̄/L, where
c̄ is the appropriately averaged acoustic phonon velocity from eqn. 5.119, which mitigates any
divergences.
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Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid melts when
the RMS fluctuations in the atomic positions exceeds a certain fraction x∗ of the lattice constant a. We
therefore define the ratios

x2i,th ≡ 〈u2
i 〉th
a2

= d2 ·
(

~
2

Mi a2 kB

)
· T

d−1

Θd
D

· F (ΘD/T )

x2i,qu ≡
〈u2

i 〉qu
a2

=
d2

2(d− 1)
·
(

~
2

Mi a2 kB

)
· 1

ΘD

,

(5.134)

with xi =
√
x2i,th + x2i,qu =

√
〈u2

i 〉
/
a.

Let’s now work through an example of a three-dimensional solid. We’ll assume a single element basis
(r = 1). We have that

9~2/4kB

1 amu Å
2 = 109K . (5.135)

According to table 5.1, the melting temperature always exceeds the Debye temperature, and often by a
great amount. We therefore assume T ≫ ΘD, which puts us in the small x limit of Fd(x). We then find

x2qu =
Θ⋆

ΘD

, x2th =
Θ⋆

ΘD

· 4T
ΘD

, x =

√(
1 +

4T

ΘD

)
Θ⋆

ΘD

. (5.136)

where

Θ∗ =
109K

M [amu] ·
(
a[Å]

)2 . (5.137)

The total position fluctuation is of course the sum x2 = x2i,th + x2i,qu. Consider for example the case of

copper, with M = 56 amu and a = 2.87 Å. The Debye temperature is ΘD = 347K. From this we find
xqu = 0.026, which says that at T = 0 the RMS fluctuations of the atomic positions are not quite three
percent of the lattice spacing (i.e. the distance between neighboring copper atoms). At room temperature,
T = 293K, one finds xth = 0.048, which is about twice as large as the quantum contribution. How big
are the atomic position fluctuations at the melting point? According to our table, Tmelt = 1083K for
copper, and from our formulae we obtain xmelt = 0.096. The Lindemann criterion says that solids melt
when x(T ) ≈ 0.1.

We were very lucky to hit the magic number xmelt = 0.1 with copper. Let’s try another example. Lead
has M = 208 amu and a = 4.95 Å. The Debye temperature is ΘD = 105K (‘soft phonons’), and the
melting point is Tmelt = 327K. From these data we obtain x(T = 0) = 0.014, x(293K) = 0.050 and
x(T = 327K) = 0.053. Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann criterion
x(Tmelt) = x∗ ≈ 0.1. We obtain

TL =

(
ΘD

Θ⋆
x∗2 − 1

)
· ΘD

4
. (5.138)
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We call TL the Lindemann temperature. Most treatments of the Lindemann criterion ignore the quantum
correction, which gives the −1 contribution inside the above parentheses. But if we are more careful and
include it, we see that it may be possible to have TL < 0. This occurs for any crystal whereΘD < Θ⋆/x∗2.
In this case we might expect the crystalline solid to be unstable to a liquid phase even at T = 0.

This is indeed the case for 4He, which at atmospheric pressure condenses into a liquid at Tc = 4.2K and
remains in the liquid state down to absolute zero. At p = 1atm, it never solidifies! Why? The number
density of liquid 4He at p = 1 atm and T = 0K is 2.2 × 1022 cm−3. Let’s say the helium atoms want
to form a crystalline lattice. We don’t know a priori what the lattice structure will be, so let’s for the
sake of simplicity assume a simple cubic lattice. From the number density we obtain a lattice spacing
of a = 3.57 Å. OK now what do we take for the Debye temperature? Theoretically this should depend
on the microscopic force constants which enter the small oscillations problem (i.e. the spring constants
between pairs of helium atoms in equilibrium). We’ll use the expression we derived for the Debye
frequency, ωD = (6π2/V0)

1/3c̄, where V0 is the unit cell volume. We’ll take c̄ = 238m/s, which is the
speed of sound in liquid helium at T = 0. This gives ΘD = 19.8K. We find Θ⋆ = 2.13K, and if we take
x∗ = 0.1 this gives Θ⋆/x∗2 = 213K, which significantly exceedsΘD. Thus, the solid should melt because
the RMS fluctuations in the atomic positions at absolute zero are huge: xqu = (Θ⋆/ΘD)

1/2 = 0.33. By
applying pressure, one can get 4He to crystallize above pc = 25 atm at T = 0. Under pressure, the unit
cell volume V0 decreases and the phonon velocity c̄ increases, so the Debye temperature increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of melting
per se. Rather it provides us with a heuristic allowing us to predict roughly when a solid should melt.

5.6.5 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s theorem which
says that associated with every broken generator of a continuous symmetry there is an associated bosonic
gapless excitation (i.e. one whose frequency ω vanishes in the long wavelength limit). In the case of
phonons, the ‘broken generators’ are the symmetries under spatial translation in the x, y, and z direc-
tions. The crystal selects a particular location for its center-of-mass, which breaks this symmetry. There
are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or magnons.
In isotropic magnets, there is a global symmetry associated with rotations in internal spin space, de-
scribed by the group SU(2). If the system spontaneously magnetizes, meaning there is long-ranged fer-
romagnetic order (↑↑↑ · · · ), or long-ranged antiferromagnetic order (↑↓↑↓ · · · ), then global spin rotation
symmetry is broken. Typically a particular direction is chosen for the magnetic moment (or staggered
moment, in the case of an antiferromagnet). Symmetry under rotations about this axis is then pre-
served, but rotations which do not preserve the selected axis are ‘broken’. In the most straightforward
case, that of the antiferromagnet, there are two such rotations for SU(2), and concomitantly two gapless
magnon branches, with linearly vanishing dispersions ωa(k). The situation is more subtle in the case
of ferromagnets, because the total magnetization is conserved by the dynamics (unlike the total stag-
gered magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged
interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness of Gold-
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stone bosons and simply posit a gapless dispersion relation of the form ω(k) = A |k|σ. The density of

states for this excitation branch is then g(ω) = C ω
d
σ
−1

Θ(ωc − ω) , where C is a constant and ωc is the

cutoff, which is the bandwidth for this excitation branch.7 Normalizing the density of states for this
branch results in the identification ωc = (d/σC)σ/d.

The heat capacity is then found to be

CV = NkB C
ωc∫

0

dω ω
d
σ
−1
(

~ω

kBT

)2
csch2

(
~ω

2kBT

)
=
d

σ
NkB

(
2T

Θ

)d/σ
φ
(
Θ/2T

)
, (5.139)

where Θ = ~ωc/kB and

φ(x) =

x∫

0

dt t
d
σ
+1

csch2t =

{
σ
d x

d/σ x→ 0

2−d/σ Γ
(
2 + d

σ

)
ζ
(
2 + d

σ

)
x→ ∞ ,

(5.140)

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for kBT ≫ ~ωc,
with CV (T ≫ ~ωc/kB) = NkB.

In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry in internal
‘spin’ space, the magnons have a k2 dispersion. Thus, a bulk three-dimensional isotropic ferromagnet
will exhibit a heat capacity due to spin waves which behaves as T 3/2 at low temperatures. For suffi-
ciently low temperatures this will overwhelm the phonon contribution, which behaves as T 3.

5.7 The Ideal Bose Gas

5.7.1 General formulation for noninteracting systems

Recall that the grand partition function for noninteracting bosons is given by

Ξ =
∏

α

( ∞∑

nα=0

eβ(µ−εα)nα

)
=
∏

α

(
1− eβ(µ−εα)

)−1
, (5.141)

In order for the sum to converge to the RHS above, we must have µ < εα for all single-particle states
|α〉. The density of particles is then

n(T, µ) = − 1

V

(
∂Ω

∂µ

)

T,V

=
1

V

∑

α

1

eβ(εα−µ) − 1
=

∞∫

ε0

dε
g(ε)

eβ(ε−µ) − 1
, (5.142)

where g(ε) = 1
V

∑
α δ(ε − εα) is the density of single particle states per unit volume. We assume that

g(ε) = 0 for ε < ε0 ; typically ε0 = 0, as is the case for any dispersion of the form ε(k) = A|k|r, for

7If ω(k) = Akσ , then C = 21−d π
− d

2 σ−1 A
− d

σ
g
/

Γ(d/2) .
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example. However, in the presence of a magnetic field, we could have ε(k, σ) = A|k|r − gµ0Hσ, in
which case ε0 = −gµ0|H|.

Clearly n(T, µ) is an increasing function of both T and µ. At fixed T , the maximum possible value for
n(T, µ), called the critical density nc(T ), is achieved for µ = ε0 , i.e.

nc(T ) =

∞∫

ε0

dε
g(ε)

eβ(ε−ε0) − 1
. (5.143)

The above integral converges provided g(ε0) = 0, assuming g(ε) is continuous8. If g(ε0) > 0, the integral
diverges, and nc(T ) = ∞. In this latter case, one can always invert the equation for n(T, µ) to obtain
the chemical potential µ(T, n). In the former case, where the nc(T ) is finite, we have a problem – what
happens if n > nc(T ) ?

In the former case, where nc(T ) is finite, we can equivalently restate the problem in terms of a critical
temperature Tc(n), defined by the equation nc(Tc) = n. For T < Tc , we apparently can no longer invert to
obtain µ(T, n), so clearly something has gone wrong. The remedy is to recognize that the single particle
energy levels are discrete, and separate out the contribution from the lowest energy state ε0. I.e. we write

n(T, µ) =

n0︷ ︸︸ ︷
1

V

g0

eβ(ε0−µ) − 1
+

n′

︷ ︸︸ ︷
∞∫

ε0

dε
g(ε)

eβ(ε−µ) − 1
, (5.144)

where g0 is the degeneracy of the single particle state with energy ε0. We assume that n0 is finite, which
means that N0 = V n0 is extensive. We say that the particles have condensed into the state with energy ε0.
The quantity n0 is the condensate density. The remaining particles, with density n′, are said to comprise
the overcondensate. With the total density n fixed, we have n = n0 + n′. Note that n0 finite means that µ
is infinitesimally close to ε0:

µ = ε0 − kBT ln

(
1 +

g0
V n0

)
≈ ε0 −

g0kBT

V n0
. (5.145)

Note also that if ε0 − µ is finite, then n0 ∝ V −1 is infinitesimal.

Thus, for T < Tc(n), we have µ = ε0 with n0 > 0, and

n(T, n0) = n0 +

∞∫

ε0

dε
g(ε)

e(ε−ε0)/kBT − 1
. (5.146)

For T > Tc(n), we have n0 = 0 and

n(T, µ) =

∞∫

ε0

dε
g(ε)

e(ε−µ)/kBT − 1
. (5.147)

8OK, that isn’t quite true. For example, if g(ε) ∼ 1/ ln ε, then the integral has a very weak ln ln(1/η) divergence, where η is
the lower cutoff. But for any power law density of states g(ε) ∝ εr with r > 0, the integral converges.
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The equation for Tc(n) is

n =

∞∫

ε0

dε
g(ε)

e(ε−ε0)/kBTc − 1
. (5.148)

For another take on ideal Bose gas condensation see the appendix in §5.10.

5.7.2 Ballistic dispersion

We already derived, in §5.3.3, expressions for n(T, z) and p(T, z) for the ideal Bose gas (IBG) with ballistic
dispersion ε(p) = p2/2m, We found

n(T, z) = gλ−d
T Li d

2

(z)

p(T, z) = g kBT λ
−d
T Li d

2
+1

(z),
(5.149)

where λT =
√

2π~2/mkBT is the thermal wavelength, and where g is the internal (e.g. spin) degeneracy
of each single particle energy level. Here z = eµ/kBT is the fugacity and

Lis(z) =

∞∑

m=1

zm

ms (5.150)

is the polylogarithm function. For bosons with a spectrum bounded below by ε0 = 0, the fugacity takes
values on the interval z ∈ [0, 1]9. Note that Lis(z = 1) = ζ(s), which is Riemann’s zeta function; ζ(s) is
finite for s > 1.

Clearly n(T, z) = gλ−d
T Li d

2

(z) is an increasing function of z for fixed T . In fig. 5.6 we plot the function

Lis(z) versus z for three different values of s. We note that the maximum value Lis(z = 1) is finite if s > 1.
Thus, for d > 2, there is a maximum density nmax(T ) = g ζ(d/2)λ−d

T which is an increasing function of
temperature T . Put another way, if we fix the density n, then there is a critical temperature Tc below which
there is no solution to the equation n = n(T, z). The critical temperature Tc(n) is then determined by the
relation

n = g ζ
(
d
2

)(mkBTc
2π~2

)d/2
=⇒ kBTc =

2π~2

m

(
n

g ζ
(
d
2

)
)2/d

. (5.151)

What happens for T < Tc ?

As shown above in §5.7, we must separate out the contribution from the lowest energy single particle
mode, which for ballistic dispersion lies at ε0 = 0. Thus writing

n =
1

V

1

z−1 − 1
+

1

V

∑

α
(εα>0)

1

z−1 eεα/kBT − 1
, (5.152)

9It is easy to see that the chemical potential for noninteracting bosons can never exceed the minimum value ε0 of the single
particle dispersion.
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Figure 5.6: The polylogarithm function Lis(z) versus z for s = 1
2 , s = 3

2 , and s = 5
2 . Note that Lis(1) =

ζ(s) diverges for s ≤ 1.

where we have taken g = 1. Now V −1 is of course very small, since V is thermodynamically large, but if
µ→ 0 then z−1 − 1 is also very small and their ratio can be finite, as we have seen. Indeed, if the density
of k = 0 bosons n0 is finite, then their total number N0 satisfies

N0 = V n0 =
1

z−1 − 1
=⇒ z =

1

1 +N−1
0

. (5.153)

The chemical potential is then

µ = kBT ln z = −kBT ln
(
1 +N−1

0

)
≈ −kBT

N0

→ 0− . (5.154)

In other words, the chemical potential is infinitesimally negative, because N0 is assumed to be thermo-
dynamically large.

According to eqn. 5.11, the contribution to the pressure from the k = 0 states is

p0 = −kBT

V
ln(1− z) =

kBT

V
ln(1 +N0) → 0+ . (5.155)

So the k = 0 bosons, which we identify as the condensate, contribute nothing to the pressure.

Having separated out the k = 0 mode, we can now replace the remaining sum over α by the usual
integral over k. We then have

T < Tc : n = n0 + g ζ
(
d
2

)
λ−d
T

p = g ζ
(
d
2+1

)
kBT λ

−d
T

(5.156)

and

T > Tc : n = gLi d
2

(z)λ−d
T

p = gLi d
2
+1

(z) kBT λ
−d
T .

(5.157)



5.7. THE IDEAL BOSE GAS 31

The condensate fraction n0/n is unity at T = 0, when all particles are in the condensate with k = 0, and
decreases with increasing T until T = Tc, at which point it vanishes identically. Explicitly, we have

n0(T )

n
= 1− g ζ

(
d
2

)

nλdT
= 1−

(
T

Tc(n)

)d/2
. (5.158)

Let us compute the internal energy E for the ideal Bose gas. We have

∂

∂β
(βΩ) = Ω + β

∂Ω

∂β
= Ω − T

∂Ω

∂T
= Ω + TS (5.159)

and therefore

E = Ω + TS + µN = µN +
∂

∂β
(βΩ)

= V
(
µn− ∂

∂β
(βp)

)
= 1

2d gV kBT λ
−d
T Li d

2
+1

(z) .

(5.160)

This expression is valid at all temperatures, both above and below Tc. Note that the condensate particles
do not contribute to E, because the k = 0 condensate particles carry no energy.

We now investigate the heat capacity CV,N =
(
∂E
∂T

)
V,N

. Since we have been working in the GCE, it is

very important to note that N is held constant when computing CV,N . We’ll also restrict our attention to
the case d = 3 since the ideal Bose gas does not condense at finite T for d ≤ 2 and d > 3 is unphysical.
While we’re at it, we’ll also set g = 1.

The number of particles is

N =

{
N0 + ζ(3/2)V λ−3

T (T < Tc)

V λ−3
T Li3/2(z) (T > Tc) ,

(5.161)

and the energy is

E = 3
2 kBT

V

λ3T
Li5/2(z) =

3
2 pV . (5.162)

For T < Tc, we have z = 1 and

CV,N =

(
∂E

∂T

)

V,N

= 15
4 ζ(5/2) kB

V

λ3T
. (5.163)

The molar heat capacity is therefore

cV,N (T, n) = NA ·
CV,N

N
= 15

4 ζ(5/2)R ·
(
nλ3T

)−1
. (5.164)

For T > Tc, we have

dE
∣∣
V
= 15

4 kBT Li5/2(z)
V

λ3T
· dT
T

+ 3
2 kBT Li3/2(z)

V

λ3T
· dz
z

, (5.165)
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Figure 5.7: Molar heat capacity of the ideal Bose gas (units of R). Note the cusp at T = Tc.

where we have invoked eqn. 5.46. Taking the differential of N , we have

dN
∣∣
V
= 3

2 Li3/2(z)
V

λ3T
· dT
T

+ Li1/2(z)
V

λ3T
· dz
z

. (5.166)

We set dN = 0, which fixes dz in terms of dT , resulting in

cV,N (T, z) = 3
2R ·

[
5
2 Li5/2(z)

Li3/2(z)
−

3
2 Li3/2(z)

Li1/2(z)

]
. (5.167)

To obtain cV,N (T, n), we must then invert the relation

n(T, z) = λ−3
T Li3/2(z) (5.168)

in order to obtain z(T, n), and then insert this into eqn. 5.167. The results are shown in fig. 5.7. There
are several noteworthy features of this plot. First of all, by dimensional analysis the function cV,N (T, n)

is R times a function of the dimensionless ratio T/Tc(n) ∝ T n−2/3. Second, the high temperature limit
is 3

2R, which is the classical value. Finally, there is a cusp at T = Tc(n).

For another example, see §5.11.

5.7.3 Isotherms for the ideal Bose gas

Let a be some length scale and define

va = a3 , pa =
2π~2

ma5
, Ta =

2π~2

ma2kB

(5.169)
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Figure 5.8: Phase diagrams for the ideal Bose gas. Left panel: (p, v) plane. The solid blue curves are
isotherms, and the green hatched region denotes v < vc(T ), where the system is partially condensed.
Right panel: (p, T ) plane. The solid red curve is the coexistence curve pc(T ), along which Bose conden-
sation occurs. No distinct thermodynamic phase exists in the yellow hatched region above p = pc(T ).

Then we have

va
v

=

(
T

Ta

)3/2
Li3/2(z) + va n0 (5.170)

p

pa
=

(
T

Ta

)5/2
Li5/2(z) , (5.171)

where v = V/N is the volume per particle10 and n0 is the condensate number density; n0 vanishes for
T ≥ Tc, where z = 1. One identifies a critical volume vc(T ) by setting z = 1 and n0 = 0, leading to
vc(T ) = va (T/Ta)

3/2. For v < vc(T ), we set z = 1 in eqn. 5.170 to find a relation between v, T , and n0.
For v > vc(T ), we set n0 = 0 in eqn. 5.170 to relate v, T , and z. Note that the pressure is independent
of volume for T < Tc. The isotherms in the (p, v) plane are then flat for v < vc. This resembles the
coexistence region familiar from our study of the thermodynamics of the liquid-gas transition. The
situation is depicted in fig. 5.8. In the (T, p) plane, we identify pc(T ) = pa(T/Ta)

5/2 as the critical
temperature at which condensation starts to occur.

Recall the Gibbs-Duhem equation, dµ = −s dT +v dp . Along a coexistence curve, we have the Clausius-
Clapeyron relation, (

dp

dT

)

coex

=
s2 − s1
v2 − v1

=
ℓ

T ∆v
, (5.172)

where ℓ = T (s2 − s1) is the latent heat per mole, and ∆v = v2 − v1. For ideal gas Bose condensation, the
coexistence curve resembles the red curve in the right hand panel of fig. 5.8. There is no meaning to the

10Note that in the thermodynamics chapter we used v to denote the molar volume, NA V/N .
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Figure 5.9: Phase diagram of 4He. All phase boundaries are first order transition lines, with the excep-
tion of the normal liquid-superfluid transition, which is second order. (Source: University of Helsinki)

shaded region where p > pc(T ). Nevertheless, it is tempting to associate the curve p = pc(T ) with the
coexistence of the k = 0 condensate and the remaining uncondensed (k 6= 0) bosons11.

The entropy in the coexistence region is given by

s = − 1

N

(
∂Ω

∂T

)

V

= 5
2 ζ(5/2) kB v λ

−3
T =

5
2 ζ(5/2)

ζ(3/2)
kB

(
1− n0

n

)
. (5.173)

All the entropy is thus carried by the uncondensed bosons, and the condensate carries zero entropy.
The Clausius-Clapeyron relation can then be interpreted as describing a phase equilibrium between the
condensate, for which s0 = v0 = 0, and the uncondensed bosons, for which s′ = s(T ) and v′ = vc(T ).
So this identification forces us to conclude that the specific volume of the condensate is zero. This is
certainly false in an interacting Bose gas!

While one can identify, by analogy, a ‘latent heat’ ℓ = T ∆s = Ts in the Clapeyron equation, it is
important to understand that there is no distinct thermodynamic phase associated with the region p >
pc(T ). Ideal Bose gas condensation is a second order transition, and not a first order transition.

5.7.4 The λ-transition in liquid 4He

Helium has two stable isotopes. 4He is a boson, consisting of two protons, two neutrons, and two
electrons (hence an even number of fermions). 3He is a fermion, with one less neutron than 4He. Each
4He atom can be regarded as a tiny hard sphere of mass m = 6.65 × 10−24 g and diameter a = 2.65 Å. A
sketch of the phase diagram is shown in fig. 5.9. At atmospheric pressure, helium liquefies at Tl = 4.2K.
The gas-liquid transition is first order, as usual. However, as one continues to cool, a second transition
sets in at T = Tλ = 2.17K (at p = 1 atm). The λ-transition, so named for the λ-shaped anomaly in the
specific heat in the vicinity of the transition, as shown in fig. 5.10, is continuous (i.e. second order).

11The k 6= 0 particles are sometimes called the overcondensate.
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Figure 5.10: Specific heat of liquid 4He in the vicinity of the λ-transition. Data from M. J. Buckingham
and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961).
Inset at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68, 174518 (2003) performed in
zero gravity earth orbit, to within ∆T = 2nK of the transition.

If we pretend that 4He is a noninteracting Bose gas, then from the density of the liquid n = 2.2 ×
1022 cm−3, we obtain a Bose-Einstein condensation temperature Tc =

2π~2

m

(
n/ζ(3/2)

)2/3
= 3.16K, which

is in the right ballpark. The specific heat Cp(T ) is found to be singular at T = Tλ, with

Cp(T ) = A
∣∣T − Tλ(p)

∣∣−α
. (5.174)

α is an example of a critical exponent. We shall study the physics of critical phenomena later on in this
course. While the cusp singularity of the type found in fig. 5.7 suggests α = −1, this is true for CV (T ),
and for Cp(T ) one finds instead α = 1

2 (see the calculation in §5.12). The observed behavior of Cp(T ) in
4He is very nearly logarithmic in |T−Tλ|. In fact, both theory (renormalization group on the O(2) model)
and experiment concur that α is almost zero but in fact slightly negative, withα = −0.0127±0.0003 in the
best experiments (Lipa et al., 2003). The λ transition is most definitely not an ideal Bose gas condensation.
Theoretically, in the parlance of critical phenomena, IBG condensation and the λ-transition in 4He lie in
different universality classes12. Unlike the IBG, the condensed phase in 4He is a distinct thermodynamic
phase, known as a superfluid. Note that Cp(T < Tc) for the IBG is not even defined, since for T < Tc we

12IBG condensation is in the universality class of the spherical model. The λ-transition is in the universality class of the XY
model.
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Figure 5.11: The fountain effect. In each case, a temperature gradient is maintained across a porous
plug through which only superfluid can flow. This results in a pressure gradient which can result in a
fountain or an elevated column in a U-tube.

have p = p(T ) and therefore dp = 0 requires dT = 0.

5.7.5 Fountain effect in superfluid 4He

At temperatures T < Tλ, liquid 4He has a superfluid component which is a type of Bose condensate.
In fact, there is an important difference between condensate fraction Nk=0/N and superfluid density,
which is denoted by the symbol ρs. In 4He, for example, at T = 0 the condensate fraction is only about
8%, while the superfluid fraction ρs/ρ = 1. The distinction betweenN0 and ρs is very interesting but lies
beyond the scope of this course.

One aspect of the superfluid state is its complete absence of viscosity. For this reason, superfluids can
flow through tiny cracks called microleaks that will not pass normal fluid. Consider then a porous plug
which permits the passage of superfluid but not of normal fluid. The key feature of the superfluid
component is that it has zero energy density. Therefore even though there is a transfer of particles
across the plug, there is no energy exchange, and therefore a temperature gradient across the plug can
be maintained13.

The elementary excitations in the superfluid state are sound waves called phonons. They are compres-
sional waves, just like longitudinal phonons in a solid, but here in a liquid. Their dispersion is acoustic,
given by ω(k) = ck where c = 238m/s.14 The have no internal degrees of freedom, hence g = 1. Like
phonons in a solid, the phonons in liquid helium are not conserved. Hence their chemical potential van-
ishes and these excitations are described by photon statistics. We can now compute the height difference
∆h in a U-tube experiment.

13Recall that two bodies in thermal equilibrium will have identical temperatures if they are free to exchange energy.
14The phonon velocity c is slightly temperature dependent.
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Clearly ∆h = ∆p/ρg. so we must find p(T ) for the helium. In the grand canonical ensemble, we have

p = −Ω/V = −kBT

∫
d3k

(2π)3
ln
(
1− e−~ck/kBT

)

= −(kBT )
4

(~c)3
4π

8π3

∞∫

0

duu2 ln(1− e−u) =
π2

90

(kBT )
4

(~c)3
.

(5.175)

Let’s assume T = 1K. We’ll need the density of liquid helium, ρ = 148 kg/m3.

dh

dT
=

2π2

45

(
kBT

~c

)3 kB

ρg

=
2π2

45

(
(1.38 × 10−23 J/K)(1K)

(1.055 × 10−34 J · s)(238m/s)

)3
× (1.38 × 10−23 J/K)

(148 kg/m3)(9.8m/s2)
≃ 32 cm/K ,

(5.176)

a very noticeable effect!

5.7.6 Bose condensation in optical traps

The 2001 Nobel Prize in Physics was awarded to Weiman, Cornell, and Ketterle for the experimental
observation of Bose condensation in dilute atomic gases. The experimental techniques required to trap
and cool such systems are a true tour de force, and we shall not enter into a discussion of the details
here15.

The optical trapping of neutral bosonic atoms, such as 87Rb, results in a confining potential V (r) which
is quadratic in the atomic positions. Thus, the single particle Hamiltonian for a given atom is written

Ĥ = − ~
2

2m
∇

2 + 1
2m
(
ω2
1 x

2 + ω2
2 y

2 + ω2
3 z

2
)

, (5.177)

where ω1,2,3 are the angular frequencies of the trap. This is an anisotropic three-dimensional harmonic
oscillator, the solution of which is separable into a product of one-dimensional harmonic oscillator wave-
functions. The eigenspectrum is then given by a sum of one-dimensional spectra, viz.

En1,n2,n3
=
(
n1 +

1
2) ~ω1 +

(
n2 +

1
2) ~ω2 +

(
n3 +

1
2) ~ω3 . (5.178)

According to eqn. 5.13, the number of particles in the system is

N =
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

[
y−1 en1~ω1/kBT en2~ω2/kBT en3~ω3/kBT − 1

]−1

=
∞∑

k=1

yk
(

1

1− e−k~ω1/kBT

)(
1

1− e−k~ω2/kBT

)(
1

1− e−k~ω3/kBT

)
,

(5.179)

where we’ve defined y ≡ eµ/kBT e−~ω1/2kBT e−~ω2/2kBT e−~ω3/2kBT ∈ [0, 1] .

15Many reliable descriptions may be found on the web. Check Wikipedia, for example.
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Let’s assume that the trap is approximately anisotropic, which entails that the frequency ratios ω1/ω2

etc. are all numbers on the order of one. Let us further assume that kBT ≫ ~ω1,2,3. Then

1

1− e−k~ωj/kBT
≈
{
kBT/k~ωj k <∼ k∗(T )

1 k > k∗(T )
(5.180)

where k∗(T ) = kBT/~ω̄ ≫ 1, with ω̄ =
(
ω1 ω2 ω3

)1/3
. We then have

N(T, y) ≈ yk
∗+1

1− y
+

(
kBT

~ω̄

)3 k∗∑

k=1

yk

k3
, (5.181)

where the first term on the RHS is due to k > k∗ and the second term from k ≤ k∗ in the previous sum.
Since k∗ ≫ 1 and since the sum of inverse cubes is convergent, we may safely extend the limit on the

above sum to infinity. To help make more sense of the first term, write N0 =
(
y−1 − 1

)−1
for the number

of particles in the (n1, n2, n3) = (0, 0, 0) state. Then y = N0/(N0 + 1) , which is true always. The issue
vis-a-vis Bose-Einstein condensation is whether N0 ≫ 1. At any rate, we now see that we can write

N ≈ N0

(
1 +N−1

0

)−k∗
+

(
kBT

~ω̄

)3
Li3(y) . (5.182)

As for the first term, we have

N0

(
1 +N−1

0

)−k∗
=

{
0 N0 ≪ k∗

N0 N0 ≫ k∗
(5.183)

Thus, as in the case of IBG condensation of ballistic particles, we identify the critical temperature by the
condition y = N0/(N0 + 1) ≈ 1, and we have

Tc =
~ω̄

kB

(
N

ζ(3)

)1/3
= 4.5

(
ν̄

100Hz

)
N1/3 [ nK ] , (5.184)

where ν̄ = ω̄/2π. We see that kBTc ≫ ~ω̄ if the number of particles in the trap is large: N ≫ 1. In this
regime, we have

T < Tc : N = N0 + ζ(3)

(
kBT

~ω̄

)3

T > Tc : N =

(
kBT

~ω̄

)3
Li3(y) .

(5.185)

It is interesting to note that BEC can also occur in two-dimensional traps, which is to say traps which are
very anisotropic, with oblate equipotential surfaces V (r) = V0. This happens when ~ω3 ≫ kBT ≫ ω1,2.
We then have

T (d=2)
c =

~ω̄

kB

·
(
6N

π2

)1/2
(5.186)
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with ω̄ =
(
ω1 ω2

)1/2
. The particle number then obeys a set of equations like those in eqns. 5.185, mutatis

mutandis16.

For extremely prolate traps, with ω3 ≪ ω1,2, the situation is different because Li1(y) diverges for y = 1.
We then have

N = N0 +
kBT

~ω3

ln
(
1 +N0

)
. (5.187)

Here we have simply replaced y by the equivalent expression N0/(N0 + 1). If our criterion for conden-
sation is that N0 = αN , where α is some fractional value, then we have

Tc(α) = (1− α)
~ω3

kB

· N

lnN
. (5.188)

5.8 The Ideal Fermi Gas

5.8.1 Grand potential and particle number

The grand potential of the ideal Fermi gas is, per eqn. 5.11,

Ω(T, V, µ) = −V kBT
∑

α

ln
(
1 + eµ/kBT e−εα/kBT

)

= −V kBT

∞∫

−∞

dε g(ε) ln
(
1 + e(µ−ε)/kBT

)
.

(5.189)

The average number of particles in a state with energy ε is

n(ε) =
1

e(ε−µ)/kBT + 1
, (5.190)

hence the total number of particles is

N = V

∞∫

−∞

dε g(ε)
1

e(ε−µ)/kBT + 1
. (5.191)

5.8.2 The Fermi distribution

We define the function

f(ǫ) ≡ 1

eǫ/kBT + 1
, (5.192)

known as the Fermi distribution. In the T → ∞ limit, f(ǫ) → 1
2 for all finite values of ε. As T → 0, f(ǫ)

approaches a step function Θ(−ǫ). The average number of particles in a state of energy ε in a system at
temperature T and chemical potential µ is n(ε) = f(ε−µ). In fig. 5.12 we plot f(ε−µ) versus ε for three
representative temperatures.

16Explicitly, one replaces ζ(3) with ζ(2) = π2

6
, Li3(y) with Li2(y), and

(

kBT/~ω̄
)3

with
(

kBT/~ω̄
)2

.
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Figure 5.12: The Fermi distribution, f(ǫ) =
[
exp(ǫ/kBT ) + 1

]−1
. Here we have set kB = 1 and taken

µ = 2, with T = 1
20 (blue), T = 3

4 (green), and T = 2 (red). In the T → 0 limit, f(ǫ) approaches a step
function Θ(−ǫ).

5.8.3 T = 0 and the Fermi surface

At T = 0, we therefore have n(ε) = Θ(µ− ε), which says that all single particle energy states up to ε = µ
are filled, and all energy states above ε = µ are empty. We call µ(T = 0) the Fermi energy: εF = µ(T = 0).
If the single particle dispersion ε(k) depends only on the wavevector k, then the locus of points in k-
space for which ε(k) = εF is called the Fermi surface. For isotropic systems, ε(k) = ε(k) is a function
only of the magnitude k = |k|, and the Fermi surface is a sphere in d = 3 or a circle in d = 2. The radius
of this circle is the Fermi wavevector, kF. When there is internal (e.g. spin) degree of freedom, there is a
Fermi surface and Fermi wavevector (for isotropic systems) for each polarization state of the internal
degree of freedom.

Let’s compute the Fermi wavevector kF and Fermi energy εF for the IFG with a ballistic dispersion
ε(k) = ~

2k2/2m. The number density is

n = g

∫
ddk

(2π)d
Θ(kF − k) =

gΩd

(2π)d
· k

d
F

d
(5.193)

and thus
nd=1 = g kF/π , nd=2 = g k2F/4π , nd=3 = g k3F/6π

2 , (5.194)

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d space dimensions. Note that the form of
n(kF) is independent of the dispersion relation, so long as it remains isotropic. Inverting the above
expressions, we obtain kF(n) = 2π(dn/gΩd)

1/d :

kF,d=1 = πn/g , kF,d=2 = (4πn/g)1/2 , kF,d=3 = (6π2n/g)1/3 . (5.195)

The Fermi energy in each case, for ballistic dispersion, is given by

εF =
~
2k2F
2m

=
2π2~2

m

(
dn

gΩd

)2/d
, (5.196)
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and so

εF,d=1 =
π2~2n2

2g2m
, εF,d=2 =

2π~2 n

gm
, εF,d=3 =

~
2

2m

(
6π2n

g

)2/3

. (5.197)

Another useful result for the ballistic dispersion, which follows from the above, is that the density of
states at the Fermi level is given by

g(εF) =
gΩd

(2π)d
· mk

d−2
F

~2
=
d

2
· n
εF

. (5.198)

That g(εF) must be a numerical factor multiplied by n/εF is obvious on dimensional grounds.

For the electron gas, we have g = 2. In a metal, one typically has kF ∼ 0.5 Å
−1

to 2 Å
−1

, and εF ∼
1 eV − 10 eV. Due to the effects of the crystalline lattice, electrons in a solid behave as if they had an
effective mass m∗ which is typically on the order of the electron mass but very often about an order of
magnitude smaller, particularly in semiconductors.

Nonisotropic dispersions ε(k) are more interesting in that they give rise to non-spherical Fermi surfaces.
The simplest example is that of a two-dimensional ‘tight-binding’ model of electrons hopping on a
square lattice, as may be appropriate in certain layered materials. The dispersion relation is then

ε(kx, ky) = −2t cos(kxa)− 2t cos(kya) , (5.199)

where kx and ky are confined to the interval
[
− π

a ,
π
a

]
. The quantity t has dimensions of energy and is

known as the hopping integral. The Fermi surface is the set of points (kx, ky) which satisfies ε(kx, ky) =

εF . When εF achieves its minimum value of εmin
F = −4t, the Fermi surface collapses to a point at

(kx, ky) = (0, 0). For energies just above this minimum value, we can expand the dispersion in a power
series, writing

ε(kx, ky) = −4t+ ta2
(
k2x + k2y

)
− 1

12 ta
4
(
k4x + k4y

)
+ . . . . (5.200)

If we only work to quadratic order in kx and ky, the dispersion is isotropic, and the Fermi surface is a
circle, with k2F = (εF+4t)/ta2. As the energy increases further, the continuous O(2) rotational invariance
is broken down to the discrete group of rotations of the square, C4v. The Fermi surfaces distort and
eventually, at εF = 0, the Fermi surface is itself a square. As εF increases further, the square turns back
into a circle, but centered about the point

(
π
a ,

π
a

)
. Note that everything is periodic in kx and ky modulo

2π
a . The Fermi surfaces for this model are depicted in the upper right panel of fig. 5.13.

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance in under-
standing the electronic properties of solids. Two examples are shown in the bottom panels of fig. 5.13.
The electronic configuration of cesium (Cs) is [Xe] 6s1. The 6s electrons ‘hop’ from site to site on a
body centered cubic (BCC) lattice, a generalization of the simple two-dimensional square lattice hop-
ping model discussed above. The elementary unit cell in k space, known as the first Brillouin zone, turns
out to be a dodecahedron. In yttrium, the electronic structure is [Kr] 5s2 4d1, and there are two electronic
energy bands at the Fermi level, meaning two Fermi surfaces. Yttrium forms a hexagonal close packed
(HCP) crystal structure, and its first Brillouin zone is shaped like a hexagonal pillbox.
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Figure 5.13: Fermi surfaces for two and three-dimensional structures. Upper left: free particles in two
dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower left: Fermi surface for
cesium, which is predominantly composed of electrons in the 6s orbital shell. Lower right: the Fermi
surface of yttrium has two parts. One part (yellow) is predominantly due to 5s electrons, while the other
(pink) is due to 4d electrons. (Source: www.phys.ufl.edu/fermisurface/)

Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field H . The single particle Hamiltonian is then

Ĥ =
p2

2m
+ µBH σ , (5.201)

where µB is the Bohr magneton, µB = e~/2mc = 5.788 × 10−9 eV/G . It is convenient to keep in mind
the ratio µB/kB = 6.717 × 10−5 K/G. where m is the electron mass. What happens at T = 0 to a
noninteracting electron gas in a magnetic field?

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up spin Fermi
surface, with Fermi wavevector kF↑, and a down spin Fermi surface, with Fermi wavevector kF↓. The
individual Fermi energies, on the other hand, must be equal, hence

~
2k2F↑
2m

+ µBH =
~
2k2F↓
2m

− µBH , (5.202)

which says

k2F↓ − k2F↑ =
2eH

~c
. (5.203)
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The total density is

n =
k3F↑
6π2

+
k3F↓
6π2

=⇒ k3F↑ + k3F↓ = 6π2n . (5.204)

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increasing H .
Eventually, the minority spin Fermi surface vanishes altogether. This happens for the up spins when
kF↑ = 0. Solving for the critical field, we obtain

Hc =
~c

2e
·
(
6π2n

)1/3
. (5.205)

In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just like the
case of the (spin degenerate) Fermi surfaces for Cs and Y shown in fig. 5.13.

5.8.4 The Sommerfeld expansion

In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form

I(T, µ) ≡
∞∫

−∞

dε f(ε− µ)φ(ε) . (5.206)

The Sommerfeld expansion provides a systematic way of expanding these expressions in powers of T
and is an important analytical tool in analyzing the low temperature properties of the ideal Fermi gas
(IFG).

We start by defining

Φ(ε) ≡
ε∫

−∞

dε′ φ(ε′) (5.207)

so that φ(ε) = Φ′(ε). We then have

I(T, µ) =
∞∫

−∞

dε f(ε− µ)
dΦ

dε
= −

∞∫

−∞

dε f ′(ε) Φ(µ+ ε) , (5.208)

where we assume Φ(−∞) = 0. Next, we invoke Taylor’s theorem, to write

Φ(µ+ ε) =
∞∑

n=0

εn

n !

dnΦ

dµn
= exp

(
ε
d

dµ

)
Φ(µ) . (5.209)

This last expression involving the exponential of a differential operator may appear overly formal but it
proves extremely useful. Since

f ′(ε) = − 1

kBT

eε/kBT
(
eε/kBT + 1

)2 , (5.210)



44 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

Figure 5.14: Deformation of the complex integration contour in eqn. 5.212.

we define

Ĩ(T, µ) =
∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
Φ(µ) , (5.211)

with v = ε/kBT , where D = kBT
d
dµ is a dimensionless differential operator. The integral can now be

done using the methods of complex integration:17

∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
= 2πi

∞∑

n=1

Res

[
evD

(ev + 1)(e−v + 1)

]

v=(2n+1)iπ

= −2πi
∞∑

n=0

D e(2n+1)iπD = −2πiD eiπD

1− e2πiD
= πD csc πD .

(5.212)

Thus,
Ĩ(T, µ) = πD csc(πD)Φ(µ) , (5.213)

which is to be understood as the differential operator πD csc(πD) acting on the functionΦ(µ). Appealing
once more to Taylor’s theorem, we have

πD csc(πD) = 1 +
π2

6
(kBT )

2 d2

dµ2
+

7π4

360
(kBT )

4 d4

dµ4
+ . . . . (5.214)

Thus,

Ĩ(T, µ) =
∞∫

−∞

dε f(ε− µ)φ(ε) =

µ∫

−∞

dεφ(ε) +
π2

6
(kBT )

2 φ′(µ) +
7π4

360
(kBT )

4 φ′′′(µ) + . . . . (5.215)

17Note that writing v = (2n+1) iπ+ ǫ we have e±v = −1∓ ǫ− 1
2
ǫ2 + . . . , so (ev +1)(e−v +1) = −ǫ2 + . . . We then expand

evD = e(2n+1)iπD
(

1 + ǫD + . . .) to find the residue: Res = −De(2n+1)iπD .
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If φ(ε) is a polynomial function of its argument, then each derivative effectively reduces the order of
the polynomial by one degree, and the dimensionless parameter of the expansion is (kBT/µ)

2. This

procedure is known as the Sommerfeld expansion. The reason we introduce the notation Ĩ(T, µ) is that the
function I(T, µ) may contain nonanalytic terms which are invisible in the Taylor series expansion, as we
will see below.

Chemical potential shift

As our first application of the Sommerfeld expansion formalism, let us compute µ(n, T ) for the ideal
Fermi gas. The number density n(T, µ) is

n =

∞∫

−∞

dε g(ε) f(ε− µ) =

µ∫

−∞

dε g(ε) +
π2

6
(kBT )

2 g′(µ) + . . . . (5.216)

Let us write µ = εF + δµ, where εF = µ(T = 0, n) is the Fermi energy, which is the chemical potential at
T = 0. We then have

n =

εF+δµ∫

−∞

dε g(ε) +
π2

6
(kBT )

2 g′(εF + δµ) + . . .

=

εF∫

−∞

dε g(ε) + g(εF) δµ +
π2

6
(kBT )

2 g′(εF) + . . . ,

(5.217)

from which we derive

δµ = −π
2

6
(kBT )

2 g
′(εF)

g(εF)
+O(T 4) . (5.218)

Note that g′/g = (ln g)′. For a ballistic dispersion, assuming g = 2,

g(ε) = 2

∫
d3k

(2π)3
δ

(
ε− ~

2k2

2m

)
=
mk(ε)

π2~2

∣∣∣∣
k(ε)= 1

~

√
2mε

(5.219)

Thus, g(ε) ∝ ε1/2 and (ln g)′ = 1
2 ε

−1, so

µ(n, T ) = εF − π2

12

(kBT )
2

εF
+ . . . , (5.220)

where εF(n) =
~2

2m (3π2n)2/3.
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Specific heat

The energy of the electron gas is

E

V
=

∞∫

−∞

dε g(ε) ε f(ε− µ)

=

µ∫

−∞

dε g(ε) ε +
π2

6
(kBT )

2 d

dµ

(
µ g(µ)

)
+ . . .

=

εF∫

−∞

dε g(ε) ε + g(εF) εF δµ +
π2

6
(kBT )

2 εF g
′(εF) +

π2

6
(kBT )

2 g(εF) + . . .

= ε0 +
π2

6
(kBT )

2 g(εF) + . . . ,

(5.221)

where ε0 =
εF∫

−∞
dε g(ε) ε . is the ground state energy density (i.e. ground state energy per unit volume).

Thus, to order T 2,

CV,N =

(
∂E

∂T

)

V,N

=
π2

3
V k2B T g(εF) ≡ V γ T , (5.222)

where γ(n) = π2

3 k2B g
(
εF(n)

)
. Note that the molar heat capacity is

cV =
NA

N
· CV =

π2

3
R · kBT g(εF)

n
=
π2

2

(
kBT

εF

)
R , (5.223)

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

g(εF)

n
=

gmkF
2π2~2

· 6π
2

g k3F
=

3

2 εF
. (5.224)

The molar heat capacity in eqn. 5.223 is to be compared with the classical ideal gas value of 3
2R. Relative

to the classical ideal gas, the IFG value is reduced by a fraction of (π2/3)×(kBT/εF), which in most metals
is very small and even at room temperature is only on the order of 10−2. Most of the heat capacity of
metals at room temperature is due to the energy stored in lattice vibrations.

A niftier way to derive the heat capacity18: Starting with eqn. 5.218 for µ(T ) − εF ≡ δµ(T ) , note that

g(εF) = dn/dεF , so we may write δµ = −π2

6 (kBT )
2(dg/dn) + O(T 4) . Next, use the Maxwell relation

(∂S/∂N)T,V = −(∂µ/∂T )N,V to arrive at

(
∂s

∂n

)

T

=
π2

3
k2BT

∂g(εF)

∂n
+O(T 3) , (5.225)

where s = S/V is the entropy per unit volume. Now use S(T = 0) = 0 and integrate with respect to the
density n to arrive at S(T, V,N) = V γT , where γ(n) is defined above.

18I thank my colleague Tarun Grover for this observation.
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Nonanalytic terms

As we’ve seen, the Sommerfeld expansion is an expansion in powers of T . Consider the case where
φ(ε) = Θ(ε). We then have

I(T, µ) =
∞∫

0

dε f(ε− µ) = µ+ kBT ln
(
1 + e−µ/kBT

)
. (5.226)

By contrast, the Sommerfeld expansion, assuming µ 6= 0, yields Ĩ(T, µ) = µ, and is missing the second
term above. This is because exp(−µ/kBT ) is nonanalytic in T and cannot appear in any order of a
Taylor expansion about T = 0. As a second example, consider the case φ(ε) = εΘ(ε). The Sommerfeld
expansion yields

Ĩ(T, µ) = 1
2µ

2 +
π2

6
(kBT )

2 , (5.227)

while the exact result is

I(T, µ) = 1
2µ

2 +
π2

6
(kBT )

2 + (kBT )
2

∞∑

j=1

(−1)j

j2
e−jµ/kBT , (5.228)

which follows from the polylogarithm identity

Li2(z) + Li2(1/z) = −1
2

[
ln(−z)

]2 − π2

6
. (5.229)

Again we see that the Sommerfeld expansion terminates at a finite order in T , and is missing nonanalytic
terms in the T → 0 limit19. This is a generic state of affairs for the case where φ(ε) is a finite order
polynomial in ε.

5.8.5 Magnetic susceptibility

Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic moment.
The intrinsic magnetic moment m of a particle is related to its quantum mechanical spin according to
m = gµ0S/~, where µ0 = q~/over2mc is the magneton. Here g is the particle’s g-factor, µ0 its magnetic
moment, and S is the vector of quantum mechanical spin operators satisfying

[
Sα , Sβ

]
= i~ǫαβγ S

γ , i.e.
SU(2) commutation relations. The Hamiltonian for a single particle is then

Ĥ =
1

2m∗

(
p− q

c
A
)2

−H ·m =
1

2m∗

(
p+

e

c
A
)2

+
g

2
µBH σ , (5.230)

where in the last line we’ve restricted our attention to the electron, for which q = −e. The g-factor for an
electron is g = 2 at tree level, and when radiative corrections are accounted for using quantum electro-
dynamics (QED) one finds g = 2.0023193043617(15). For our purposes we can take g = 2, although we

19Once again I thank my colleague Tarun Grover for pointing this out to me.
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can always absorb the small difference into the definition of µB, writing µB → µ̃B = ge~/4mc. We’ve cho-
sen the ẑ-axis in spin space to point in the direction of the magnetic field, and we wrote the eigenvalues
of Sz as 1

2~σ, where σ = ±1. The quantity m∗ is the effective mass of the electron, which we mentioned
earlier. An important distinction is that it is m∗ which enters into the kinetic energy term p2/2m∗, but it
is the electron mass m itself (m = 511keV) which enters into the definition of the Bohr magneton. We
shall discuss the consequences of this further below.

In the absence of orbital magnetic coupling, the single particle dispersion is

εσ(k) =
~
2k2

2m∗ + µ̃BH σ . (5.231)

At T = 0, we have the results of §5.8.3. At finite T , we once again use the Sommerfeld expansion. We
then have

n =

∞∫

−∞

dε g↑(ε) f(ε− µ) +

∞∫

−∞

dε g↓(ε) f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε − µ̃BH) + g(ε + µ̃BH)

}
f(ε− µ)

=

∞∫

−∞

dε
{
g(ε) + (µ̃BH)2 g′′(ε) + . . .

}
f(ε− µ) .

(5.232)

We now invoke the Sommerfeld expension to find the temperature dependence:

n =

µ∫

−∞

dε g(ε) +
π2

6
(kBT )

2 g′(µ) + (µ̃BH)2 g′(µ) + . . .

=

εF∫

−∞

dε g(ε) + g(εF) δµ +
π2

6
(kBT )

2 g′(εF) + (µ̃BH)2 g′(εF) + . . . .

(5.233)

Note that the density of states for spin species σ is gσ(ε) =
1
2 g(ε− µ̃BHσ) , where g(ε) is the total density

of states per unit volume, for both spin species, in the absence of a magnetic field. We conclude that the
chemical potential shift in an external field is

δµ(T, n,H) = −
{
π2

6
(kBT )

2 + (µ̃BH)2
}
g′(εF)

g(εF)
+ . . . . (5.234)

We next compute the difference n↑ − n↓ in the densities of up and down spin electrons:

n↑ − n↓ =

∞∫

−∞

dε
{
g↑(ε) − g↓(ε)

}
f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε − µ̃BH)− g(ε + µ̃BH)

}
f(ε− µ)

= −µ̃BH · πD csc(πD) g(µ) +O(H3) .

(5.235)
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Figure 5.15: Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because H is already
assumed to be small. Thus, the magnetization density is

M = −µ̃B(n↑ − n↓) = µ̃2B g(εF)H . (5.236)

in which the magnetic susceptibility is

χ =

(
∂M

∂H

)

T,N

= µ̃2B g(εF) . (5.237)

This is called the Pauli paramagnetic susceptibility.

Landau diamagnetism

When orbital effects are included, the single particle energy levels are given by

ε(n, kz , σ) = (n+ 1
2)~ωc +

~
2k2z
2m∗ + µ̃BH σ . (5.238)

Here n is a Landau level index, and ωc = eH/m∗c is the cyclotron frequency. Note that

µ̃BH

~ωc

=
ge~H

4mc
· m

∗c
~eH

=
g

4
· m

∗

m
. (5.239)

Accordingly, we define the ratio r ≡ (g/2) × (m∗/m). We can then write

ε(n, kz , σ) =
(
n+ 1

2 + 1
2rσ

)
~ωc +

~
2k2z
2m∗ . (5.240)

The grand potential is then given by

Ω = −HA
φ0

· Lz · kBT

∞∫

−∞

dkz
2π

∞∑

n=0

∑

σ=±1

ln
[
1 + eµ/kBT e−(n+ 1

2
+ 1

2
rσ)~ωc/kBT e−~

2k2z/2m
∗kBT

]
. (5.241)
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A few words are in order here regarding the prefactor. In the presence of a uniform magnetic field, the
energy levels of a two-dimensional ballistic charged particle collapse into Landau levels. The number
of states per Landau level scales with the area of the system, and is equal to the number of flux quanta
through the system: Nφ = HA/φ0, where φ0 = hc/e is the Dirac flux quantum. Note that

HA

φ0
· Lz · kBT = ~ωc ·

V

λ3T
, (5.242)

hence we can write

Ω(T, V, µ,H) = ~ωc

∞∑

n=0

∑

σ=±1

Q
(
(n+ 1

2 +
1
2rσ)~ωc − µ

)
, (5.243)

where

Q(ε) = − V

λ2T

∞∫

−∞

dkz
2π

ln
[
1 + e−ε/kBT e−~2k2z/2m

∗kBT
]

. (5.244)

We now invoke the Euler-MacLaurin formula,

∞∑

n=0

F (n) =

∞∫

0

dx F (x) + 1
2 F (0)− 1

12 F
′(0) + . . . , (5.245)

resulting in

Ω =
∑

σ

∞∫

−∞

dε Q(ε− µ) Θ
(
ε− 1

2(1 + σr)~ωc

)
(5.246)

+
∑

σ

[
1
2 ~ωcQ

(
1
2(1 + σr)~ωc − µ

)
− 1

12 (~ωc)
2Q′(1

2(1 + σr)~ωc − µ
)
+ . . .

]
.

We next expand in powers of the magnetic field H to obtain

Ω(T, V, µ,H) = 2

∞∫

0

dε Q(ε− µ) +
(
1
4r

2 − 1
12

)
(~ωc)

2Q′(−µ) + . . . . (5.247)

Thus, the magnetic susceptibility is

χ = − 1

V

∂2Ω

∂H2
=
(
r2 − 1

3

)
· µ̃2B ·

(
m/m∗)2 ·

{
− 2

V
Q′(−µ)

}

=

(
g2

4
− m2

3m∗2

)
· µ̃2B · n2κT ,

(5.248)

where κT is the isothermal compressibility20. In most metals we havem∗ ≈ m and the term in brackets is
positive (recall g ≈ 2). In semiconductors, however, we can have m∗ ≪ m; for example in GaAs we have

20We’ve used − 2
V
Q′(µ) = − 1

V
∂2Ω

∂µ2 = n2κT .
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m∗ = 0.067m . Thus, semiconductors can have a diamagnetic response. If we take g = 2 and m∗ = m, we
see that the orbital currents give rise to a diamagnetic contribution to the magnetic susceptibility which
is exactly −1

3 times as large as the contribution arising from Zeeman coupling. The net result is then
paramagnetic (χ > 0) and 2

3 as large as the Pauli susceptibility. The orbital currents can be understood
within the context of Lenz’s law.

Exercise : Show that − 2
V Q

′(−µ) = n2κT .

5.8.6 Moment formation in interacting itinerant electron systems

The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign of χ,
but never develops a spontaneous magnetic moment: M(H = 0) = 0. What gives rise to magnetism
in solids? Overwhelmingly, the answer is that Coulomb repulsion between electrons is responsible for
magnetism, in those instances in which magnetism arises. At first thought this might seem odd, since
the Coulomb interaction is spin-independent. How then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model interacting
system, described by the Hamiltonian

Ĥ = −t
∑

ij,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ ni↓ + µBH ·
∑

i,α,β

c†iα σαβ ciβ . (5.249)

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone for in-
teracting electron systems. The first term describes hopping of electrons along the links of some regular
lattice (the symbol ij denotes a link between sites i and j). The second term describes the local (on-site)
repulsion of electrons. This is a single orbital model, so the repulsion exists when one tries to put two
electrons in the orbital, with opposite spin polarization. Typically the Hubbard U parameter is on the
order of electron volts. The last term is the Zeeman interaction of the electron spins with an external

magnetic field. Orbital effects can be modeled by associating a phase exp(iAij) to the hopping matrix

element t between sites i and j, where the directed sum of Aij around a plaquette yields the total mag-
netic flux through the plaquette in units of φ0 = hc/e. We will ignore orbital effects here. Note that the
interaction term is short-ranged, whereas the Coulomb interaction falls off as 1/|Ri−Rj |. The Hubbard
model is thus unrealistic, although screening effects in metals do effectively render the interaction to be
short-ranged.

Within the Hubbard model, the interaction term is local and written as Un↑n↓ on any given site. This
term favors a local moment. This is because the chemical potential will fix the mean value of the total

occupancy n↑ + n↓, in which case it always pays to maximize the difference |n↑ − n↓|.

Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting many-body
Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The idea is to write the
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occupancy niσ as a sum of average and fluctuating terms:

niσ = 〈niσ〉+ δniσ . (5.250)

Here, 〈niσ〉 is the thermodynamic average; the above equation may then be taken as a definition of the
fluctuating piece, δniσ. We assume that the average is site-independent. This is a significant assump-
tion, for while we understand why each site should favor developing a moment, it is not clear that all
these local moments should want to line up parallel to each other. Indeed, on a bipartite lattice, it is
possible that the individual local moments on neighboring sites will be antiparallel, corresponding to
an antiferromagnetic order of the pins. Our mean field theory will be one for ferromagnetic states.

We now write the interaction term as

ni↑ni↓ = 〈n↑〉 〈n↓〉+ 〈n↑〉 δni↓ + 〈n↓〉 δni↑+

(flucts)2︷ ︸︸ ︷
δni↑ δni↓

= −〈n↑〉 〈n↓〉+ 〈n↑〉ni↓ + 〈n↓〉ni↑ +O
(
(δn)2

)

= 1
4(m

2 − n2) + 1
2n (ni↑ + ni↓) +

1
2m (ni↑ − ni↓) +O

(
(δn)2

)
,

(5.251)

where n and m are the average occupancy per spin and average spin polarization, each per unit cell:

n = 〈n↓〉+ 〈n↑〉
m = 〈n↓〉 − 〈n↑〉 ,

(5.252)

i.e. 〈nσ〉 = 1
2 (n − σm). The mean field grand canonical Hamiltonian K = Ĥ − µN , may then be written

as

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2Un
)∑

iσ

c†iσciσ

+
(
µBH + 1

2Um
)∑

iσ

σ c†iσciσ + 1
4Nsites U(m2 − n2) ,

(5.253)

where we’ve quantized spins along the direction of H, defined as ẑ. You should take note of two
things here. First, the chemical potential is shifted downward (or the electron energies shifted upward) by
an amount 1

2Un, corresponding to the average energy of repulsion with the background. Second, the
effective magnetic field has been shifted by an amount 1

2Um/µB, so the effective field is

Heff = H +
Um

2µB

. (5.254)

The bare single particle dispersions are given by εσ(k) = −t̂(k) + σµBH , where

t̂(k) =
∑

R

t(R) e−ik·R , (5.255)

and tij = t(Ri−Rj). For nearest neighbor hopping on a d-dimensional cubic lattice, t̂(k) = −t∑d
µ=1 cos(kµa),

where a is the lattice constant. Including the mean field effects, the effective single particle dispersions
become

ε̃σ(k) = −t̂(k)− 1
2Un+

(
µBH + 1

2Um
)
σ . (5.256)
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We now solve the mean field theory, by obtaining the free energy per site, ϕ(n, T,H). First, note that
ϕ = ω + µn, where ω = Ω/Nsites is the Landau, or grand canonical, free energy per site. This follows
from the general relation Ω = F − µN ; note that the total electron number is N = nNsites, since n is the
electron number per unit cell (including both spin species). If g(ε) is the density of states per unit cell
(rather than per unit volume), then we have21

ϕ = 1
4U(m2 + n2) + µ̄n− 1

2kBT

∞∫

−∞

dε g(ε)

{
ln
(
1 + e(µ̄−ε−∆)/kBT

)
+ ln

(
1 + e(µ̄−ε+∆)/kBT

)}
(5.257)

where µ̄ ≡ µ− 1
2Un and∆ ≡ µBH+ 1

2Um. From this free energy we derive two self-consistent equations
for µ and m. The first comes from demanding that ϕ be a function of n and not of µ, i.e. ∂ϕ/∂µ = 0,
which leads to

n = 1
2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄) + f(ε+∆− µ̄)

}
, (5.258)

where f(y) =
[
exp(y/kBT ) + 1

]−1
is the Fermi function. The second equation comes from minimizing

f with respect to average moment m:

m = 1
2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄)− f(ε+∆− µ̄)

}
. (5.259)

Here, we will solve the first equation, eq. 5.258, and use the results to generate a Landau expansion of
the free energy ϕ in powers of m2. We assume that ∆ is small, in which case we may write

n =

∞∫

−∞

dε g(ε)
{
f(ε− µ̄) + 1

2∆
2 f ′′(ε− µ̄) + 1

24 ∆
4 f ′′′′(ε− µ̄) + . . .

}
. (5.260)

We write µ̄(∆) = µ̄0 + δµ̄ and expand in δµ̄. Since n is fixed in our (canonical) ensemble, we have

n =

∞∫

−∞

dε g(ε) f
(
ε− µ̄0

)
, (5.261)

which defines µ̄0(n, T ).
22 The remaining terms in the δµ̄ expansion of eqn. 5.260 must sum to zero. This

yields

D(µ̄0) δµ̄ + 1
2∆

2D′(µ̄0) +
1
2(δµ̄)

2D′(µ̄0) +
1
2D

′′(µ̄0)∆
2 δµ̄ + 1

24 D
′′′(µ̄0)∆

4 +O(∆6) = 0 , (5.262)

where

D(µ) = −
∞∫

−∞

dε g(ε) f ′(ε− µ) (5.263)

21Note that we have written µn = µ̄n+ 1
2
Un2, which explains the sign of the coefficient of n2.

22The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermodynamic
quantities.
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is the thermally averaged bare density of states at energy µ. Note that the kth derivative is

D(k)(µ) = −
∞∫

−∞

dε g(k)(ε) f ′(ε− µ) . (5.264)

Solving for δµ̄, we obtain

δµ̄ = −1
2a1∆

2 − 1
24

(
3a31 − 6a1a2 + a3

)
∆4 +O(∆6) , (5.265)

where ak ≡ D(k)(µ̄0)/D(µ̄0) .

After integrating by parts and inserting this result for δµ̄ into our expression for the free energy f , we
obtain the expansion

ϕ(n, T,m) = ϕ0(n, T ) +
1
4Um

2 − 1
2D(µ̄0)∆

2 + 1
8

([
D′(µ̄0)

]2

D(µ̄0)
− 1

3 D
′′(µ̄0)

)
∆4 + . . . , (5.266)

where prime denotes differentiation with respect to argument, at m = 0, and

ϕ0(n, T ) =
1
4Un

2 + nµ̄0 −
∞∫

−∞

dεN (ε) f
(
ε− µ̄0

)
, (5.267)

where g(ε) = N ′(ε), so N (ε) is the integrated bare density of states per unit cell in the absence of any
magnetic field (including both spin species).

We assume that H and m are small, in which case

ϕ = ϕ0 +
1
2am

2 + 1
4bm

4 − 1
2
χ
0H

2 − Uχ0

2µB

Hm+ . . . , (5.268)

where χ0 = µ2BD(µ̄0) is the Pauli susceptibility, and

a = 1
2U
(
1− 1

2UD) , b = 1
32

(
(D′)2

D
− 1

3 D
′′
)
U4 , (5.269)

where the argument of each D(k) above is µ̄0(n, T ). The magnetization density (per unit cell, rather than
per unit volume) is given by

M = − ∂ϕ

∂H
= χ

0H +
Uχ0

2µB

m . (5.270)

Minimizing with respect to m yields

am+ bm3 − Uχ0
2µB

H = 0 , (5.271)

which gives, for small m,

m =
χ
0

µB

H

1− 1
2UD

. (5.272)
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Figure 5.16: A graduate student experiences the Stoner enhancement

We therefore obtain M = χH with

χ =
χ
0

1− U
Uc

, (5.273)

where Uc = 2/D(µ̄0) is the critical value of U . The denominator of χ increases the susceptibility above
the bare Pauli value χ0, and is referred to as – I kid you not – the Stoner enhancement (see fig. 5.16).

It is worth emphasizing that the magnetization per unit cell is given by

M = − 1

Nsites

δĤ

δH
= µBm . (5.274)

This is an operator identity and is valid for any value of m, and not only small m.

When H = 0 we can still get a magnetic moment, provided U > Uc. This is a consequence of the simple
Landau theory we have derived. Solving for m when H = 0 gives m = 0 when U < Uc and

m(U) = ±
(

U

2bUc

)1/2√
U − Uc , (5.275)

when U > Uc, and assuming b > 0. Thus we have the usual mean field order parameter exponent of
β = 1

2 .

Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field theory. One
such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic mean field theory is
obtained from

〈niσ〉 = 1
2n+ 1

2σ e
iQ·Ri m , (5.276)
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where Q = (π/a, π/a, . . . , π/a) is the antiferromagnetic ordering wavevector. The grand canonical
Hamiltonian is then

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2Un
)∑

iσ

c†iσciσ

+ 1
2Um

∑

iσ

eiQ·Ri σ c†iσciσ + 1
4Nsites U(m2 − n2) (5.277)

= 1
2

∑

kσ

(
c†k,σ c†k+Q,σ

)(ε(k)− µ+ 1
2Un

1
2σ Um

1
2σ Um ε(k +Q)− µ+ 1

2Un

)(
ck,σ
ck+Q,σ

)
+ 1

4Nsites U(m2 − n2) ,

(5.278)

where ε(k) = −t̂(k), as before. On a bipartite lattice, with nearest neighbor hopping only, we have ε(k+
Q) = −ε(k). The above matrix is diagonalized by a unitary transformation, yielding the eigenvalues

λ± = ±
√
ε2(k) +∆2 − µ̄ (5.279)

with ∆ = 1
2Um and µ̄ = µ− 1

2Un as before. The free energy per unit cell is then

ϕ = 1
4U(m2+n2)+µ̄n− 1

2kBT

∞∫

−∞

dε g(ε)

{
ln
(
1+e(µ̄−

√
ε2+∆2)/kBT

)
+ln

(
1+e(µ̄+

√
ε2+∆2)/kBT

)}
. (5.280)

The mean field equations are then

n = 1
2

∞∫

−∞

dε g(ε)
{
f
(
−
√
ε2 +∆2 − µ̄

)
+ f

(√
ε2 +∆2 − µ̄

)}
(5.281)

1

U
= 1

2

∞∫

−∞

dε
g(ε)√
ε2 +∆2

{
f
(
−
√
ε2 +∆2 − µ̄

)
− f

(√
ε2 +∆2 − µ̄

)}
. (5.282)

As in the case of the ferromagnet, a paramagnetic solution with m = 0 always exists, in which case the
second of the above equations is no longer valid.

Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at T = 0 and
H = 0. Due to particle-hole symmetry, we may assume 0 ≤ n ≤ 1 without loss of generality. (The
solutions repeat themselves under n→ 2− n.) For the paramagnet, we have

n =

µ̄∫

−∞

dε g(ε) (5.283)

ϕ = 1
4Un

2 +

µ̄∫

−∞

dε g(ε) ε , (5.284)
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with µ̄ = µ− 1
2Un is the ‘renormalized’ Fermi energy and g(ε) is the density of states per unit cell in the

absence of any explicit (H) or implicit (m) symmetry breaking, including both spin polarizations.

For the ferromagnet,

n = 1
2

µ̄−∆∫

−∞

dε g(ε) + 1
2

µ̄+∆∫

−∞

dε g(ε) (5.285)

4∆

U
=

µ̄+∆∫

µ̄−∆

dε g(ε) (5.286)

ϕ = 1
4Un

2 − ∆2

U
+

µ̄−∆∫

−∞

dε g(ε) ε +

µ̄+∆∫

−∞

dε g(ε) ε . (5.287)

Here, ∆ = 1
2Um is nonzero in the ordered phase.

Finally, the antiferromagnetic mean field equations are

nµ̄<0 =

∞∫

ε0

dε g(ε) ; nµ̄>0 = 2−
∞∫

ε0

dε g(ε) (5.288)

2

U
=

∞∫

ε0

dε
g(ε)√
ε2 +∆2

(5.289)

ϕ = 1
4Un

2 +
∆2

U
−

∞∫

ε0

dε g(ε)
√
ε2 +∆2 , (5.290)

where ε0 =
√
µ̄2 −∆2 and ∆ = 1

2Um as before. Note that |µ̄| ≥ ∆ for these solutions. Exactly at
half-filling, we have n = 1 and µ̄ = 0. We then set ε0 = 0.

The paramagnet to ferromagnet transition may be first or second order, depending on the details of
g(ε). If second order, it occurs at UF

c = 1
/
g(µ̄P), where µ̄P(n) is the paramagnetic solution for µ̄. The

paramagnet to antiferromagnet transition is always second order in this mean field theory, since the

RHS of eqn. (5.289) is a monotonic function of ∆. This transition occurs at UA
c = 2

/∞∫
µ̄P

dε g(ε) ε−1. Note

that UA
c → 0 logarithmically for n→ 1, since µ̄P = 0 at half-filling.

For large U , the ferromagnetic solution always has the lowest energy, and therefore if UA
c < UF

c , there
will be a first-order antiferromagnet to ferromagnet transition at some value U∗ > UF

c . In fig. 5.17, I
plot the phase diagram obtained by solving the mean field equations assuming a semicircular density
of states g(ε) = 2

π W
−2

√
W 2 − ε2. Also shown is the phase diagram for the d = 2 square lattice Hubbard

model obtained by J. Hirsch (1985).

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte Carlo cal-
culations by J. Hirsch (1985) found that the actual phase diagram of the d = 2 square lattice Hubbard
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Figure 5.17: Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromag-
netic (F), and antiferromagnetic (A) phases. Left panel: results using a semicircular density of states
function of half-bandwidth W . Right panel: results using a two-dimensional square lattice density of
states with nearest neighbor hopping t, from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The phase
boundary between F and A phases is first order.

Model exhibits no ferromagnetism for any n up to U = 10. Furthermore, he found the antiferromagnetic
phase to be entirely confined to the vertical line n = 1. For n 6= 1 and 0 ≤ U ≤ 10, the system is a param-
agnet23. These results were state-of-the art at the time, but both computing power as well as numerical
algorithms for interacting quantum systems have advanced considerably since 1985. Yet as of 2018, we
still don’t have a clear understanding of the d = 2 Hubbard model’s T = 0 phase diagram! There is an
emerging body of numerical evidence24 that in the underdoped (n < 1) regime, there are portions of
the phase diagram which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a
parallel array of line defects containing excess holes (i.e. the absence of an electron)25. This problem has
turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to the presence of
competing ordered states, such as d-wave superconductivity and spiral magnetic phases, which lie nearby
in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frustration,
either by including a next-nearest-neighbor hopping amplitude t′ or by defining the model on non-
bipartite lattices. Numerical work by M. Ulmke (1997) showed the existence of a ferromagnetic phase at

23A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the U = ∞

system on bipartite lattices.
24See J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015) and B. Zheng et al., Science 358, 1155 (2017).
25The best case for stripe order has been made at T = 0, U/t = 8, and hold doping x = 1

8
(i.e. n = 7

8
).
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T = 0 on the FCC lattice Hubbard model for U = 6 and n ∈ [0.15, 0.87] (approximately).

5.8.7 White dwarf stars

We follow the nice discussion of this material in R. K. Pathria, Statistical Mechanics . As a model, con-
sider a mass M ∼ 1033 g of helium at nuclear densities of ρ ∼ 107 g/cm3 and temperature T ∼ 107 K.
This temperature is much larger than the ionization energy of 4He, hence we may safely assume that all
helium atoms are ionized. If there are N electrons, then the number of α particles (i.e. 4He nuclei) must
be 1

2N . The mass of the α particle is mα ≈ 4mp. The total stellar mass M is almost completely due to α
particle cores.

The electron density is then

n =
N

V
=

2 ·M/4mp

V
=

ρ

2mp

≈ 1030 cm−3 , (5.291)

since M = N ·me +
1
2N · 4mp. From the number density n we find for the electrons

kF = (3π2n)1/3 = 2.14× 1010 cm−1

pF = ~kF = 2.26× 10−17 g cm/s

mc = (9.1× 10−28 g)(3 × 1010 m/s) = 2.7× 10−17 g cm/s .

(5.292)

Since pF ∼ mc, we conclude that the electrons are relativistic. The Fermi temperature will then be
TF ∼ mc2 ∼ 106 eV ∼ 1012 K. Thus, T ≪ Tf which says that the electron gas is degenerate and may
be considered to be at T ∼ 0. So we need to understand the ground state properties of the relativistic
electron gas.

The kinetic energy is given by

ε(p) =
√

p2c2 +m2c4 −mc2 . (5.293)

The velocity is

v =
∂ε

∂p
=

pc2√
p2c2 +m2c4

. (5.294)

The pressure in the ground state is

p0 =
1
3n〈p · v〉 = 1

3π2~3

pF∫

0

dp p2 · p2c2√
p2c2 +m2c4

=
m4c5

3π2~3

θF∫

0

dθ sinh4θ =
m4c5

96π2~3
(
sinh(4θF)− 8 sinh(2θF) + 12 θF

)
,

(5.295)

where we use the substitution

p = mc sinh θ , v = c tanh θ =⇒ θ = 1
2 ln

(
c+ v

c− v

)
. (5.296)
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Figure 5.18: Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

Note that pF = ~kF = ~(3π2n)1/3, and that

n =
M

2mpV
=⇒ 3π2n =

9π

8

M

R3mp

. (5.297)

Now in equilibrium the pressure p is balanced by gravitational pressure. We have

dE0 = −p0 dV = −p0(R) · 4πR2 dR . (5.298)

This must be balanced by gravity:

dEg = γ · GM
2

R2
dR , (5.299)

where γ depends on the radial mass distribution. Equilibrium then implies

p0(R) =
γ

4π

GM2

R4
. (5.300)

To find the relation R = R(M), we must solve

γ

4π

gM2

R4
=

m4c5

96π2~3
(
sinh(4θF)− 8 sinh(2θF) + 12 θF

)
. (5.301)

Note that

sinh(4θF)− 8 sinh(2θF) + 12θF =

{
96
15 θ

5
F θF → 0

1
2 e

4θF θF → ∞ .
(5.302)



5.9. APPENDIX I : SECOND QUANTIZATION 61

Thus, we may write

p0(R) =
γ

4π

gM2

R4
=





~2

15π2m

(
9π
8

M
R3 mp

)5/3
θF → 0

~c
12π2

(
9π
8

M
R3 mp

)4/3
θF → ∞ .

(5.303)

In the limit θF → 0, we solve for R(M) and find

R = 3
40γ (9π)2/3

~
2

Gm
5/3
p mM1/3

∝M−1/3 . (5.304)

In the opposite limit θF → ∞, the R factors divide out and we obtain

M =M0 =
9

64

(
3π

γ3

)1/2(
~c

G

)3/2 1

m2
p

. (5.305)

To find the R dependence, we must go beyond the lowest order expansion of eqn. 5.302, in which case
we find

R =

(
9π

8

)1/3(
~

mc

)(
M

mp

)1/3[
1−

(
M

M0

)2/3 ]1/2
. (5.306)

The value M0 is the limiting size for a white dwarf. It is called the Chandrasekhar limit.

5.9 Appendix I : Second Quantization

5.9.1 Basis states and creation/annihilation operators

Second quantization is a convenient scheme to label basis states of a many particle quantum system. We
are ultimately interested in solutions of the many-body Schrödinger equation,

ĤΨ(x1, . . . ,xN ) = EΨ(x1, . . . ,xN ) (5.307)

where the Hamiltonian is

Ĥ = − ~
2

2m

N∑

i=1

∇
2
i +

N∑

j<k

V (xj − xk) . (5.308)

To the coordinate labels {x1, . . .xN} we may also append labels for internal degrees of freedom, such as

spin polarization, denoted {ζ1, . . . , ζN}. Since
[
Ĥ, σ

]
= 0 for all permutations σ ∈ SN , the many-body

wavefunctions may be chosen to transform according to irreducible representations of the symmetric
group SN . Thus, for any σ ∈ SN ,

Ψ
(
xσ(1), . . . ,xσ(N)

)
=

{
1

sgn(σ)

}
Ψ(x1, . . . ,xN ) , (5.309)
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where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Here
xj may include not only the spatial coordinates of particle j, but its internal quantum number(s) as well,
such as ζj .

A convenient basis for the many body states is obtained from the single-particle eigenstates
{
|α〉
}

of

some single-particle Hamiltonian Ĥ0 , with 〈x |α 〉 = ϕα(x) and Ĥ0 |α〉 = εα |α〉. The basis may be taken
as orthonormal, i.e.

〈
α
∣∣α′ 〉 = δαα′ . Now define

Ψα1,...,αN
(x1, . . . ,xN ) =

1√
N !
∏

α nα!

∑

σ∈SN

{
1

sgn(σ)

}
ϕα

σ(1)
(x1) · · ·ϕα

σ(N)
(xN ) . (5.310)

Here nα is the number of times the index α appears among the set {α1, . . . , αN}. For BE statistics,
nα ∈ {0, 1, 2, . . .} , whereas for FD statistics, nα ∈ {0, 1} . Note that the above states are normalized26:

∫
ddx1 · · ·

∫
ddxN

∣∣Ψα1···αN
(x1, . . . ,xN )

∣∣2 = 1

N !
∏

α nα!

∑

σ,µ∈SN

{
1

sgn(σµ)

} N∏

j=1

∫
ddxj ϕ

∗
α
σ(j)

(xj)ϕα
µ(j)

(xj)

=
1∏
α nα!

∑

σ∈SN

N∏

j=1

δαj ,ασ(j)
= 1 . (5.311)

Note that
∑

σ∈S
N

ϕα
σ(1)

(x1) · · ·ϕα
σ(N)

(xN ) ≡ per
{
ϕαi

(xj)
}

∑

σ∈SN

sgn(σ) ϕα
σ(1)

(x1) · · ·ϕα
σ(N)

(xN ) ≡ det
{
ϕαi

(xj)
}

,
(5.312)

which stand for permanent and determinant, respectively. We may now write

Ψα1···αN
(x1, . . . ,xN ) =

〈
x1, · · · ,xN

∣∣α1 · · ·αN

〉
, (5.313)

where

∣∣α1 · · · αN

〉
=

1√
N !
∏

α nα!

∑

σ∈SN

{
1

sgn(σ)

} ∣∣ασ(1)

〉
⊗
∣∣ασ(2)

〉
⊗ · · · ⊗

∣∣ασ(N)

〉
. (5.314)

Note that |ασ(1) · · ·ασ(N) 〉 = (±1)σ |α1 · · ·αN 〉 , where by (±1)σ we mean 1 in the case of BE statistics

and sgn (σ) in the case of FD statistics.

We may express |α1 · · ·αN 〉 as a product of creation operators acting on a vacuum | 0 〉 in Fock space. For
bosons,

∣∣α1 · · · αN

〉
=
∏

α

(b†α)nα

√
nα!

∣∣ 0
〉
≡
∣∣ {nα}

〉
, (5.315)

with [
bα , bβ

]
= 0 ,

[
b†α , b

†
β

]
= 0 ,

[
bα , b

†
β

]
= δαβ , (5.316)

26In the normalization integrals, each
∫

ddx implicitly includes a sum
∑

ζ over any internal indices that may be present.
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where [ • , • ] is the commutator. For fermions,

∣∣α1 · · · αN

〉
= c†α1

c†α2
· · · c†αN

∣∣ 0
〉
≡
∣∣ {nα}

〉
, (5.317)

with {
cα , cβ

}
= 0 ,

{
c†α , c

†
β

}
= 0 ,

{
cα , c

†
β

}
= δαβ , (5.318)

where {• , •} is the anticommutator.

5.9.2 Second quantized operators

Now consider the action of permutation-symmetric first quantized operators such as T̂ = − ~2

2m

∑N
i=1∇

2
i

and V̂ =
∑N

i<j v̂(xi − xj). For a one-body operator such as T̂ , we have

〈
α1 · · · αN

∣∣ T̂
∣∣α′

1 · · · α′
N

〉
=

∫
ddx1 · · ·

∫
ddxN

(∏

α

nα!
)−1/2(∏

α

n′α!
)−1/2

(5.319)

×
∑

σ∈SN

(±1)σϕ∗
α
σ(1)

(x1) · · ·ϕ∗
α
σ(N)

(xN )

N∑

k=1

T̂i ϕα′
σ(1)

(x1) · · ·ϕα′
σ(N)

=
∑

σ∈SN

(±1)σ
(∏

α

nα!n
′
α!
)−1/2

N∑

i=1

∏

j
(j 6=i)

δαj ,α
′
σ(j)

∫
ddx1 ϕ

∗
αi
(x1) T̂1 ϕα′

σ(i)
(x1) .

One may verify that any permutation-symmetric one-body operator such as T̂ is faithfully represented
by the second quantized expression,

T̂ =
∑

α,β

〈
α
∣∣ T̂
∣∣ β
〉
ψ†
α ψβ , (5.320)

where ψ†
α is b†α or c†α as the application determines, and

〈
α
∣∣ T̂
∣∣β
〉
=

∫
ddx1 ϕ

∗
α(x1) T̂1 ϕβ(x1) . (5.321)

Similarly, two-body operators such as V̂ are represented as

V̂ = 1
2

∑

α,β,γ,δ

〈
αβ
∣∣ V̂
∣∣ γδ

〉
ψ†
α ψ

†
β ψδ ψγ , (5.322)

where 〈
αβ
∣∣ V̂
∣∣ γδ

〉
=

∫
ddx1

∫
ddx2 ϕ

∗
α(x1)ϕ

∗
β(x2) v(x1 − x2)ϕδ(x2)ϕγ(x1) . (5.323)

The general form for an n-body operator is then

R̂ =
1

n!

∑

α
1
···αn

β
1
···βn

〈
α1 · · · αn

∣∣ R̂
∣∣ β1 · · · βn

〉
ψ†
αn

· · ·ψ†
αn
ψβn

· · ·ψβ1
. (5.324)
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Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators Ĥ =
∑N

i=1 ĥi , then

Ĥ =
∑

α

εα ψ
†
α ψα , (5.325)

where {εα} is the spectrum of each single particle Hamiltonian ĥi.

5.10 Appendix II : Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H − µN for the ideal Bose gas,

K =
∑

k

(εk − µ) b†kbk −
√
N
∑

k

(
νk b

†
k + ν̄k bk

)
. (5.326)

Here b†k is the creation operator for a boson in a state of wavevector k, hence
[
bk , b

†
k′

]
= δkk′ . The

dispersion relation is given by the function εk, which is the energy of a particle with wavevector k. We
must have εk − µ ≥ 0 for all k, lest the spectrum of K be unbounded from below. The fields {νk, ν̄k}
break a global O(2) symmetry.

Students who have not taken a course in solid state physics can skip the following paragraph, and be
aware that N = V/v0 is the total volume of the system in units of a fundamental ”unit cell” volume. The
thermodynamic limit is thenN → ∞. Note that N is not the boson particle number, which we’ll call Nb.

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined
by some boson hopping model on a Bravais lattice. The wavevectors k are then restricted to the first
Brillouin zone, Ω̂, and assuming periodic boundary conditions are quantized according to the condition
exp
(
iNl k · al

)
= 1 for all l ∈ {1, . . . , d}, where al is the lth fundamental direct lattice vector and Nl is

the size of the system in the al direction; d is the dimension of space. The total number of unit cells is
N ≡ ∏

lNl . Thus, quantization entails k =
∑

l(2πnl/Nl) bl , where bl is the lth elementary reciprocal
lattice vector (al ·bl′ = 2πδll′) and nl ranges overNl distinct integers such that the allowed k points form

a discrete approximation to Ω̂ .

To solve, we first shift the boson creation and annihilation operators, writing

K =
∑

k

(εk − µ)β†kβk −N
∑

k

|νk|2
εk − µ

, (5.327)

where

βk = bk −
√
N νk

εk − µ
, β†k = b†k −

√
N ν̄k

εk − µ
. (5.328)

Note that
[
βk , β

†
k′

]
= δkk′ so the above transformation is canonical. The Landau free energy Ω =

−kBT lnΞ , where Ξ = Tr e−K/kBT , is given by

Ω = NkBT

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
−N

∑

k

|νk|2

εk − µ
, (5.329)
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where g(ε) is the density of energy states per unit cell,

g(ε) =
1

N

∑

k

δ
(
ε− εk

)
−−−−→
N→∞

∫

Ω̂

ddk

(2π)d
δ
(
ε− εk

)
. (5.330)

Note that

ψk ≡ 1√
N

〈
bk
〉
= − 1

N

∂Ω

∂ν̄k
=

νk
εk − µ

. (5.331)

In the condensed phase, ψk is nonzero.

The Landau free energy (grand potential) is a function Ω(T,N, µ, ν, ν̄). We now make a Legendre trans-
formation,

Y (T,N, µ, ψ, ψ̄) = Ω(T,N, µ, ν, ν̄) +N
∑

k

(
νkψ̄k + ν̄kψk

)
. (5.332)

Note that
∂Y

∂ν̄k
=
∂Ω

∂ν̄k
+Nψk = 0 , (5.333)

by the definition of ψk. Similarly, ∂Y/∂νk = 0. We now have

Y (T,N, µ, ψ, ψ̄) = NkBT

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
+N

∑

k

(εk − µ) |ψk|2 . (5.334)

Therefore, the boson particle number per unit cell is given by the dimensionless density,

n =
Nb

N
= − 1

N

∂Y

∂µ
=
∑

k

|ψk|2 +
∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (5.335)

and the condensate amplitude at wavevector k is

νk =
1

N

∂Y

∂ψ̄k

= (εk − µ)ψk . (5.336)

Recall that νk acts as an external field. Let the dispersion εk be minimized at k = K . Without loss of
generality, we may assume this minimum value is εK = 0 . We see that if νk = 0 then one of two must
be true:

(i) ψk = 0 for all k

(ii) µ = εK , in which case ψK can be nonzero.

Thus, for ν = ν̄ = 0 and µ > 0, we have the usual equation of state,

n(T, µ) =

∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (5.337)
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which relates the intensive variables n, T , and µ. When µ = 0, the equation of state becomes

n(T, µ = 0) =

n0︷ ︸︸ ︷∑

K

|ψK |2 +

n>(T )
︷ ︸︸ ︷
∞∫

−∞

dε
g(ε)

eε/kBT − 1
, (5.338)

where now the sum is over only those K for which εK = 0 . Typically this set has only one member,
K = 0, but it is quite possible, due to symmetry reasons, that there are more such K values. This last

equation of state is one which relates the intensive variables n, T , and n0 , where n0 =
∑

K |ψK |2 is the
dimensionless condensate density. If the integral n>(T ) in eqn. 5.338 is finite, then for n > n0(T ) we
must have n0 > 0. Note that, for any T , n>(T ) diverges logarithmically whenever g(0) is finite. This
means that eqn. 5.337 can always be inverted to yield a finite µ(n, T ), no matter how large the value of
n, in which case there is no condensation and n0 = 0. If g(ε) ∝ εα with α > 0, the integral converges and
n>(T ) is finite and monotonically increasing for all T . Thus, for fixed dimensionless number n, there
will be a critical temperature Tc for which n = n>(Tc). For T < Tc , eqn. 5.337 has no solution for any µ
and we must appeal to eqn. 5.338. The condensate density, given by n0(n, T ) = n−n>(T ) , is then finite
for T < Tc , and vanishes for T ≥ Tc .

In the condensed phase, the phase of the order parameter ψ inherits its phase from the external field ν,
which is taken to zero, in the same way the magnetization in the symmetry-broken phase of an Ising
ferromagnet inherits its direction from an applied field h which is taken to zero. The important feature
is that in both cases the applied field is taken to zero after the approach to the thermodynamic limit.

5.11 Appendix III : Example Bose Condensation Problem

PROBLEM: A three-dimensional gas of noninteracting bosonic particles obeys the dispersion relation

ε(k) = A
∣∣k
∣∣1/2.

(a) Obtain an expression for the density n(T, z) where z = exp(µ/kBT ) is the fugacity. Simplify your
expression as best you can, adimensionalizing any integral or infinite sum which may appear. You
may find it convenient to define

Liν(z) ≡
1

Γ(ν)

∞∫

0

dt
tν−1

z−1 et − 1
=

∞∑

k=1

zk

kν
. (5.339)

Note Liν(z)(1) = ζ(ν), the Riemann zeta function.

(b) Find the critical temperature for Bose condensation, Tc(n). Your expression should only include
the density n, the constant A, physical constants, and numerical factors (which may be expressed
in terms of integrals or infinite sums).

(c) What is the condensate density n0 when T = 1
2 Tc?



5.11. APPENDIX III : EXAMPLE BOSE CONDENSATION PROBLEM 67

(d) Do you expect the second virial coefficient to be positive or negative? Explain your reasoning.
(You don’t have to do any calculation.)

SOLUTION: We work in the grand canonical ensemble, using Bose-Einstein statistics.

(a) The density for Bose-Einstein particles are given by

n(T, z) =

∫
d3k

(2π)3
1

z−1 exp(Ak1/2/kBT )− 1

=
1

π2

(
kBT

A

)6 ∞∫

0

ds
s5

z−1 es − 1
=

120

π2

(
kBT

A

)6
Li6(z) ,

(5.340)

where we have changed integration variables from k to s = Ak1/2/kBT , and we have defined the
functions Liν(z) as above, in eqn. 5.339. Note Liν(1) = ζ(ν), the Riemann zeta function.

(b) Bose condensation sets in for z = 1, i.e. µ = 0. Thus, the critical temperature Tc and the density n
are related by

n =
120 ζ(6)

π2

(
kBTc
A

)6
, (5.341)

or

Tc(n) =
A

kB

(
π2 n

120 ζ(6)

)1/6
. (5.342)

(c) For T < Tc, we have

n = n0 +
120 ζ(6)

π2

(
kBT

A

)6
= n0 +

(
T

Tc

)6
n , (5.343)

where n0 is the condensate density. Thus, at T = 1
2 Tc,

n0
(
T = 1

2Tc
)
= 63

64 n. (5.344)

(d) The virial expansion of the equation of state is

p = nkBT
(
1 +B2(T )n+B3(T )n

2 + . . .
)

. (5.345)

We expectB2(T ) < 0 for noninteracting bosons, reflecting the tendency of the bosons to condense.
(Correspondingly, for noninteracting fermions we expect B2(T ) > 0.)

For the curious, we compute B2(T ) by eliminating the fugacity z from the equations for n(T, z)
and p(T, z). First, we find p(T, z) :

p(T, z) = −kBT

∫
d3k

(2π)3
ln
(
1− z exp(−Ak1/2/kBT )

)

= −kBT

π2

(
kBT

A

)6 ∞∫

0

ds s5 ln
(
1− z e−s

)
=

120 kBT

π2

(
kBT

A

)6
Li7(z).

(5.346)
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Expanding in powers of the fugacity, we have

n =
120

π2

(
kBT

A

)6 {
z +

z2

26
+
z3

36
+ . . .

}

p

kBT
=

120

π2

(
kBT

A

)6 {
z +

z2

27
+
z3

37
+ . . .

}
.

(5.347)

Solving for z(n) using the first equation, we obtain, to order n2,

z =

(
π2A6 n

120 (kBT )
6

)
− 1

26

(
π2A6 n

120 (kBT )
6

)2
+O(n3) . (5.348)

Plugging this into the equation for p(T, z), we obtain the first nontrivial term in the virial expan-
sion, with

B2(T ) = − π2

15360

(
A

kBT

)6
, (5.349)

which is negative, as expected. Note that the ideal gas law is recovered for T → ∞, for fixed n.

5.12 Appendix IV : Cp,N for the Ideal Bose Gas

The phase diagram for the ideal Bose gas in the (T, p) plane was considered in §5.7.3 and in fig. 5.8. Let’s
compute the behavior of Cp,N(T, p,N) and explore how it behaves as one approaches the critical curve

p = pc(T ) = ζ(5/2) kBT/λ
3
T . We found that when the fugacity z = exp(µ/kBT ) is larger than one, then

the density and pressure are given by

n(z, T ) = Li3/2(z)λ
−3
T , p(z, T ) = Li5/2(z) kBT λ

−3
T . (5.350)

The energy is E = 3
2pV , as we obtained in eqn. 5.162.

To obtain Cp,N , we first set dp = 0, which is of course equivalent to setting d ln p = 0:

d ln p = 0 =
Li3/2(z)

Li5/2(z)
d ln z + 5

2 d ln T ⇒
(
∂ ln z

∂ lnT

)

p

= −
5Li5/2(z)

3Li3/2(z)
. (5.351)

We wish to evaluate

Cp,N =

(
∂E

∂T

)

p,N

+ p

(
∂V

∂T

)

p,N

=
5

2
p

(
∂V

∂T

)

p,N

. (5.352)

Thus, we need

(
∂V

∂T

)

p,N

=

(
∂N/n

∂T

)

p,N

= −N
n

(
∂ lnn

∂T

)

p,N

= − N

nT

{
Li1/2(z)

Li3/2(z)

(
∂ ln z

∂ lnT

)

p

+
3

2

}
=

N

nT

{
5Li5/2(z) Li1/2(z)

2Li23/2(z)
− 3

2

}
.

(5.353)
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Thus, we have

cp,N ≡
NACp,N

N
=

25R

4

Li5/2(z)

Li3/2(z)

{
Li5/2(z) Li1/2(z)

Li23/2(z)
− 3

5

}
, (5.354)

where R = NAkB is the gas constant.

As we approach the critical line p = pc(T ), the fugacity approaches unity: z → 1. In this limit we have
Li3/2(z → 1) = ζ(3/2) and Li5/2(z → 1) = ζ(5/2), but Li1/2(z → 1) is divergent. We write z ≡ exp(−ǫ),
with

p

pc(T )
=

Li5/2(z)

ζ(5/2)
= 1− ζ(3/2) ǫ + . . . (5.355)

allows us to write

ǫ =
1

ζ(3/2)

(
1− p

pc(T )

)
. (5.356)

Here we have appealed to the expansion in eqn. 5.49, which also gives

Li1/2(e
−ǫ) =

√
π

[
pc(T )− p

ζ(3/2) pc(T )

]
+ . . . . (5.357)

Thus, from eqn. 5.353, we have that cp,N diverges as we approach p = pc(T ) from below as

cp,N (T, p) =
25
√
π

4

ζ2(5/2)

ζ5/2(3/2)

(
pc(T )− p

pc(T )

)−1/2

+ . . . . (5.358)

Equivalently, we can consider approaching the curve T = Tc(p) from the right. In both cases we have

cp,N(T, p) ∝
∣∣p− pc(T )

∣∣−1/2
, cp,N (T, p) ∝

∣∣T − Tc(p)
∣∣−1/2

. (5.359)

In other words, the critical exponent is α = 1
2 . and unlike cV,N (T, n) which has a cusp at T = Tc(n) yet

remains finite, the specific heat at constant pressure diverges27.

27I thank Andre Vieira for prompting me to clarify the differences between cV,N (T, n) and cp,N (T, p) in this context.
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