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Chapter 8

The Boltzmann Equation
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2 CHAPTER 8. THE BOLTZMANN EQUATION

8.2 Equilibrium, Nonequilibrium and Local Equilibrium

Classical equilibrium statistical mechanics is described by the full N -body distribution,

̺N (x1, . . . ,xN ,p1, . . . ,pN ) =
1

N !
×
{
Z−1
N e−βĤN ({pi},{xi}) OCE

Ξ−1 eβµN e−βĤN ({pi},{xi}) GCE ,
(8.1)

We assume a Hamiltonian of the form

ĤN =

N∑

i=1

p̂2
i

2m
+

N∑

i=1

v(x̂i) +

N∑

i<j

u(x̂i − x̂j). (8.2)

Here v(x) = Uext(x) is due to external forces. In the context of transport theory, v(x̂) typically will
denote the effect of an applied external field, e.g. v(x̂) = −qE · x̂ for a particle of charge q in the presence
of a uniform electric field E. We write x̂i and p̂i for the corresponding phase space variables, the position
and momentum vectors for the ith particle, respectively. The quantity

̺eqN (x1, . . . ,xN ,p1, . . . ,pN )
N∏

j=1

dµj , (8.3)

with dµj ≡ ddxj d
dpj , is the probability, under equilibrium conditions, of finding N particles in the

system, with particle #1 lying within d3x1 of x1 and having momentum within ddp1 of p1, etc. The tem-
perature T and chemical potential µ are constants, independent of position. Note that ̺eqN ({xi}, {pi})
has units of A−N , where A stands for action.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equi-
librium, meaning that the distribution function is not given by the Boltzmann distribution above. Rather,

it is a time-dependent quantity, ̺N ( For a general nonequilibrium setting, it is hopeless to make progress
– we’d have to integrate the equations of motion for all the constituent particles. However, typically we
are concerned with situations where external forces or constraints are imposed over some macroscopic
scale. Examples would include the imposition of a voltage drop across a metal, or a temperature differ-
ential across any thermodynamic sample. In such cases, scattering at microscopic length and time scales
described by the mean free path ℓ and the collision time τ work to establish local equilibrium throughout the
system. A local equilibrium is a state described by a space and time varying temperature T (r, t) and
chemical potential µ(r, t). As we will see, the Boltzmann distribution with T = T (r, t) and µ = µ(r, t)
will not be a solution to the evolution equation governing the distribution function. Rather, the distri-
bution for systems slightly out of equilibrium will be of the form f = f0 + δf , where f0 describes a state
of local equilibrium.

We will mainly be interested in the one-body distribution

f(r,p; t) =

N∑

i=1

〈
δ
(
r − xi(t)) δ(p − pi(t)

) 〉

= N

∫ N∏

i=2

dµi ̺N (r,x2, . . . ,xN ,p,p2, . . . ,pN , t) .

(8.4)
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In this chapter, we will drop the 1/~ normalization for phase space integration. Thus, f(r,p, t) has
dimensions of h−d, and f(r,p, t) d3r d3p is the average number of particles found within d3r of r and d3p
of p at time t.

fs
(
{xi} , {pi} , t

)
=
∑

j1···js

′〈
δ
(
x1 − x̂j1

(t)
)
· · · δ

(
xs − x̂js

(t)
)
δ
(
p1 − p̂j1

(t)
)
· · · δ

(
ps − p̂js

(t)
)〉

=
N !

(N − s)!

∫ N∏

i=s+1

dµi ̺N
(
{xj} , {pj} , t

)
,

(8.5)

where {xj} as an argument of the s-body density matrix fs denotes the ordered set {x1, . . . ,xs}, where
s ∈ {1, . . . , N} (similarly for {pj}). The prime on the sum over the indices {j1, . . . , js} indicates that no
two indices take the same value. Note that the normalization of fs is

∫ s∏

i=1

dµi fs({xj}, {pj}, t) =
N !

(N − s)!
, (8.6)

for all t. We write the one-body density matrix f1(x1,p1, t) ≡ f(r,p, t), where r = x1 and p = p1 .

In the GCE, we sum over different particle numbers N . Assuming v = 0 so that there is no one-body
potential to break translational symmetry, the equilibrium distribution is time-independent and space-
independent:

f0(r,p) = n (2πmkBT )
−3/2 e−p2/2mkBT , (8.7)

where n = N/V or n = n(T, µ) is the particle density in the OCE or GCE. From the one-body distribution
we can compute things like the particle current, j, and the energy current, jε:

j(r, t) =

∫
ddp f(r,p; t)

p

m
(8.8)

jε(r, t) =

∫
ddp f(r,p; t) ε(p)

p

m
, (8.9)

where ε(p) = p2/2m. Clearly these currents both vanish in equilibrium, when f = f0, since f0(r,p)
depends only on p2 and not on the direction of p. In a steady state nonequilibrium situation, the above
quantities are time-independent.

Thermodynamics says that

dq = T ds = dε− µdn , (8.10)

where s, ε, and n are entropy density, energy density, and particle density, respectively, and dq is the
differential heat density. This relation may be case as one among the corresponding current densities:

jq = T js = jε − µ j . (8.11)

Thus, in a system with no particle flow, j = 0 and the heat current jq is the same as the energy current jε.

When the individual particles are not point particles, they possess angular momentum as well as linear
momentum. Following Lifshitz and Pitaevskii, we abbreviate Γ = (p,L) for these two variables for the
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case of diatomic molecules, and Γ = (p,L, n̂ · L) in the case of spherical top molecules, where n̂ is the
symmetry axis of the top. We then have, in d = 3 dimensions,

dΓ =





d3p point particles

d3p L dLdΩL diatomic molecules

d3p L2 dLdΩL d cos ϑ symmetric tops ,

(8.12)

where ϑ = cos−1(n̂ · L̂). We will call the set Γ the ‘kinematic variables’. The instantaneous number
density at r is then

n(r, t) =

∫
dΓ f(r, Γ ; t) . (8.13)

One might ask why we do not also keep track of the angular orientation of the individual molecules.
There are two reasons. First, the rotations of the molecules are generally extremely rapid, so we are
justified in averaging over these motions. Second, the orientation of, say, a rotor does not enter into
its energy. While the same can be said of the spatial position in the absence of external fields, (i) in
the presence of external fields one must keep track of the position coordinate r since there is physical
transport of particles from one region of space to another, and (ii) the collision process, which as we
shall see enters the dynamics of the distribution function, takes place in real space.

8.3 Boltzmann Transport Theory

8.3.1 Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

f(r,p, t) d3r d3p ≡
{

# of particles with positions within d3r of

r and momenta within d3p of p at time t.
(8.14)

Thus, the units of f(r,p, t) are those of inverse action, i.e. T/ML2. We now ask how the distribution
functions f(r,p, t) evolves in time. It is clear that in the absence of collisions, the distribution function
must satisfy the continuity equation,

∂f

∂t
+∇·(uf) = 0 . (8.15)

This is just the condition of number conservation for particles. Take care to note that ∇ and u are
six-dimensional phase space vectors:

u = ( ẋ , ẏ , ż , ṗx , ṗy , ṗz ) (8.16)

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂px
,
∂

∂py
,
∂

∂pz

)
. (8.17)

The continuity equation describes a distribution in which each constituent particle evolves according to
a prescribed dynamics, which for a mechanical system is specified by

dr

dt
=
∂H

∂p
= v(p) ,

dp

dt
= −∂H

∂r
= Fext , (8.18)
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where F is an external applied force. Here,

H(p, r) = ε(p) + Uext(r) . (8.19)

For example, under the influence of gravity, Uext(r) = mg · r and F = −∇Uext = −mg.

Note that as a consequence of the dynamics, we have ∇ ·u = 0, i.e. phase space flow is incompressible,
provided that ε(p) is a function of p alone, and not of r. Thus, in the absence of collisions, we have

∂f

∂t
+ u ·∇f = 0 . (8.20)

The differential operator Dt ≡ ∂t + u ·∇ is sometimes called the ‘convective derivative’, because Dtf is
the time derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynam-
ics. In a collision process, a particle with momentum p and one with momentum p̃ can instantaneously
convert into a pair with momenta p′ and p̃′, provided total momentum is conserved: p + p̃ = p′ + p̃′.
This means that Dtf 6= 0. Rather, we should write

Df

Dt
=
∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
=

(
df

dt

)

coll

(8.21)

where the right side is known as the collision integral. The collision integral is in general a function of
r, p, and t and a functional of the distribution f . Suppose we evaluate the time-dependent distribution
f(r,p, t) along a particle trajectory, i.e. substituting r → r(t) and p = p(t). Then

d

dt
f
(
r(t),p(t), t

)
=
∂f

∂r
· dr
dt

∣∣∣∣
{r(t),p(t),t}

+
∂f

∂p
· dp
dt

∣∣∣∣
{r(t),p(t),t}

+
∂f

∂t

∣∣∣∣
{r(t),p(t),t}

=
Df

Dt

∣∣∣∣
{r(t),p(t),t}

. (8.22)

Thus, in the absence of collisions, the convective derivative of the distribution f(r,p, t) vanishes, meaning that
the one-body distribution does not vary in time along a particle trajectory.

We can write the Boltzmann equation as

∂f

∂t
=

(
∂f

∂t

)

str

+

(
df

dt

)

coll

, (8.23)

where (
∂f

∂t

)

str

≡ −ṙ · ∂f
∂r

− ṗ · ∂f
∂p

(8.24)

is known as the streaming term. Thus, there are two contributions to ∂f/∂t : streaming and collisions.

8.3.2 Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

∂f

∂t
+
∂ε

∂p
· ∂f
∂r

−∇Uext ·
∂f

∂p
= 0 . (8.25)
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Figure 8.1: Level sets for a sample f(x̄, p̄, t̄) = Ae−
1
2
(x̄−p̄t̄)2e−

1
2
p̄2 , for values f = Ae−

1
2
α2

with α in
equally spaced intervals from α = 0.2 (red) to α = 1.2 (blue). The time variable t̄ is taken to be t̄ = 0.0
(upper left), 0.2 (upper right), 0.8 (lower right), and 1.3 (lower left).

In order to gain some intuition about how the streaming term affects the evolution of the distribution
f(r,p, t), consider a case where Fext = 0. We then have

∂f

∂t
+

p

m
· ∂f
∂r

= 0 . (8.26)

Clearly, then, any function of the form

f(r,p, t) = ϕ
(
r − v(p) t , p

)
(8.27)

will be a solution to the collisionless Boltzmann equation, where v(p) = ∂ε
∂p . One possible solution

would be the Boltzmann distribution,

f(r,p, t) = eµ/kBT e−p2/2mkBT , (8.28)

which is time-independent1. Here we have assumed a ballistic dispersion, ε(p) = p2/2m.

For a slightly less trivial example, let the initial distribution be ϕ(r,p) = Ae−r2/2σ2
e−p2/2κ2

, so that

f(r,p, t) = Ae−
(
r− pt

m

)2
/2σ2

e−p2/2κ2
. (8.29)

1Indeed, any arbitrary function of p alone would be a solution. Ultimately, we require some energy exchanging processes,
such as collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.



8.3. BOLTZMANN TRANSPORT THEORY 7

Consider the one-dimensional version, and rescale position, momentum, and time so that

f(x, p, t) = Ae−
1
2
(x̄−p̄ t̄)2 e−

1
2
p̄2 . (8.30)

Consider the level sets of f , where f(x, p, t) = Ae−
1
2
α2

. The equation for these sets is

x̄ = p̄ t̄±
√
α2 − p̄2 . (8.31)

For fixed t̄, these level sets describe the loci in phase space of equal probability densities, with the
probability density decreasing exponentially in the parameter α2. For t̄ = 0, the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As t̄ increases, the
distribution widens in x̄ but not in p̄ – each particle moves with a constant momentum, so the set of
momentum values never changes. However, the level sets in the (x̄ , p̄) plane become elliptical, with a
semimajor axis oriented at an angle θ = ctn−1(t) with respect to the x̄ axis. For t̄ > 0, he particles at the
outer edges of the cloud are more likely to be moving away from the center. See the sketches in fig. 8.1

Suppose we add in a constant external force Fext. Then it is easy to show (and left as an exercise to the
reader to prove) that any function of the form

f(r,p, t) = Aϕ

(
r − p t

m
− Fextt

2

2m
, p− Fextt

m

)
(8.32)

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

8.3.3 Collisional invariants

Consider a function A(r,p) of position and momentum. Its average value at time t is

〈A(t)〉 =
∫
d3r d3p A(r,p) f(r,p, t) . (8.33)

Taking the time derivative,

dA

dt
=

∫
d3r

∫
d3p A(r,p)

∂f

∂t

=

∫
d3r

∫
d3p A(r,p)

{
− ∂

∂r
· (ṙf)− ∂

∂p
· (ṗf) +

(
df

dt

)

coll

}

=

∫
d3r

∫
d3p

{(
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

)
f +A(r,p)

(
df

dt

)

coll

}
.

(8.34)

Hence, if A is preserved by the dynamics between collisions, then2

d〈A(t)〉
dt

=
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

= 0 . (8.35)

2Recall from classical mechanics the definition of the Poisson bracket, {A,B} = ∂A
∂r · ∂B

∂p − ∂B
∂r · ∂A

∂p . Then from Hamilton’s

equations ṙ = ∂H
∂p and ṗ = − ∂H

∂r , where H(p,r, t) is the Hamiltonian, we have dA
dt

= {A,H}. Invariants have zero Poisson

bracket with the Hamiltonian.
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We therefore have that the rate of change of 〈A(t)〉 is determined wholly by the collision integral

d〈A(t)〉
dt

=

∫
d3r

∫
d3p A(r,p)

(
df

dt

)

coll

. (8.36)

Quantities which are then conserved in the collisions satisfy Ȧ = 0. Such quantities are called collisional
invariants. Examples of collisional invariants include the particle number (A = 1), the components of
the total momentum (A = pµ) (in the absence of broken translational invariance, due e.g. to the presence
of walls), and the total energy (A = ε(p)).

8.3.4 Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The
first involves potential scattering, where a particle in state |Γ 〉 scatters, in the presence of an external
potential, to a state |Γ ′〉. Recall that Γ is an abbreviation for the set of kinematic variables, e.g. Γ = (p,L)
in the case of a diatomic molecule. For point particles, Γ = (px, py, pz) and dΓ = d3p.

Single particle scattering

We now define the function w
(
Γ ′ |Γ

)
such that

w
(
Γ ′ |Γ

)
f(Γ ) dΓ dΓ ′ = rate per unit volume to scatter |Γ ± dΓ 〉 → |Γ ′ ± dΓ ′ 〉 at time t . (8.37)

By |Γ ± dΓ 〉 we mean states with momenta within d3p of p – more generally, within dΓ = d3p d3L of
(p,L) – and at the same position coordinate r. We assume the rate is independent of the position r and
the time t. The units of w dΓ are therefore 1/T . The differential scattering cross section for single particle
scattering is then

dσ =
w
(
Γ ′ |Γ

)

n |v| dΓ ′ , (8.38)

where v = p/m is the particle’s velocity and n the density.

In computing the collision integral for the state |r, Γ 〉, we must take care to sum over contributions
from transitions out of this state, i.e. |Γ 〉 → |Γ ′〉, which reduce f(r, Γ ), and transitions into this state, i.e.
|Γ ′〉 → |Γ 〉, which increase f(r, Γ ). Thus, for one-body scattering, we have

D

Dt
f(r, Γ ; t) =

∫
dΓ ′

{
w(Γ |Γ ′) f(r, Γ ′; t)− w(Γ ′ |Γ ) f(r, Γ ; t)

}
=

(
df

dt

)

coll

. (8.39)
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Figure 8.2: Left: single particle scattering process |Γ 〉 → |Γ ′〉. Right: two-particle scattering process
|Γ, Γ1〉 → |Γ ′, Γ ′

1〉.

Two particle scattering

The second class is that of two-particle scattering processes, i.e. | {r, Γ}, {r, Γ1} 〉 → | {r, Γ ′}, {r, Γ ′
1} 〉.

We define the scattering function w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)

by

w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
f(Γ ) f(Γ1) dΓ dΓ1 dΓ

′ dΓ ′
1 =

{
rate per unit volume to scatter two particles

|Γ ± dΓ, Γ1 ± dΓ1 〉 → |Γ ± dΓ ′, Γ ′
1 ± dΓ ′

1 〉 at t .

(8.40)
Again we assume that this rate is independent of r and t. Thus the units of w dΓ dΓ1 are again 1/T , and
the differential scattering cross section is

dσ =
w
(
Γ, Γ1

∣∣Γ ′, Γ ′
1

)

|v − v1|
dΓ ′ dΓ ′

1 . (8.41)

For two-body scattering, we therefore have

D

Dt
f(r, Γ ; t) =

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1

{
w
(
Γ, Γ1

∣∣Γ ′, Γ ′
1

)
f2(r, Γ

′; r, Γ ′
1; t)

− w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
f2(r, Γ ; r, Γ1; t)

}
=

(
df

dt

)

coll

.

(8.42)

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since
the LHS involves the one-body distribution f ≡ f1 and the RHS involves the two-body distribution f2 .
To close the equations, we make the approximation

f2(r, Γ ; r̃, Γ̃ ; t) ≈ f(r, Γ ; t) f(r̃, Γ̃ ; t) . (8.43)
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We then have

D

Dt
f(r, Γ ; t) =

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1

{
w
(
Γ, Γ1

∣∣Γ ′, Γ ′
1

)
f(r, Γ ′; t) f(r, Γ ′

1; t)

− w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
f(r, Γ ; t) f(r, Γ1; t)

}
=

(
df

dt

)

coll

.

(8.44)

We stress that in both cases we assume that any scattering occurs locally, i.e. the particles attain their
asymptotic kinematic states on distance scales small compared to the mean interparticle separation. In
this case we can treat each scattering process independently. This assumption is particular to rarefied
systems, i.e. gases, and is not appropriate for dense liquids. The two types of scattering processes are
depicted in fig. 8.2.

8.3.5 Detailed balance

Classical mechanics places some restrictions on the form of the kernel w
(
Γ, Γ1

∣∣Γ ′, Γ ′
1

)
. In particular, if

Γ T = (−p,−L) denotes the kinematic variables under time reversal, then

w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
= w

(
Γ T , Γ T

1

∣∣Γ ′T , Γ ′
1
T
)

. (8.45)

This is because the time reverse of the process |Γ, Γ1〉 → |Γ ′, Γ ′
1〉 is |Γ ′T, Γ ′

1
T〉 → |Γ T, Γ T

1 〉.

In equilibrium, we must have

w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
f0(Γ ) f0(Γ1) d

4Γ = w
(
Γ T , Γ T

1

∣∣Γ ′T , Γ ′
1
T
)
f0(Γ ′T ) f0(Γ ′

1
T ) d4Γ T (8.46)

where
d4Γ ≡ dΓ dΓ1 dΓ

′dΓ ′
1 , d4Γ T ≡ dΓ T dΓ T

1 dΓ
′TdΓ ′

1
T . (8.47)

Since dΓ = dΓ T etc., we may cancel the differentials above, and after invoking eqn. 8.45 and suppressing
the common r label, we find

f0(Γ ) f0(Γ1) = f0(Γ ′T ) f0(Γ ′
1
T ) . (8.48)

This is the condition of detailed balance. For the Boltzmann distribution, we have f0(Γ ) = Ae−ε/kBT ,
where A is a constant and where ε = ε(Γ ) is the kinetic energy, e.g. ε(Γ ) = p2/2m in the case of point
particles. Note that ε(Γ T ) = ε(Γ ). Detailed balance is satisfied because the kinematics of the collision
requires energy conservation:

ε+ ε1 = ε′ + ε′1 . (8.49)

Since momentum is also kinematically conserved, i.e.

p+ p1 = p′ + p′
1 , (8.50)

any distribution of the form

f0(Γ ) = Ae−(ε−p·V )/kBT (8.51)

also satisfies detailed balance, for any velocity parameter V . This distribution is appropriate for gases
which are flowing with average particle V .
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In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the
parity operation P , we have r → −r and p → −p. Note that a pseudovector such as L = r × p

is unchanged under P . Thus, Γ P = (−p,L). Under the combined operation of C = PT , we have
ΓC = (p,−L). If the microscopic Hamiltonian is invariant under C , then we must have

w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)
= w

(
ΓC, ΓC

1

∣∣Γ ′C , Γ ′
1
C
)

. (8.52)

For point particles, invariance under T and P then means

w(p′,p′
1 |p,p1) = w(p,p1 |p′,p′

1) , (8.53)

and therefore the collision integral takes the simplified form,

Df(p)

Dt
=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p

′,p′
1 |p,p1)

{
f(p′) f(p′

1)− f(p) f(p1)
}
=

(
df

dt

)

coll

, (8.54)

where we have suppressed both r and t variables.

The most general statement of detailed balance is

f0(Γ ′) f0(Γ ′
1)

f0(Γ ) f0(Γ1)
=
w
(
Γ ′, Γ ′

1

∣∣Γ, Γ1
)

w
(
Γ, Γ1

∣∣Γ ′, Γ ′
1

) . (8.55)

Under this condition, the collision term vanishes for f = f0, which is the equilibrium distribution.

8.3.6 Kinematics and cross section

We can rewrite eqn. 8.54 in the form

Df(p)

Dt
=

∫
d3p1

∫
dΩ |v − v1|

dσ

dΩ

{
f(p′) f(p′

1)− f(p) f(p1)
}

, (8.56)

where dσ
dΩ is the differential scattering cross section. If we recast the scattering problem in terms of center-

of-mass and relative coordinates, we conclude that the total momentum is conserved by the collision,
and furthermore that the energy in the CM frame is conserved, which means that the magnitude of the
relative momentum is conserved. Thus, we may write p′ − p′

1 = |p − p1| Ω̂, where Ω̂ is a unit vector.
Then p′ and p′

1 are determined to be

p′ = 1
2

(
p+ p1 + |p− p1| Ω̂

)

p′
1 =

1
2

(
p+ p1 − |p− p1| Ω̂

)
. (8.57)

Recall that for the scattering of classical hard spheres of radius a, the differential scattering cross section
is dσ

dΩ = a2. Thus, the total scattering cross section is σ
tot

= 4πa2 = πd2, where d = 2a is the sphere
diameter. For Coulomb scattering of two point particles of charge q, one has

dσ

dΩ
=

(
me2

|p1 − p2|2 sin2(12ϑ)

)2
, (8.58)

where p̂1 · p̂2 = cos ϑ. The total cross section for Coulomb scattering diverges since the differential cross
section behaves as ϑ−4 as ϑ→ 0.
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8.3.7 H-theorem

To peek ahead, we are about to prove the following. Let

h(r, t) =

∫
d3p f(r,p, t) ln

[
f(r,p, t)/f0

]

j(r, t) =

∫
d3p f(r,p, t) ln

[
f(r,p, t)/f0

] dr
dt

.

(8.59)

Here f0 can be any constant which has the appropriate dimensions of A−3, where A stands for action.
Then if f(r,p, t) evolves according to the Boltzmann equation, it is necessarily the case that

∂h(r, t)

∂t
+∇· j(r, t) ≤ 0 , (8.60)

Where ∇ ≡ ∂/∂r. If we integrate over all space, and we adopt boundary conditions where j → 0 at
spatial infinity,

H(t) =

∫
d3r h(r, t) ⇒ dH

dt
≤ 0 . (8.61)

Thus, Boltzmann dynamics recognizes an arrow of time. Time increases in the direction that h(r, t) decreases.

Let’s consider the Boltzmann equation with two particle collisions. We define the local (i.e. r-dependent)
quantity

ρϕ(r, t) ≡
∫
d3p f(r,p, t)ϕ

(
f(r,p, t)

)
, (8.62)

where f = f(r,p, t) and ϕ(f) is arbitrary. At this point, ϕ(p, f) is arbitrary. We now compute

∂ρϕ
∂t

=

∫
d3p

∂(fϕ)

∂t
=

∫
dΓ

∂(fϕ)

∂f

∂f

∂t

=

∫
d3p

∂(fϕ)

∂f

{
− ṙ · ∂f

∂r
− ṗ · ∂f

∂p
+

(
df

dt

)

coll

}

=

∫
d3p

{
− ṙ · ∂(fϕ)

∂r
− ṗ · ∂(fϕ)

∂p
+
∂(fϕ)

∂f

(
df

dt

)

coll

}
(8.63)

We may integrate the second term in the brackets by parts on p. Assuming f = 0 for infinite values of
the kinematic variables, which is the only physical possibility, we then have

∂ρϕ
∂t

=

∫
d3p

{
− ṙ · ∂(fϕ)

∂r
− ∂ṙ

∂r
(fϕ) +

∂(fϕ)

∂f

(
df

dt

)

coll

}

= − ∂

∂r

∫
d3p fϕ ṙ +

∫
d3p

∂(fϕ)

∂f

(
df

dt

)

coll

.

(8.64)

Thus,
∂ρϕ(r, t)

∂t
+∇ · jϕ(r, t) = σϕ(r, t) , (8.65)
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where

jϕ(r, t) =

∫
d3p f(r,p, t)ϕ

(
f(r,p, t)

)
v(p)

σϕ(r, t) =

∫
d3p

∂(fϕ)

∂f

∣∣∣∣
f(r,p,t)

(
df

dt

)

coll

(8.66)

and ṙ = v(p) = ∂H0/∂p is the velocity.

Thus, we arrive at eqn. 8.65, which is a continuity equation with a source term σϕ(r, t). The source term
is nonzero only in the presence of collisions. We now evaluate σϕ under the assumption that f satisfies
the Boltzmann equation with two particle scattering. Thus,

σϕ(r, t) =

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1

{
w
(
p′,p′

1

∣∣p,p1

)
f(p)f(p1)χ(p)− w

(
p,p1

∣∣p′,p′
1

)
f(p′)f(p′

1)χ(p
′)
}

=

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
f(p)f(p1)

(
χ(p)− χ′(p)

)
, (8.67)

where

χ =
∂(fϕ)

∂f
= ϕ+ f

∂ϕ

∂f
, (8.68)

and where we have suppressed the r and t dependences. We now invoke the symmetry

w
(
p′,p′

1

∣∣p,p1

)
= w

(
p′
1,p

′ ∣∣p1,p
)

, (8.69)

which allows us to write

σ = 1
2

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
f(p)f(p1)

(
χ(p) + χ(p1)− χ(p′)− χ(p′

1)
)

, (8.70)

This shows that σϕ = 0 if χ(p) is a collisional invariant.

Now let us fix ϕ(f) = ln(f/f0) and evaluate the source term σ ≡ σϕ=ln(f/f0). We have

σ = −1
2

∫
d3p

∫
d3p1

∫
d3p′
∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
f(p′)f(p′

1) · x(p,p1 |p′,p′
1) ln x(p,p1 |p′,p′

1) , (8.71)

where x(p,p1,p
′,p′

1) ≡ f(p)f(p1)/f(p
′)f(p′

1). We next invoke the result
∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
=

∫
d3p′

∫
d3p′1 w

(
p,p1

∣∣p′,p′
1

)
(8.72)

which is a statement of unitarity of the scattering matrix3. Multiplying both sides by f(p) f(p1), then
integrating over p and p1, and finally changing variables (p,p1) ↔ (p′,p′

1), we find

0 =

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

) (
f(p)f(p1)− f(p′)f(p′

1)
)

=

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
f(p′)f(p′

1)
{
x(p,p1 |p′,p′

1)− 1
}

.

(8.73)

3See Lifshitz and Pitaevskii, Physical Kinetics, §2.
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Multiplying this result by 1
2 and adding it to the previous equation for ḣ, we arrive at our final result,

σ = −1
2

∫
d3p

∫
d3p1

∫
d3p′

∫
d3p′1 w

(
p′,p′

1

∣∣p,p1

)
f(p′)f(p′

1) (x lnx− x+ 1) , (8.74)

where x ≡ x(p,p1,p
′,p′

1) = f(p)f(p1)/f(p
′)f(p′

1). It is now easy to prove that the function g(x) =
x lnx− x+ 1 is nonnegative for all positive x values4, which therefore entails the important result

∂h(r, t)

∂t
+∇ · j(r, t) = σ(r, t) ≤ 0 . (8.75)

Boltzmann’s H function is the space integral of the h density: H =
∫
d3r h.

Thus, everywhere in space, the source term σ(r, t) is nonpositive. In equilibrium, ḣ = 0 everywhere,
which requires x = 1, i.e.

f0(p) f0(p1) = f0(p′) f0(p′
1) , (8.76)

or, taking the logarithm,
ln f0(p) + ln f0(p1) = ln f0(p′) + ln f0(p′

1) . (8.77)

But this means that ln f0 is itself a collisional invariant, and if 1, p, and ε are the only collisional invari-
ants, then ln f0 must be expressible in terms of them. Thus,

ln f0 =
µ

kBT
+

V ·p
kBT

− ε

kBT
, (8.78)

where µ, V , and T are constants which parameterize the equilibrium distribution f0(p), corresponding
to the chemical potential, flow velocity, and temperature, respectively.

8.4 Weakly Inhomogeneous Gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and
Pitaevskii, §6. As the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equa-
tion of the form f = f0 + δf , where f0 is describes a local equilibrium. Recall that such a distribution
function is annihilated by the collision term in the Boltzmann equation but not by the streaming term,
hence a correction δf must be added in order to obtain a solution.

The most general form of local equilibrium is described by the distribution

f0(r, Γ ) = C exp

(
µ− ε(Γ ) + V · p

kBT

)
, (8.79)

where µ = µ(r, t), T = T (r, t), and V = V (r, t) vary in both space and time. Note that

df0 =

(
dµ+ p · dV + (ε− µ− V · p) dT

T
− dε

)(
− ∂f0

∂ε

)

=

(
1

n
dp+ p · dV + (ε− h)

dT

T
− dε

)(
− ∂f0

∂ε

) (8.80)

4The function g(x) = x lnx − x + 1 satisfies g′(x) = ln x, hence g′(x) < 0 on the interval x ∈ [0, 1) and g′(x) > 0 on
x ∈ (1,∞]. Thus, g(x) monotonically decreases from g(0) = 1 to g(1) = 0, and then monotonically increases to g(∞) = ∞,
never becoming negative.
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where we have assumed V = 0 on average, and used

dµ =

(
∂µ

∂T

)

p

dT +

(
∂µ

∂p

)

T

dp = −s dT +
1

n
dp , (8.81)

where s is the entropy per particle and n is the number density. We have further written h = µ + Ts,
which is the enthalpy per particle. Here, cp is the heat capacity per particle at constant pressure5. Finally,
note that when f0 is the Maxwell-Boltzmann distribution, we have

− ∂f0

∂ε
=

f0

kBT
, (8.82)

where
f0(p) = n (2πmkBT )

−3/2 e−p2/2mkBT (8.83)

is normalized so that
∫
d3r
∫
d3p f0(p) = N .

The Boltzmann equation is written

(
∂

∂t
+

p

m
· ∂
∂r

+ F · ∂
∂p

)(
f0 + δf

)
=

(
df

dt

)

coll

. (8.84)

The RHS of this equation must be of order δf because the local equilibrium distribution f0 is annihilated
by the collision integral. We therefore wish to evaluate one of the contributions to the LHS of this
equation,

∂f0

∂t
+

p

m
· ∂f

0

∂r
+ F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
1

n

∂p

∂t
+
ε− h

T

∂T

∂t
+mv ·

[
(v ·∇)V

]

+ v ·
(
m
∂V

∂t
+

1

n
∇p

)
+
ε− h

T
v ·∇T − F · v

}
.

(8.85)

To simplify this, first note that Newton’s laws applied to an ideal fluid give ρV̇ = −∇p, where ρ = mn
is the mass density. Corrections to this result, e.g. viscosity and nonlinearity in V , are of higher order.

Next, continuity for particle number means ṅ+∇·(nV ) = 0. We assume V is zero on average and that
all derivatives are small, hence ∇·(nV ) = V ·∇n+ n∇·V ≈ n∇·V . Thus,

∂ lnn

∂t
=
∂ ln p

∂t
− ∂ lnT

∂t
= −∇·V , (8.86)

where we have invoked the ideal gas law n = p/kBT above.

Next, we invoke conservation of entropy. If s is the entropy per particle, then ns is the entropy per unit
volume, in which case we have the continuity equation

∂(ns)

∂t
+∇ · (nsV ) = n

(
∂s

∂t
+ V ·∇s

)
+ s

(
∂n

∂t
+∇ · (nV )

)
= 0 . (8.87)

5In the chapter on thermodynamics, we adopted a slightly different definition of cp as the heat capacity per mole. In this
chapter cp is the heat capacity per particle.
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The second bracketed term on the RHS vanishes because of particle continuity, leaving us with the
combination ṡ + V ·∇s ≈ ṡ = 0 (since V = 0 on average, and any gradient is first order in smallness).
Now thermodynamics says

ds =

(
∂s

∂T

)

p

dT +

(
∂s

∂p

)

T

dp =
cp
T
dT − kB

p
dp , (8.88)

since T
(
∂s
∂T

)
p
= cp and

(
∂s
∂p

)
T
=
(
∂v
∂T

)
p

, where v = V/N . Thus,

cp
kB

∂ lnT

∂t
− ∂ ln p

∂t
= 0 . (8.89)

We now have in eqns. 8.86 and 8.89 two equations in the two unknowns ∂ lnT
∂t and ∂ ln p

∂t , yielding

∂ lnT

∂t
= −kB

cV
∇·V ,

∂ ln p

∂t
= −

cp
cV

∇·V . (8.90)

Thus eqn. 8.85 becomes

∂f0

∂t
+

p

m
· ∂f

0

∂r
+F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
ε− h

T
v ·∇T +mvαvβ Qαβ+

h− Tcp − ε

cV /kB
∇·V −F ·v

}
, (8.91)

where ε = ε(Γ ) and

Qαβ =
1

2

(
∂Vα
∂xβ

+
∂Vβ
∂xα

)
. (8.92)

Therefore, the Boltzmann equation takes the form

∂ δf

∂t
+

{
ε(Γ )− h

T
v ·∇T +mvαvβ Qαβ −

ε(Γ )− h+ Tcp
cV /kB

∇·V − F · v
}

f0

kBT
=

(
df

dt

)

coll

. (8.93)

Notice we have dropped the terms v · ∂ δf
∂r and F · ∂ δf

∂p , since δf must already be first order in smallness,

and both the ∂
∂r operator as well as F add a second order of smallness, which is negligible. Typically ∂ δf

∂t
is nonzero if the applied force F (t) is time-dependent. We use the convention of summing over repeated
indices. Note that δαβ Qαβ = Qαα = ∇ ·V . For ideal gases in which only translational and rotational
degrees of freedom are excited, h = cpT .

8.5 Relaxation Time Approximation

8.5.1 Approximation of collision integral

We now consider a very simple model of the collision integral,

(
df

dt

)

coll

= − f − f0

τ
= −δf

τ
. (8.94)
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This model is known as the relaxation time approximation. Here, f0 = f0(r,p, t) is a distribution function
which describes a local equilibrium at each position r and time t. The quantity τ is the relaxation time,
which can in principle be momentum-dependent, but which we shall first consider to be constant. In
the absence of streaming terms, we have

∂ δf

∂t
= −δf

τ
=⇒ δf(r,p, t) = δf(r,p, 0) e−t/τ . (8.95)

The distribution f then relaxes to the equilibrium distribution f0 on a time scale τ . We note that this
approximation is obviously flawed in that all quantities – even the collisional invariants – relax to their
equilibrium values on the scale τ . In the Appendix II, we consider a model for the collision integral in
which the collisional invariants are all preserved, but everything else relaxes to local equilibrium at a
single rate.

8.5.2 Computation of the scattering time

Consider two particles with velocities v and v′. The average of their relative speed is

〈 |v − v′| 〉 =
∫
d3v

∫
d3v′ P (v)P (v′) |v − v′| , (8.96)

where P (v) is the Maxwell velocity distribution,

P (v) =

(
m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
, (8.97)

which follows from the Boltzmann form of the equilibrium distribution f0(p). It is left as an exercise for
the student to verify that

v̄rel ≡ 〈 |v − v′| 〉 = 4√
π

(
kBT

m

)1/2
. (8.98)

Note that v̄rel =
√
2 v̄, where v̄ is the average particle speed. Let σ be the total scattering cross section,

which for hard spheres is σ = πd2, where d is the hard sphere diameter. Then the rate at which particles
scatter is

1

τ
= n v̄rel σ . (8.99)

The particle mean free path is then

ℓ = v̄ τ =
1√
2nσ

. (8.100)

While the scattering length is not temperature-dependent within this formalism, the scattering time is
T -dependent, with

τ(T ) =
1

n v̄rel σ
=

√
π

4nσ

(
m

kBT

)1/2
. (8.101)

As T → 0, the collision time diverges as τ ∝ T−1/2, because the particles on average move more slowly
at lower temperatures. The mean free path, however, is independent of T , and is given by ℓ = 1/

√
2nσ.
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Figure 8.3: Graphic representation of the equation nσ v̄rel τ = 1, which yields the scattering time τ in
terms of the number density n, average particle pair relative velocity v̄rel, and two-particle total scatter-
ing cross section σ. The equation says that on average there must be one particle within the tube.

8.5.3 Thermal conductivity

We consider a system with a temperature gradient ∇T and seek a steady state (i.e. time-independent)
solution to the Boltzmann equation. We assume Fα = Qαβ = 0. Appealing to eqn. 8.93, and using the
relaxation time approximation for the collision integral, we have

δf = −
τ(ε− cp T )

kBT
2

(v ·∇T ) f0 . (8.102)

We are now ready to compute the energy and particle currents. In order to compute the local density of
any quantity A(r,p), we multiply by the distribution f(r,p) and integrate over momentum:

ρ
A
(r, t) =

∫
d3pA(r,p) f(r,p, t) , (8.103)

For the energy (thermal) current, we letA = ε vα = ε pα/m, in which case ρ
A
= jα . Note that

∫
d3pp f0 =

0 since f0 is isotropic in p even when µ and T depend on r. Thus, only δf enters into the calculation of
the various currents. Thus, the energy (thermal) current is

jαε (r) =

∫
d3p ε vα δf = − nτ

kBT
2

〈
vαvβ ε (ε− cp T )

〉 ∂T
∂xβ

, (8.104)

where the repeated index β is summed over, and where momentum averages are defined relative to the
equilibrium distribution, i.e.

〈φ(p) 〉 =
∫
d3p φ(p) f0(p)

/∫
d3p f0(p) =

∫
d3v P (v)φ(mv) . (8.105)

In this context, it is useful to invoke the identity d3p f0(p) = n d3v P (v) , where

P (v) =

(
m

2πkBT

)3/2
e−m(v−V )2/2kBT (8.106)

is the Maxwell velocity distribution.

Note that if φ = φ(ε) is a function of the energy, and if V = 0, then

d3p f0(p) = n d3v P (v) = n P̃ (ε) dε , (8.107)
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where

P̃ (ε) = 2√
π
(kBT )

−3/2 ε1/2 e−ε/kBT , (8.108)

is the Maxwellian distribution of single particle energies. The normalized distribution satisfies
∞∫
0

dε P̃ (ε) =

1. Averages with respect to this distribution are given by

〈φ(ε) 〉 =
∞∫

0

dε φ(ε) P̃ (ε) = 2√
π
(kBT )

−3/2

∞∫

0

dε ε1/2 φ(ε) e−ε/kBT . (8.109)

If φ(ε) is homogeneous, then for any α we have

〈 εα 〉 = 2√
π
Γ
(
α+ 3

2

)
(kBT )

α . (8.110)

Due to spatial isotropy, it is clear that we can replace vα vβ by 1
3 v

2 δαβ and then ε = 1
2mv2 in eqn. 8.104..

We then have jε = −κ∇T , with

κ =
2nτ

3mkBT
2
〈 ε2
(
ε− cp T

)
〉 = 5nτk2BT

2m
= π

8nℓv̄ cp , (8.111)

where cp =
5
2kB and v̄2 = 8kBT

πm . The quantity κ is called the thermal conductivity. Note that κ ∝ T 1/2.

8.5.4 Viscosity

Consider the situation depicted in fig. 8.4. A fluid filling the space between two large flat plates at z = 0
and z = d is set in motion by a force F = F x̂ applied to the upper plate; the lower plate is fixed. It
is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the top have
an average x-component of their momentum 〈px〉 = mV . As these particles move downward toward
lower z values, they bring their x-momenta with them. Therefore there is a downward (−ẑ-directed)
flow of 〈px〉. Since x-momentum is constantly being drawn away from z = d plane, this means that
there is a −x-directed viscous drag on the upper plate. The viscous drag force per unit area is given
by Fdrag/A = −ηV/d, where V/d = ∂Vx/∂z is the velocity gradient and η is the shear viscosity. In
steady state, the applied force balances the drag force, i.e. F + Fdrag = 0. Clearly in the steady state the

net momentum density of the fluid does not change, and is given by 1
2ρV x̂, where ρ is the fluid mass

density. The momentum per unit time injected into the fluid by the upper plate at z = d is then extracted
by the lower plate at z = 0. The momentum flux density Πxz = n 〈 px vz 〉 is the drag force on the upper

surface per unit area: Πxz = −η ∂Vx
∂z . The units of viscosity are [η] =M/LT .

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second
type of viscosity, called second viscosity or bulk viscosity, which is measurable although not by the type
of experiment depicted in fig. 8.4.

The momentum flux tensor Παβ = n 〈 pα vβ 〉 is defined to be the current of momentum component pα in
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Figure 8.4: Gedankenexperiment to measure shear viscosity η in a fluid. The lower plate is fixed. The
viscous drag force per unit area on the upper plate is Fdrag/A = −ηV/d. This must be balanced by an
applied force F .

the direction of increasing xβ . For a gas in motion with average velocity V , we have

Παβ = nm 〈 (Vα + v′α)(Vβ + v′β) 〉
= nmVαVβ + nm 〈 v′αv′β 〉
= nmVαVβ + 1

3nm 〈v′2 〉 δαβ = ρVαVβ + p δαβ ,

(8.112)

where v′ is the particle velocity in a frame moving with velocity V , and where we have invoked the
ideal gas law p = nkBT . The mass density is ρ = nm.

When V is spatially varying,
Παβ = p δαβ + ρVαVβ − σ̃αβ , (8.113)

where σ̃αβ is the viscosity stress tensor. Any symmetric tensor, such as σ̃αβ , can be decomposed into a
sum of (i) a traceless component, and (ii) a component proportional to the identity matrix. Since σ̃αβ
should be, to first order, linear in the spatial derivatives of the components of the velocity field V , there
is a unique two-parameter decomposition:

σ̃αβ = η

(
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2
3 ∇·V δαβ

)
+ ζ∇·V δαβ

= 2η
(
Qαβ − 1

3 Tr (Q) δαβ

)
+ ζ Tr (Q) δαβ .

(8.114)

The coefficient of the traceless component is η, known as the shear viscosity. The coefficient of the com-
ponent proportional to the identity is ζ , known as the bulk viscosity. The full stress tensor σαβ contains a
contribution from the pressure:

σαβ = −p δαβ + σ̃αβ . (8.115)

The differential force dFα that a fluid exerts on on a surface element n̂ dA is dFα = −σαβ nβ dA , where
we are using the Einstein summation convention and summing over the repeated index β. We will now
compute the shear viscosity η using the Boltzmann equation in the relaxation time approximation.

Appealing again to eqn. 8.93, with F = 0 and h = cpT , we find

δf = − τ

kBT

{
mvαvβ Qαβ +

ε− cp T

T
v ·∇T − ε

cV /kB

∇·V
}
f0 . (8.116)
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Figure 8.5: Left: thermal conductivity (λ in figure) of Ar between T = 800K and T = 2600K. The best
fit to a single power law λ = aT b results in b = 0.651. Source: G. S. Springer and E. W. Wingeier, J. Chem
Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (µ in figure) of He between T ≈ 15K and
T ≈ 1000K. The red line has slope 1

2 . The slope of the data is approximately 0.633. Source: J. Kestin and
W. Leidenfrost, Physica 25, 537 (1959).

We assume ∇T = ∇·V = 0, and we compute the momentum flux:

Πxz = n

∫
d3p pxvz δf = −nm

2τ

kBT
Qαβ 〈 vx vz vα vβ 〉

= − nτ

kBT

(
∂Vx
∂z

+
∂Vz
∂x

)
〈mv2x ·mv2z 〉 = −nτkBT

(
∂Vz
∂x

+
∂Vx
∂z

)
.

(8.117)

Thus, if Vx = Vx(z), we have

Πxz = −nτkBT
∂Vx
∂z

(8.118)

from which we read off the viscosity,

η = nkBTτ = π
8nmℓv̄ . (8.119)

Note that η(T ) ∝ T 1/2.

How well do these predictions hold up? In fig. 8.5, we plot data for the thermal conductivity of argon
and the shear viscosity of helium. Both show a clear sublinear behavior as a function of temperature, but
the slope d lnκ/d ln T is approximately 0.65 and d ln η/d ln T is approximately 0.63. Clearly the simple
model is not even getting the functional dependence on T right, let alone its coefficient. Still, our crude
theory is at least qualitatively correct.

Why do both κ(T ) as well as η(T ) decrease at low temperatures? The reason is that the heat current
which flows in response to ∇T as well as the momentum current which flows in response to ∂Vx/∂z
are due to the presence of collisions, which result in momentum and energy transfer between particles.
This is true even when total energy and momentum are conserved, which they are not in the relaxation
time approximation. Intuitively, we might think that the viscosity should increase as the temperature
is lowered, since common experience tells us that fluids ‘gum up’ as they get colder – think of honey
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as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the
crystallization or glass transition which occurs in real fluids when they get sufficiently cold is completely
absent from our approach. In our calculation, viscosity results from collisions, and with no collisions
there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply
pass through each other, as though they were ghosts, then there would be no opposition to maintaining
an arbitrary velocity gradient.

8.5.5 Oscillating external force

Suppose a uniform oscillating external force Fext(t) = F e−iωt is applied. For a system of charged
particles, this force would arise from an external electric field Fext = qE e−iωt, where q is the charge of
each particle. We’ll assume ∇T = 0. The Boltzmann equation is then written

∂f

∂t
+

p

m
· ∂f
∂r

+ F e−iωt · ∂f
∂p

= −f − f0

τ
. (8.120)

We again write f = f0 + δf , and we assume δf is spatially constant. Thus,

∂ δf

∂t
+ F e−iωt · v ∂f

0

∂ε
= −δf

τ
. (8.121)

If we assume δf(t) = δf(ω) e−iωt then the above differential equation is converted to an algebraic equa-
tion, with solution

δf(t) = − τ e−iωt

1− iωτ

∂f0

∂ε
F · v . (8.122)

We now compute the particle current:

jα(r, t) =

∫
d3p v δf =

τ e−iωt

1− iωτ
·
Fβ

kBT

∫
d3p f0(p) vα vβ

=
τ e−iωt

1− iωτ
· nFα

3kBT

∫
d3v P (v)v2 =

nτ

m
· Fα e

−iωt

1− iωτ
.

(8.123)

If the particles are electrons, with charge q = −e, then the electrical current is (−e) times the particle
current. We then obtain

j(elec)α (t) =
ne2τ

m
· Eα e

−iωt

1− iωτ
≡ σαβ(ω) Eβ e

−iωt , (8.124)

where

σαβ(ω) =
ne2τ

m
· 1

1− iωτ
δαβ (8.125)

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons,
we should be using the Fermi distribution in place of the Maxwell-Boltzmann distribution for f0(p).
This affects the relation between n and µ only, and the final result for the conductivity tensor σαβ(ω) is
unchanged.
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8.5.6 Quick and dirty calculation of transport coefficiencs

Suppose we have some averaged intensive quantity φ which is spatially dependent through T (r) or
µ(r) or V (r). For simplicity we will write φ = φ(z). We wish to compute the current of φ across some
surface whose equation is dz = 0. If the mean free path is ℓ, then the value of φ for particles crossing
this surface in the +ẑ direction is φ(z − ℓ cos θ), where θ is the angle the particle’s velocity makes with
respect to ẑ, i.e. cos θ = vz/v. We perform the same analysis for particles moving in the −ẑ direction, for
which φ = φ(z + ℓ cos θ). The current of φ through this surface is then

jφ = nẑ

∫

vz>0

d3v P (v) vz φ(z − ℓ cos θ) + nẑ

∫

vz<0

d3v P (v) vz φ(z + ℓ cos θ)

= −nℓ ∂φ
∂z

ẑ

∫
d3v P (v)

v2z
v

= −1
3nv̄ℓ

∂φ

∂z
ẑ ,

(8.126)

where v̄ =
√

8kBT
πm is the average particle speed. If the z-dependence of φ comes through the dependence

of φ on the local temperature T , then we have

jφ = −1
3 nℓv̄

∂φ

∂T
∇T ≡ −K∇T , (8.127)

where

K = 1
3nℓv̄

∂φ

∂T
(8.128)

is the transport coefficient. If φ = 〈ε〉, then ∂φ
∂T = cp, where cp is the heat capacity per particle at constant

pressure. We then find jε = −κ∇T with thermal conductivity

κ = 1
3nℓv̄ cp . (8.129)

Our Boltzmann equation calculation yielded the same result, but with a prefactor of π
8 instead of 1

3 .

We can make a similar argument for the viscosity. In this case φ = 〈px〉 is spatially varying through its
dependence on the flow velocity V (r). Clearly ∂φ/∂Vx = m, hence

jzpx = Πxz = −1
3nmℓv̄

∂Vx
∂z

, (8.130)

from which we identify the viscosity, η = 1
3nmℓv̄. Once again, this agrees in its functional dependences

with the Boltzmann equation calculation in the relaxation time approximation. Only the coefficients
differ. The ratio of the coefficients is KQDC/KBRT = 8

3π = 0.849 in both cases6.

8.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number

Suppose, under conditions of constant pressure, we add heat q per unit volume to an ideal gas. We
know from thermodynamics that its temperature will then increase by an amount ∆T = q/ncp. If a heat

6Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time approximation’.
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Gas η (µPa · s) κ (mW/m ·K) cp/kB Pr

He 19.5 149 2.50 0.682

Ar 22.3 17.4 2.50 0.666

Xe 22.7 5.46 2.50 0.659

H2 8.67 179 3.47 0.693

N2 17.6 25.5 3.53 0.721

O2 20.3 26.0 3.50 0.711

CH4 11.2 33.5 4.29 0.74

CO2 14.8 18.1 4.47 0.71

NH3 10.1 24.6 4.50 0.90

Table 8.1: Viscosities, thermal conductivities, and Prandtl numbers for some common gases at T = 293K
and p = 1 atm. (Source: Table 1.1 of Smith and Jensen, with data for triatomic gases added.)

current jq flows, then the continuity equation for energy flow requires

ncp
∂T

∂t
+∇ · jq = 0 . (8.131)

In a system where there is no net particle current, the heat current jq is the same as the energy current
jε, and since jε = −κ∇T , we obtain a diffusion equation for temperature,

∂T

∂t
=

κ

ncp
∇2T . (8.132)

The combination a ≡ κ/ncp is known as the thermal diffusivity. Our Boltzmann equation calculation
in the relaxation time approximation yielded the result κ = nkBTτcp/m. Thus, we find a = kBTτ/m
via this method. Note that the dimensions of a are the same as for any diffusion constant D, namely
[a] = L2/T .

Another quantity with dimensions of L2/T is the kinematic viscosity, ν = η/ρ, where ρ = nm is the mass
density. We found η = nkBTτ from the relaxation time approximation calculation, hence ν = kBTτ/m.
The ratio ν/a, called the Prandtl number, Pr = ηcp/mκ, is dimensionless. According to our calculations,

Pr = 1. According to table 8.1, most monatomic gases have Pr ≈ 2
3 .

8.6 Diffusion and the Lorentz model

8.6.1 Failure of the relaxation time approximation

As we remarked above, the relaxation time approximation fails to conserve any of the collisional invari-
ants. It is therefore unsuitable for describing hydrodynamic phenomena such as diffusion. To see this,
let f(r,v, t) be the distribution function, here written in terms of (r,v, t) rather than (r,p, t) as before7.

7The difference is trivial, since p = mv.
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In the absence of external forces, the Boltzmann equation in the relaxation time approximation is

∂f

∂t
+ v · ∂f

∂r
= −f − f0

τ
. (8.133)

We can solve this equation by first defining δf(r,v, t) ≡ f(r,v, t) − f0(v), and then taking the Laplace
transform in time and the Fourier transform in space,

δf̂ (k,v, s) =

∞∫

0

dt e−st

∫
d3r e−ik·r δf(r,v, t) , (8.134)

resulting in

(
s+ iv · k+ τ−1

)
δf̂ (k,v, s) = δf(k,v, t = 0) ⇒ δf̂(k,v, s) =

δf(k,v, t = 0)

s+ iv · k + τ−1
. (8.135)

Taking the inverse transforms,

δf(r,v, t) =

∫
ddk

(2π)3

∫

C

ds

2πi
δf̂(k,v, s) est

=

∫
ddk

(2π)3
δf(k,v, t = 0) eik·r

∫

C

ds

2πi

est

s+ iv · k + τ−1

=

∫
ddk

(2π)3
δf(k,v, t = 0) eik·(r−vt) e−t/τ = δf(r − vt,v, 0) e−t/τ ,

(8.136)

where C is an integration contour from c− i∞ to c+ i∞ where c is chosen so that C lies to the right of all
singularities of the integrand. Thus, choosing an initial distribution is localized at r = 0 and v = v0, we
find it evolves according to

δf(r,v, 0) = N δ(r) δ(v − v0) ⇒ δf(r,v, t) = N δ(r − v0t) δ(v − v0) e
−t/τ . (8.137)

This result is profoundly unphysical – it says that particle number is not conserved. Not only that, but
the spatial distribution remains instantaneously localized about r = vt, whereas we expect that in a
model of random impurity elastic scattering the particle velocity distribution should become isotropic.

8.6.2 Modified Boltzmann equation and its solution

To remedy this unphysical aspect, consider the modified Boltzmann equation,

∂f

∂t
+ v · ∂f

∂r
=

1

τ

[
− f +

∫
dv̂

4π
f

]
≡ 1

τ

(
P − 1

)
f , (8.138)

where P is a projector onto a space of isotropic functions of v: PF =
∫

dv̂
4π F (v) =

∫
dv̂
4π F (v v̂) for any

function F (v). Note that PF is a function of the speed v = |v|. Since the equilibrium distribution
f0(v) = f0(v) is the Maxwell distribution, it is isotropic in velocity space, i.e. f0(v) = f0(v), we have
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that (P−1)f0(v) = 0, and thus the above modified Boltzmann equation holds for f as well as for δf . Note
that the number density n(r, t) =

∫
d3v f(r,v, t) and number current density j(r, t) =

∫
d3v f(r,v, t)v

satisfy the continuity equation

∂n(r, t)

∂t
+∇·j(r, t) = 0 , (8.139)

since integrating over v̂ annihilates the RHS of eqn. 8.138 for all (r, v). Thus, total particle number is
conserved, which is not the case in the naı̈ve relaxation time approximation.

The model in eqn. 8.138 is known as the Lorentz model8. To solve it, we again begin with the double
Laplace-Fourier transform,

f̂(k,v, s) =

∞∫

0

dt e−st

∫
d3r e−ik·r f(r,v, t) . (8.140)

Applying this transform to eqn. 8.138, we obtain

(
s+ iv · k + τ−1

)
f̂(k,v, s) = τ−1

Pf̂(k,v, s) + f(k,v, t = 0) . (8.141)

We now solve for Pf̂(k,v, s):

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1
Pf̂(k,v, s) +

f(k,v, t = 0)

s+ iv · k + τ−1
, (8.142)

which entails

Pf̂(k,v, s) =

[∫
dv̂

4π

τ−1

s+ iv · k + τ−1

]
Pf̂(k,v, s) +

∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
. (8.143)

Now we have

∫
dv̂

4π

τ−1

s+ iv · k+ τ−1
=

1∫

−1

dx
τ−1

s+ ivkx+ τ−1
=

1

vk
tan−1

(
vkτ

1 + τs

)
. (8.144)

Thus,

Pf(k,v, s) =

[
1− 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
. (8.145)

We now have the solution to Lorentz’s modified Boltzmann equation:

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1

[
1− 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
+

f(k,v, t = 0)

s+ iv · k + τ−1
.

(8.146)

8See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.
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Thus,

f(r,v, t) =

∫
d3k

(dπ)3
eik·r

∫

C

ds

2πi
est





τ−1

s+ iv · k + τ−1

[
1− 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1





+ f(r − vtv, 0) e−t/τ . (8.147)

Note that the last term f(r − vt,v, 0) exp(−t/τ) vanishes as t → ∞. However, we have already seen
that the full expression must satisfy the continuity equation for n(r, t). We will now show that in the
long time limit, when the exponentially decaying transient may be neglected, the remaining result is an
expanding cloud describing isotropic particle diffusion.

Let us again consider an initial distribution which is perfectly localized in both r and v:

f(r,v, t = 0) = N δ(r) δ(v − v0) . (8.148)

For these initial conditions, we find
∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
=

1

s+ iv0 · k + τ−1
· N δ(v − v0)

4πv20
. (8.149)

We are interested in the long time limit of f(r, v, t), where t ≫ τ . Long times are dominated in the
Laplace transform by s ∼ t−1. We also assume the distribution in space becomes smooth, as we shall
show, and expand in the regime where sτ ≪ 1 and vkτ ≪ 1. We then have

1− 1

vkτ
tan−1

(
vkτ

1 + τs

)
= sτ + 1

3k
2v2τ2 + . . . , (8.150)

and therefore

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1
· τ−1

s+ iv0 · k + τ−1
· 1

s+ 1
3v

2
0 k

2 τ + . . .
· N δ(v − v0)

4πv20
+

N δ(v − v0)

s+ iv0 · k+ τ−1

≈ 1

s+ 1
3v

2
0 k

2 τ
· N δ(v − v0)

4πv20
+

N δ(v − v0)

s+ iv0 · k + τ−1
, (8.151)

since τ−1 is dominant over s and iv · k in the denominators of the the first two multiplicative factors on
the RHS of the top equation. We then have

f̂(k,v, s) ≈ 1

s+ 1
3v

2
0 k

2 τ
· N δ(v − v0)

4πv20
+

N δ(v − v0)

s+ iv0 · k+ τ−1
. (8.152)

Performing the inverse Laplace and Fourier transforms, and dropping the transient term for t ≫ τ , we
obtain our final result,

f(r,v, t ≫ τ) = (4πDt)−3/2 e−r2/4Dt · N δ(v − v0)

4πv20
, (8.153)

where the diffusion constant is D = 1
3v

2
0 τ . The units are [D] = L2/T . Integrating over velocities, we have

the density

n(r, t ≫ τ) =

∫
d3v f(r,v, t≫ τ) = N (4πDt)−3/2 e−r2/4Dt . (8.154)

Note that
∫
d3r n(r, t ≫ τ) = N at all times in this limit. In addition to particle number being conserved,

we see that the late time distribution f(r,v, t≫ τ) is isotropic in both r as well as v.
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8.7 Linearized Boltzmann Equation

8.7.1 Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision
term in the linear approximation. We will assume time-reversal symmetry, in which case

(
df

dt

)

coll

=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p

′,p′
1 |p,p1)

{
f(p′) f(p′

1)− f(p) f(p1)
}

. (8.155)

The collision integral is nonlinear in the distribution f . We linearize by writing

f(p) = f0(p) + f0(p)ψ(p) , (8.156)

where we assume ψ(p) is small. We then have, to first order in ψ,

(
df

dt

)

coll

= f0(p) L̂ψ +O(ψ2) , (8.157)

where the action of the linearized collision operator is given by

L̂ψ =

∫
d3p1

∫
d3p′
∫
d3p′1 w(p

′,p′
1 |p,p1) f

0(p1)
{
ψ(p′) + ψ(p′

1)− ψ(p)− ψ(p1)
}

=

∫
d3p1

∫
dΩ |v − v1|

dσ

dΩ
f0(p1)

{
ψ(p′) + ψ(p′

1)− ψ(p)− ψ(p1)
}

,

(8.158)

where we have invoked eqn. 8.56 to write the RHS in terms of the differential scattering cross section.
In deriving the above result, we have made use of the detailed balance relation,

f0(p) f0(p1) = f0(p′) f0(p′
1) . (8.159)

We have also suppressed the r dependence in writing f(p), f0(p), and ψ(p).

From eqn. 8.93, we then have the linearized equation

(
L̂− ∂

∂t

)
ψ = Y, (8.160)

where, for point particles,

Y =
1

kBT

{
ε(p)− cpT

T
v ·∇T +mvαvβ Qαβ − kB ε(p)

cV
∇·V − F · v

}
. (8.161)

Eqn. 8.160 is an inhomogeneous linear equation, which can be solved by inverting the operator L̂− ∂
∂t .
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8.7.2 Linear algebraic properties of L̂

Although L̂ is an integral operator, it shares many properties with other linear operators with which
you are familiar, such as matrices and differential operators. We can define an inner product9,

〈ψ1 |ψ2 〉 ≡
∫
d3p f0(p)ψ1(p)ψ2(p) . (8.162)

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor
f0(p) is included in the metric. This is necessary in order that L̂ be self-adjoint: 〈ψ1 | L̂ψ2 〉 = 〈 L̂ψ1 |ψ2 〉 .

We can now define the spectrum of normalized eigenfunctions of L̂, which we write as φn(p). The eigen-
functions satisfy the eigenvalue equation,

L̂ φn = −λn φn , (8.163)

and may be chosen to be orthonormal, i.e. 〈φm |φn 〉 = δmn . Of course, in order to obtain the eigenfunc-
tions φn we must have detailed knowledge of the function w(p′,p′

1 |p,p1).

Recall that there are five collisional invariants, which are the particle number, the three components of
the total particle momentum, and the particle energy. To each collisional invariant, there is an associated
eigenfunction φn with eigenvalue λn = 0. One can check that these normalized eigenfunctions are

φn(p) =
1√
n

, φpα(p) =
pα√
nmkBT

, φε(p) =

√
2

3n

(
ε(p)

kBT
− 3

2

)
. (8.164)

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external
forces, then Y = 0 and the only changes to the distribution are from collisions. The linearized Boltzmann
equation becomes

∂ψ

∂t
= L̂ψ . (8.165)

We can therefore write the most general solution in the form

ψ(p, t) =
∑

n

′
Cn φn(p) e

−λnt , (8.166)

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues
λn, aside from the five zero eigenvalues for the collisional invariants, must be positive. Any negative
eigenvalue would cause ψ(p, t) to increase without bound, and an initial nonequilibrium distribution
would not relax to the equilibrium f0(p), which we regard as unphysical. Henceforth we will drop the
prime on the sum but remember that Cn = 0 for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

j =

∫
d3p v f(p) =

∫
d3p f0(p)v ψ(p) = 〈v |ψ 〉

jε =

∫
d3p v ε f(p) =

∫
d3p f0(p)v εψ(p) = 〈v ε |ψ 〉

jq =

∫
d3p v (ε− µ) f(p) =

∫
d3p f0(p)v (ε− µ)ψ(p) = 〈v (ε− µ) |ψ 〉 .

(8.167)

9The requirements of an inner product 〈f |g〉 are symmetry, linearity, and non-negative definiteness.
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Note jq = jε − µj.

8.7.3 Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation
takes the form L̂ψ = Y . We may expand ψ in the eigenfunctions φn and write ψ =

∑
nCn φn . Applying

L̂ and taking the inner product with φj , we have

Cj = − 1

λj
〈φj |Y 〉 . (8.168)

Thus, the formal solution to the linearized Boltzmann equation is

ψ(p) = −
∑

n

1

λn
〈φn |Y 〉 φn(p) . (8.169)

This solution is applicable provided |Y 〉 is orthogonal to the five collisional invariants.

Thermal conductivity

For the thermal conductivity, we take ∇T = ∂zT x̂, and

Y =
1

kBT
2

∂T

∂x
·Xκ , (8.170)

whereXκ ≡ (ε− cpT ) vx. Under the conditions of no particle flow (j = 0), we have jq = −κ∂xT x̂. Then
we have

〈Xκ |ψ 〉 = −κ ∂T
∂x

. (8.171)

Viscosity

For the viscosity, we take

Y =
m

kBT

∂Vx
∂y

·Xη , (8.172)

with Xη = vx vy . We then

Πxy = 〈mvx vy |ψ 〉 = −η ∂Vx
∂y

. (8.173)

Thus,

〈Xη |ψ 〉 = − η

m

∂Vx
∂y

. (8.174)
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8.7.4 Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define Ĥ ≡ −L̂. We have that Ĥ is a positive
semidefinite operator, whose only zero eigenvalues correspond to the collisional invariants. We then
have the Schwarz inequality,

〈ψ | Ĥ |ψ 〉 · 〈φ | Ĥ |φ 〉 ≥ 〈φ | Ĥ |ψ 〉2 , (8.175)

for any two Hilbert space vectors |ψ 〉 and |φ 〉. Consider now the above calculation of the thermal
conductivity. We have

Ĥψ = − 1

kBT
2

∂T

∂x
Xκ (8.176)

and therefore

κ =
kBT

2

(∂T/∂x)2
〈ψ | Ĥ |ψ 〉 ≥ 1

kBT
2

〈φ |Xκ 〉2

〈φ | Ĥ |φ 〉
. (8.177)

Similarly, for the viscosity, we have

Ĥψ = − m

kBT

∂Vx
∂y

Xη , (8.178)

from which we derive

η =
kBT

(∂Vx/∂y)
2
〈ψ | Ĥ |ψ 〉 ≥ m2

kBT

〈φ |Xη 〉2

〈φ | Ĥ |φ 〉
. (8.179)

In order to get a good lower bound, we want φ in each case to have a good overlap with Xκ,η. One
approach then is to take φ = Xκ,η, which guarantees that the overlap will be finite (and not zero due to
symmetry, for example). We illustrate this method with the viscosity calculation. We have

η ≥ m2

kBT

〈 vxvy | vxvy 〉2

〈 vxvy | Ĥ | vxvy 〉
. (8.180)

Now the linearized collision operator L̂ acts as

〈φ | L̂ |ψ 〉 =
∫
d3p g0(p)φ(p)

∫
d3p1

∫
dΩ

dσ

dΩ
|v − v1| f0(p1)

{
ψ(p) + ψ(p1)− ψ(p′)− ψ(p′

1)
}

. (8.181)

Here the kinematics of the collision guarantee total energy and momentum conservation, so p′ and p′
1

are determined as in eqn. 8.57.

We have dΩ = sinχdχdϕ , where χ is the scattering angle depicted in fig. 8.6 and ϕ is the azimuthal
angle of the scattering. The differential scattering cross section is obtained by elementary mechanics and
is known to be

dσ

dΩ
=

∣∣∣∣
d(b2/2)

d sinχ

∣∣∣∣ , (8.182)

where b is the impact parameter. The scattering angle is

χ(b, u) = π − 2

∞∫

rp

dr
b√

r4 − b2r2 − 2U(r)r4

m̃u2

, (8.183)
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Figure 8.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact
parameter is b, and χ is the scattering angle. φ0 is the angle through which the relative coordinate moves
between periapsis and infinity.

where m̃ = 1
2m is the reduced mass, and rp is the relative coordinate separation at periapsis, i.e. the

distance of closest approach, which occurs when ṙ = 0, i.e.

1
2m̃u

2 =
ℓ2

2m̃r2p
+ U(rp) , (8.184)

where ℓ = m̃ub is the relative coordinate angular momentum.

We work in center-of-mass coordinates, so the velocities are

v = V + 1
2u v′ = V + 1

2u
′ (8.185)

v1 = V − 1
2u v′

1 = V − 1
2u

′ ,

with |u| = |u′| and û · û′ = cosχ. Then if ψ(p) = vxvy , we have

∆(ψ) ≡ ψ(p) + ψ(p1)− ψ(p′)− ψ(p′
1) =

1
2

(
uxuy − u′xu

′
y

)
. (8.186)

We may write

u′ = u
(
sinχ cosϕ ê1 + sinχ sinϕ ê2 + cosχ ê3

)
, (8.187)

where ê3 = û. With this parameterization, we have

2π∫

0

dϕ 1
2

(
uαuβ − u′αu

′
β

)
= −π sin2χ

(
u2 δαβ − 3uαuβ

)
. (8.188)

Note that we have used here the relation

e1α e1β + e2α e2β + e3α e3β = δαβ , (8.189)

which holds since the LHS is a projector
∑3

i=1 |êi〉〈êi|.
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It is convenient to define the following integral:

R(u) ≡
∞∫

0

db b sin2χ(b, u) . (8.190)

Since the Jacobian satisfies ∣∣∣∣ det
(∂v, ∂v1)

(∂V , ∂u)

∣∣∣∣ = 1 , (8.191)

we have

〈 vxvy | L̂ | vxvy 〉 = n2
(

m

2πkBT

)3 ∫
d3V

∫
d3u e−mV 2/kBT e−mu2/4kBT · u · 3π

2 uxuy ·R(u) · vxvy . (8.192)

This yields

〈 vxvy | L̂ | vxvy 〉 = π
40 n

2
〈
u5R(u)

〉
, (8.193)

where

〈
F (u)

〉
≡

∞∫

0

duu2 e−mu2/4kBT F (u)

/ ∞∫

0

duu2 e−mu2/4kBT . (8.194)

It is easy to compute the term in the numerator of eqn. 8.180:

〈 vxvy | vxvy 〉 = n

(
m

2πkBT

)3/2 ∫
d3v e−mv2/2kBT v2x v

2
y = n

(
kBT

m

)2
. (8.195)

Putting it all together, we find

η ≥ 40 (kBT )
3

πm2

/〈
u5R(u)

〉
. (8.196)

The computation for κ is a bit more tedious. One has ψ(p) = (ε− cpT ) vx, in which case

∆(ψ) = 1
2m
[
(V · u)ux − (V · u′)u′x

]
. (8.197)

Ultimately, one obtains the lower bound

κ ≥ 150 kB (kBT )
3

πm3

/〈
u5R(u)

〉
. (8.198)

Thus, independent of the potential, this variational calculation yields a Prandtl number of

Pr =
ν

a
=
η cp
mκ

= 2
3 , (8.199)

which is very close to what is observed in dilute monatomic gases (see Tab. 8.1).
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While the variational expressions for η and κ are complicated functions of the potential, for hard sphere
scattering the calculation is simple, because b = d sinφ0 = d cos(12χ), where d is the hard sphere diameter.
Thus, the impact parameter b is independent of the relative speed u, and one finds R(u) = 1

3d
3. Then

〈
u5R(u)

〉
= 1

3d
3
〈
u5
〉
=

128√
π

(
kBT

m

)5/2
d2 (8.200)

and one finds

η ≥ 5 (mkBT )
1/2

16
√
π d2

, κ ≥ 75 kB

64
√
π d2

(
kBT

m

)1/2
. (8.201)

8.8 The Equations of Hydrodynamics

We now derive the equations governing fluid flow. The equations of mass and momentum balance are

∂ρ

∂t
+∇·(ρV ) = 0 (8.202)

∂(ρVα)

∂t
+
∂Παβ

∂xβ
= 0 , (8.203)

where

Παβ = ρVαVβ + p δαβ −

σ̃αβ︷ ︸︸ ︷{
η

(
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2
3 ∇·V δαβ

)
+ ζ∇·V δαβ

}
. (8.204)

Substituting the continuity equation into the momentum balance equation, one arrives at

ρ
∂V

∂t
+ ρ (V ·∇)V = −∇p+ η∇2V + (ζ + 1

3η)∇(∇·V ) , (8.205)

which, together with continuity, are known as the Navier-Stokes equations. These equations are supple-
mented by an equation describing the conservation of energy,

T
∂s

∂T
+ T ∇·(sV ) = σ̃αβ

∂Vα
∂xβ

+∇·(κ∇T ) . (8.206)

Note that the LHS of eqn. 8.205 is ρDV /Dt, where D/Dt is the convective derivative. Multiplying by
a differential volume, this gives the mass times the acceleration of a differential local fluid element. The
RHS, multiplied by the same differential volume, gives the differential force on this fluid element in a
frame instantaneously moving with constant velocity V . Thus, this is Newton’s Second Law for the
fluid.

8.9 Appendix I : The BBGKY Hierarchy and the Boltzmann Equation

The procedure by which the Boltzmann equation for a gas is obtained from N -particle Hamiltonian
dynamics of its constituent particles is known as the Boltzmann-Grad limit. An excellent source, which we
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follow here, is Kardar (Particles), §3.3. The formal derivation of the Boltzmann equation from reversible
hard sphere dynamics in the low-density limit is generally credited to R. Lanford, “Time Evolution of
Large Classical Systems” in Dynamical Systems, Theory and Applications (Springer Lecture Notes in
Physics, 1975).

8.9.1 BBGKY Hierarchy

We start with the time-dependent distribution function, ̺N (x1, . . . ,xN ,p1, . . . ,pN , t), onN -particle phase
space, which is assumed normalized according to

∫ N∏

j=1

dµj ̺N (x1, . . . ,xN ,p1, . . . ,pN , t) = 1 , (8.207)

where dµj ≡ ddxj d
dpj (we assume d = 3). We define the s-particle distribution function,

fs
(
{xi}, {pi}, t

)
=

N !

(N − s)!

∫ N∏

i=s+1

dµi ̺N
(
{xj}, {pj}, t

)
≡ N !

(N − s)!
̺s
(
{xi}, {pi}, t

)
. (8.208)

We adopt the notation that {xj} ≡ {x1, . . . ,xs} when it appears as an argument of a function fs or ̺s ,

and similarly for {pj} . The dynamics of ̺N are given by Liouville’s equation, ∂t ̺N + {̺N ,HN} = 0,
where

HN

(
{xj}, {pj}

)
=

N∑

j=1

[
p2
j

2m
+ v(xj)

]
+

N∑

i<j

u(xi − xn) , (8.209)

where v(x) is an external potential. We may write, for any s ∈ {1, . . . , N},

HN = Hs + H̄s +H ′
s , (8.210)

where

Hs =

s∑

j=1

[
p2
j

2m
+ v(xj)

]
+

s∑

0<i<j

u(xi − xn)

H̄s =
N∑

j=s+1

[
p2
j

2m
+ v(xj)

]
+

N∑

s<i<j

u(xi − xn)

H ′
s =

s∑

i=1

N∑

j=s+1

u(xi − xj) .

(8.211)

We further assume that u(xi − xj) = u(xi − xj) is a central potential.

The dynamics of ̺s is then given by

∂̺s
∂t

=

∫ N∏

j=s+1

dµj
∂̺N
∂t

= −
∫ N∏

j=s+1

dµj
{
̺N ,Hs + H̄s +H ′

s

}
. (8.212)
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We now evaluate each of the three contributions to the Poisson bracket.

The first contribution is easy:

[
∂̺s
∂t

]

(1)

= −
∫ N∏

j=s+1

dµj
{
̺N ,Hs

}
= −

{
̺s,Hs

}
. (8.213)

The second contribution is

[
∂̺s
∂t

]

(2)

= −
∫ N∏

j=s+1

dµj
{
̺N , H̄s

}

=

∫ N∏

j=s+1

dµj

N∑

k=s+1

[
∂̺N
∂pk

· ∂H̄s

∂xk

− ∂̺N
∂xk

· ∂H̄s

∂pk

]

=

∫ N∏

j=s+1

dµj

N∑

k=s+1

[
∂̺N
∂pk

·

independent of pk︷ ︸︸ ︷(
∂v(xk)

∂xk

+
1

2

N∑

ℓ=s+1

∂u(xk − xℓ)

∂xk

)
−∂̺N
∂xk

· pk

m

]
= 0 .

(8.214)

Here we integrate by parts on both terms inside the square brackets. The term in rounded brackets is
independent of pk, while pk/m is independent of xk . Thus, the second contribution vanishes.

The third contribution is

[
∂̺s
∂t

]

(3)

= −
∫ N∏

j=s+1

dµj
{
̺N ,H

′
s

}

=

∫ N∏

j=s+1

dµj

s∑

k=1

N∑

ℓ=s+1

(
∂ρN
∂pk

· ∂u(xk − xℓ)

∂xk

− ∂ρN
∂pℓ

· ∂u(xk − xℓ)

∂xℓ

)

= (N − s)

∫
dµs+1

s∑

k=1

∂u(xk − xs+1)

∂xk

· ∂

∂pk

(∫ N∏

ℓ=s+2

dµℓ ̺N

)

(8.215)

Thus, we arrive at

∂̺s
∂t

+
{
ρs,Hs

}
= (N − s)

∫
dµs+1

s∑

k=1

∂u(xk − xs+1)

∂xk

· ∂̺s+1

∂pk

, (8.216)

or

∂fs
∂t

+
{
fs,Hs

}
=

∫
dµs+1

s∑

k=1

∂u(xk − xs+1)

∂xk

· ∂fs+1

∂pk

. (8.217)

This is the BBGKY hierarchy.
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8.9.2 Boltzmann equation

At each level of the hierarchy, we may identify three types of terms, each of which is associated with its
own time scale. The size of each type is roughly inversely proportional to its characteristic time scale10.
The first type of term arises from the noninteracting terms in Hs , i.e. the one-body terms, which do
not involve the interaction potential u(xi − xj). The time scale associated with these terms behaves as
τv ∼ L/V , where V is a characteristic velocity and L the linear system size. This extrinsic scale becomes
arbitrarily large as L → ∞. The second type of term are those on the LHS of the equation for ̺s.
Assuming u(x) is short-ranged, such as a van der Waals or Lennard-Jones potential, the typical distance
scale is d ∼ 1 Å, which entails a collision time τc ∼ 10−12 s. Finally, the third type at each level are terms
on the RHS which are proportional to the interaction potential u. Because the distribution function fs+1

enters, these terms require an additional particle be present, and the time constant is longer than τ by a
factor nd3 ∼ 104. One concludes that the terms proportional to nd3/τc that appear on the RHS at each
level may be dropped, because they are dominated by the terms proportional to 1/τc on the LHS at any
given level. This means that each level of the hierarchy provides a closed equation for fs , with the sole
exception of s = 1, where there is no interaction term on the LHS.

At level s = 2, the equation for f2 is
{
∂

∂t
+

p1

m
· ∂

∂x1

+
p2

m
· ∂

∂x2

− ∂u(x2 − x1)

∂x1

· ∂

∂p1

− ∂u(x2 − x1)

∂x2

· ∂

∂p2

}
f2(x1,x2,p1,p2, t) = 0 . (8.218)

On time scales long compared with τc, the distribution f2 reaches a steady state value. In the pres-
ence of slowly time-varying parameters such as the temperature T (r, t) or chemical potential µ(r, t),
or in the presence of a time-dependent external force F (r, t), the distribution f2 will evolve, but on a
longer time scale associated with these respective variations. Therefore we can fix the time t and freeze
these slow changes and ask about the steady state distribution f ss2 (x1,x2,p1,p2, t) . In discussing the
‘instantaneous steady state’ – a seemingly nonsensical collocation which however has meaning given
the aforementioned separation of time scales – we suppress for the moment the t label and we de-
fine φ(X,x,p1,p2) ≡ f2(x1,x2,p2,p2), where X ≡ 1

2(x2 + x2) is the center-of-mass coordinate and
x ≡ x2 − x1 is the relative coordinate. We then have

{(
p1 + p2

2m

)
· ∂

∂X
+

(
p1 − p2

m

)
· ∂
∂x

+∇u(x) ·
(

∂

∂p1

− ∂

∂p2

)}
φ(X,x,p1,p2) = 0 . (8.219)

We recognize this as a linear partial differential equation in the 12 variables {x1,x2,p1,p2}, which, in
principle, may be solved by the method of characteristics. This entails introducing a scalar variable τ
and solving the coupled ODEs

dX

dτ
=

p1 + p2

2m
,

dx

dτ
=

p2 − p1

m
,

dp1

dτ
= ∇u(x) ,

dp2

dτ
= −∇u(x) . (8.220)

This defines a path in the 12-dimensional space. Along such a path,

dφ
(
X(τ),x(τ),p1(τ),p2(τ)

)

dτ
=

∂φ

∂X
· dX
dτ

+
∂φ

∂x
· dx
dτ

+
∂φ

∂p1

· dp1

dτ
+

∂φ

∂p2

· dp2

dτ
= 0 . (8.221)

10See Kardar §3.3 for a more detailed discussion.
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The N = 12 variable PDE of eqn. 8.218 thus has been converted into a system of N + 1 = 13 coupled
ODEs of eqns. 8.220 and 8.221. We see that τ functions as a time variable, and the coupled ODEs of eqn.
8.220 are simply Hamilton’s equations of motion. Note that P ≡ p1 + p2 satisfies dP /dt = 0 and we
have the familiar CM motion X(τ) = P τ/M , with M = 2m the total mass. Initial conditions for the
N variables w = {w1, . . . , wN} at τ = 0 are specified by fixing a hypersurface parameterized by N − 1
variables ζ = {ζ1, . . . , ζN−1}, where

wj(τ = 0) = hj(ζ1, . . . , ζN−1) , φ(τ = 0) = F (ζ1, . . . , ζN−1) , (8.222)

and where the {hj(ζ)} define the hypersurface. A simple way to think of this is to define the hyper-
surface by the relation wN = 0, and take wj(τ = 0) = ζj for j ∈ {1, . . . , N − 1}, i.e. hj(ζ) = ζj . Each

characteristic is labeled by an (N −1)-tuple ζ, and the solution along a characteristic is φ(w) = φ(τ ; ζ)11.

Now we turn to level s = 1 of the hierarchy, where we have

∂f

∂t
+

p1

m
· ∂f
∂x1

−∇v(x1) ·
∂f

∂p1

=

∫
dµ2

∂u(x2 − x1)

∂x1

·
(
∂f2
∂p1

− ∂f2
∂p2

)
(8.223)

We now invoke the relation

−∇u(x) ·
(
∂f2
∂p1

− ∂f2
∂p2

)
=

(
p1 + p2

2m

)
· ∂f2
∂X

+

(
p1 − p2

m

)
· ∂f2
∂x

, (8.224)

leading us to

∂f

∂t
+

p1

m
· ∂f
∂x1

−∇v(x1) ·
∂f

∂p1

=

∫
d3p2

∫
d3x

(
p1 − p2

m

)
· ∂f2(x1,x1 + x,p1,p2, t)

∂x
, (8.225)

where we have restored the time label t. In arriving at this last equation, note that we have dropped
terms proportional fo ∂f2/∂X . This is justified by the presumption that the center-of-mass dynamics
are relatively slow. Note also that on the RHS we are expressing the spatial coordinates in terms of x1

and x, hence we have substituted x2 = x1 + x in the second vector argument of f2 .

Consider the integral on the RHS of eqn. 8.225 over the relative coordinate x. Following Kardar, at fixed
x1, p1, and p2 , we choose a coordinate system for x where one axis is parallel to n̂ = (p1−p2)/|p1−p2|
and write

x = x‖ n̂+ b , (8.226)

where n̂ · b = 0. The vector b is known as the impact parameter vector. We then have

(
df

dt

)

coll

=

∫
d3p2

∫
d2b

∣∣∣∣
p1 − p2

m

∣∣∣∣
{
f̃+2 (x1, b,p1,p2, t)− f̃−2 (x1, b,p1,p2, t)

}
, (8.227)

where
f̃±2 (x1, b,p1,p2, t) ≡ f2(x1,x1 + x+⊥ n̂+ b,p1,p2, t) , (8.228)

and where x±‖ is the value of n̂ · x after (+) or before (−) the collision. We assume the potential u(x) is

sufficiently short-ranged that x±‖ may be evaluated a short distance from the collision center x = 0. In a

11If two characteristics cross, a shock has occurred.
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scattering process, the momenta p1 and p2 prior to the scattering event evolve into p′
1 and p′

2 after the
event. The relation between the incoming and outgoing momenta is given by eqn. 8.57, i.e.

p′
1 =

1
2

(
p1 + p2 + |p1 − p2| Ω̂

)

p′
2 =

1
2

(
p1 + p2 − |p1 − p2| Ω̂

)
,

(8.229)

where Ω̂ = Ω̂(b) is a unit vector which is determined by the impact parameter vector b. Assuming the
system is time-reversal invariant, we may relate f̃+2 and f̃−2 by

f̃+2 (x1, b,p1,p2, t) = f̃−2 (x1, b,p
′
1,p

′
2, t) . (8.230)

This suggests that we could write the collision integral in either of two ways:

(
df

dt

)

coll,−
=

∫
d3p2

∫
dΩ

dσ

dΩ
|v1 − v2|

{
f̃−2 (x1, b,p

′
1,p

′
2, t)− f̃−2 (x1, b,p1,p2, t)

}

(
df

dt

)

coll,+

=

∫
d3p2

∫
dΩ

dσ

dΩ
|v1 − v2|

{
f̃+2 (x1, b,p1,p2, t)− f̃+2 (x1, b,p

′
1,p

′
2, t)

}
.

(8.231)

Here we have also written

d2b =
dσ

dΩ
dΩ , (8.232)

where dΩ is the differential solid angle of the scattering process. The expression dσ/dΩ, which should
be familiar from both classical mechanics and quantum mechanics, is the differential scattering cross-
section. We assume there is a unique relationship between the scattering direction Ω̂(b) and the impact
parameter vector b, which is to say that the b plane can be mapped to the unit sphere Ω̂(b) in a one-
to-one fashion. In general, dσ

dΩ → 0 for |b| ≫ rc , where rc is the length scale over which the scattering
occurs, which is presumed to be microscopic. At long last, we make the assumption,

f̃±2 (x1, b,p1,p2, t) ≈ f1(x1,p1, t)× f1(x2,p2, t) . (8.233)

This is known as the Stosszahlanzatz or the hypothesis of molecular chaos, and amounts to assuming that
the velocities of colliding particles are uncorrelated. But are they uncorrelated before (−) or after (+) the
collision? The answer makes a huge difference! It determines which of the candidate collision integrals
in eqn. 8.231 is correct.

Our Boltzmann equation for the one-body distribution f(r,p, t) is now given by

(
df

dt

)

coll

= ±
∫
d3p1

∫
dΩ

dσ

dΩ

∣∣∣∣
p− p1

m

∣∣∣∣
{
f(r,p, t)f(r,p1, t)− f(r,p′, t)f(r,p′

1, t)
}

= ±
∫
d3p1

∫
d3p′

∫
d3p′1 w(p,p1 |p′,p′

1)
{
f(r,p, t)f(r,p1, t)− f(r,p′, t)f(r,p′

1, t)
} (8.234)

where we have used eqn. 8.41 in the last line. According to the results of §8.3.7, we see that choosing
f̃+2 in eqn. 8.233 results in a generically positive source for Boltzmann’s H density (h), which is to say
∂t h + ∇ · j ≥ 0, so for this choice we have an “anti H-theorem”. Thermodynamically, this means that
entropy of an isolated system decreases (since S = −kBH), which is the exact opposite of what the second
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law of thermodynamics requires. Thus, the correct choice is to take f̃−2 in eqn. 8.233, in which case our
Boltzmann equation takes the final form12

∂f

∂t
+

p

m
· ∂f
∂r

−∂v
∂r

· ∂f
∂p

=

∫
d3p1

∫
d3p′

∫
d3p′1 w(p,p1 |p′,p′

1)
{
f(r,p′, t)f(r,p′

1, t)−f(r,p, t)f(r,p1, t)
}

.

(8.235)

Why is it necessary to invoke the Stosszahlansatz for particles which are just about to collide, but not for
particles which have just collided? This is a deep question, and the essence of Loschmidt’s objection
to the Boltzmann equation and the H-theorem it entails (also called Lohschmidt’s paradox) – how can
irreversibility result from microscopic dynamics which are invariant under time-reversal? As Lanford
(1975) stresses, “the BBGKY hierarchy is time-reversal invariant but the Boltzmann equation is not.”
The answer appears to be quite subtle and still somewhat contentious. Bodineau et al.13 claim that the
BBGKY dynamics for dilute hard spheres in d dimensions14 converges to the solution of the Boltzmann
equation, i.e. one must specify pre-collisional data.

8.10 Appendix II : Boltzmann Equation and Collisional Invariants

Problem : The linearized Boltzmann operator Lψ is a complicated functional. Suppose we replace L by
L, where

Lψ = −γ ψ(v, t) + γ

(
m

2πkBT

)3/2∫
d3u exp

(
− mu2

2kBT

)

×
{
1 +

m

kBT
u · v +

2

3

(
mu2

2kBT
− 3

2

)(
mv2

2kBT
− 3

2

)}
ψ(u, t) .

(8.236)

Show that L shares all the important properties of L. What is the meaning of γ? Expand ψ(v, t) in
spherical harmonics and Sonine polynomials,

ψ(v, t) =
∑

rℓm

arℓm(t)Sr

ℓ+
1
2

(x)xℓ/2 Yℓ,m(n̂), (8.237)

with x = mv2/2kBT , and thus express the action of the linearized Boltzmann operator algebraically on
the expansion coefficients arℓm(t).

The Sonine polynomials Sn
α(x) are a complete, orthogonal set which are convenient to use in the calcu-

lation of transport coefficients. They are defined as

Sn
α(x) =

n∑

m=0

Γ(α+ n+ 1) (−x)m
Γ(α+m+ 1) (n −m)!m!

, (8.238)

12Note also that if we were to impose the Stosszahlansatz on each term inside the curly brackets on the RHS of eqn. 8.227, the
collision integral would vanish!

13See T. Bodineau, I. Gallagher, L. Saint-Raymond, and S. Simonella, “One-sided convergence in the Boltzmann-Grad limit,”
Annales de la Faculté des Sciences de Tolouse, vol. XXVIII, no. 5, p. 985 (2018).

14The Boltzmann-Grad limit is defined by N hard spheres each of diameter δ in a box of volume V , with nδd−1ℓ ∼ 1, where
n = N/V → ∞ is the number density of spheres and ℓ is the finite mean free path. Thus δ ∼ n−1/(d−1) → 0.
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and satisfy the generalized orthogonality relation

∞∫

0

dx e−x xα Sn
α(x)S

n′

α (x) =
Γ(α+ n+ 1)

n!
δn,n′ . (8.239)

Solution : The ‘important properties’ of L are that it annihilate the five collisional invariants, i.e. 1, v,
and v2, and that all other eigenvalues are negative. That this is true for L can be verified by an explicit
calculation.

Plugging the conveniently parameterized form of ψ(v, t) into L, we have

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Yℓ,m(n̂) +
γ

2π3/2

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

×
∫
dn̂1

[
1 + 2x1/2x

1/2
1 n̂·n̂1 +

2
3

(
x− 3

2

)(
x1 − 3

2

)]
Sr

ℓ+
1
2

(x1) x
ℓ/2
1 Yℓ,m(n̂1) ,

(8.240)

where we’ve used

u =

√
2kBT

m
x
1/2
1 , du =

√
kBT

2m
x
−1/2
1 dx1 . (8.241)

Now recall Y0,0(n̂) =
1√
4π

and

Y1,1(n̂) = −
√

3

8π
sin θ eiϕ Y1,0(n̂) =

√
3

4π
cos θ Y1,−1(n̂) = +

√
3

8π
sin θ e−iϕ (8.242)

S0
1/2(x) = 1 S0

3/2(x) = 1 S1
1/2(x) =

3
2 − x ,

which allows us to write

1 = 4π Y0,0(n̂)Y
∗
0,0(n̂1)

n̂ ·n̂1 =
4π

3

[
Y1,0(n̂)Y

∗
1,0(n̂1) + Y1,1(n̂)Y

∗
1,1(n̂1) + Y1,−1(n̂)Y

∗
1,−1(n̂1)

]
.

(8.243)

We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and
Sonine polynomials:

∫
dn̂Yℓ,m(n̂)Y ∗

l′,m′(n̂) = δl,l′ δm,m′

∞∫

0

dx e−x xα Sn
α(x)S

n′

α (x) =
Γ(n+ α+ 1)

Γ(n+ 1)
δn,n′ .

(8.244)
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Integrating first over the direction vector n̂1,

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Yℓ,m(n̂)

+
2γ√
π

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

∫
dn̂1

[
Y0,0(n̂)Y

∗
0,0(n̂1)S

0
1/2(x)S

0
1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑

m′=−1

Y1,m′(n̂)Y ∗
1,m′(n̂1)S

0
3/2(x)S

0
3/2(x1)

+ 2
3 Y0,0(n̂)Y

∗
0,0(n̂1)S

1
1/2(x)S

1
1/2(x1)

]
Sr

ℓ+
1
2

(x1) x
ℓ/2
1 Yℓ,m(n̂1) ,

(8.245)

we obtain the intermediate result

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Yℓ,m(n̂)

+
2γ√
π

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

[
Y0,0(n̂) δl,0 δm,0 S

0
1/2(x)S

0
1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑

m′=−1

Y1,m′(n̂) δl,1 δm,m′ S0
3/2(x)S

0
3/2(x1)

+ 2
3 Y0,0(n̂) δl,0 δm,0 S

1
1/2(x)S

1
1/2(x1)

]
Sr

ℓ+
1
2

(x1) x
1/2
1 .

(8.246)

Appealing now to the orthogonality of the Sonine polynomials, and recalling that

Γ(12 ) =
√
π , Γ(1) = 1 , Γ(z + 1) = z Γ(z) , (8.247)

we integrate over x1. For the first term in brackets, we invoke the orthogonality relation with n = 0
and α = 1

2 , giving Γ(32) = 1
2

√
π. For the second bracketed term, we have n = 0 but α = 3

2 , and we
obtain Γ(52) =

3
2 Γ(

3
2), while the third bracketed term involves leads to n = 1 and α = 1

2 , also yielding
Γ(52) =

3
2 Γ(

3
2 ). Thus, we obtain the simple and pleasing result

Lψ = −γ
∑

rℓm

′
arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Yℓ,m(n̂) (8.248)

where the prime on the sum indicates that the set

CI =
{
(0, 0, 0) , (1, 0, 0) , (0, 1, 1) , (0, 1, 0) , (0, 1,−1)

}
(8.249)

are to be excluded from the sum. But these are just the functions which correspond to the five collisional
invariants! Thus, we learn that

ψrℓm(v) = Nrℓm S
r

ℓ+
1
2

(x)xℓ/2 Yℓ,m(n̂), (8.250)
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is an eigenfunction of L with eigenvalue −γ if (r, ℓ,m) does not correspond to one of the five collisional
invariants. In the latter case, the eigenvalue is zero. Thus, the algebraic action of L on the coefficients
arℓm is

(La)rℓm =

{
−γ arℓm if (r, ℓ,m) /∈ CI

= 0 if (r, ℓ,m) ∈ CI
(8.251)

The quantity τ = γ−1 is the relaxation time.

It is pretty obvious that L is self-adjoint, since

〈φ | Lψ 〉 = 〈 Lφ |ψ 〉 ≡
∫
d3v f0(v)φ(v)L[ψ(v)]

= −γ n
(

m

2πkBT

)3/2∫
d3v exp

(
− mv2

2kBT

)
φ(v)ψ(v)

+ γ n

(
m

2πkBT

)3 ∫
d3v

∫
d3u exp

(
− mu2

2kBT

)
exp

(
− mv2

2kBT

)

× φ(v)

[
1 +

m

kBT
u · v +

2

3

(
mu2

2kBT
− 3

2

)(
mv2

2kBT
− 3

2

)]
ψ(u) ,

(8.252)

where n is the bulk number density and f0(v) is the Maxwellian velocity distribution.
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