The full width at half-maximum (FWHM) is 110 MeV. So $\Delta E = 55$ MeV and using $\Delta E_{\min} \Delta t_{\min} = \frac{\hbar}{2}$,

$$\Delta t_{\min} = \frac{\hbar}{2\Delta E} = \frac{6.58 \times 10^{-16} \text{ eV} \cdot \text{s}}{2(55 \times 10^{6} \text{ eV})} \approx 6.0 \times 10^{-24} \text{ s}$$

5-26

5-27

 $\tau = \text{lifetime} \sim 2\Delta t_{\text{min}} = 1.2 \times 10^{-23} \text{ s}$

$$\tau = \text{lifetime} \sim 2\Delta t_{\text{min}} = 1.2 \times 10^{-23} \text{ s}$$
For a single slit with width a, minima are given by $\sin \theta = \frac{n\lambda}{a}$ where $n = 1, 2, 3, ...$ and
$$x = x_1 - \lambda \qquad x_2 - x_3 - x_4 - \lambda \qquad x_3 - x_4 - \lambda \qquad x_4 - x_5 - x_4 - \lambda \qquad x_5 - x_4 - \lambda \qquad x_5 - x_5 - x_4 - \lambda \qquad x_5 - x$$

 $\sin \theta \approx \tan \theta = \frac{x}{L}, \frac{x_1}{L} = \frac{\lambda}{a} \text{ and } \frac{x_2}{L} = \frac{2\lambda}{a} \Rightarrow \frac{x_2 - x_1}{L} = \frac{\lambda}{a} \text{ or } \frac{x_1}{L} = \frac{\lambda}{a} = \frac{\lambda}{a}$

an
$$\theta = \frac{x}{L}$$
, $\frac{x_1}{L} = \frac{\lambda}{a}$ and $\frac{x_2}{L} = \frac{2\lambda}{a} \Rightarrow \frac{x_2 - x_1}{L} = \frac{\lambda}{a}$ or
$$\lambda = \frac{a\Delta x}{L} = \frac{5 \text{ Å} \times 2.1 \text{ cm}}{20 \text{ cm}} = 0.525 \text{ Å}$$

$$\sin \theta \approx \tan \theta = \frac{x}{L}, \frac{x_1}{L} = \frac{y}{a} \text{ and } \frac{x_2}{L} = \frac{z_1}{a} \Rightarrow \frac{x_2}{L} = \frac{y}{a} \text{ or}$$

$$\lambda = \frac{a\Delta x}{L} = \frac{5 \text{ Å} \times 2.1 \text{ cm}}{20 \text{ cm}} = 0.525 \text{ Å}$$

 $E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{(hc)^2}{2mc^2\lambda^2} = \frac{(1.24 \times 10^4 \text{ eV} \cdot \text{Å})^2}{2(5.11 \times 10^5 \text{ eV})(0.525 \text{ Å})^2} = 546 \text{ eV}$

5-32 (a) $f = \frac{E}{h} = \frac{(1.8)(1.6 \times 10^{-19} \text{ J})}{6.63 \times 10^{-34} \text{ J} \cdot \text{s}} = 4.34 \times 10^{14} \text{ Hz}$

(b)
$$\lambda = \frac{c}{f} = 691 \text{ nm}$$

(c)
$$\Delta E \ge \frac{\hbar}{\Delta t} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{2\pi (2 \times 10^{-6} \text{ s})}$$

 $\Delta E \ge 5.276 \times 10^{-29} \text{ J} = 3.30 \times 10^{-10} \text{ eV}$

6-2 (a) Normalization requires

$$1 = \int_{-\infty}^{\infty} |\psi|^2 dx = A^2 \int_{-\frac{L}{4}}^{\frac{L}{4}} \cos^2 \left(\frac{2\pi x}{L}\right) dx = \left(\frac{A^2}{2}\right) \int_{-\frac{L}{4}}^{\frac{L}{4}} \left(1 + \cos\left(\frac{4\pi x}{L}\right)\right) dx$$
 so $A = \frac{2}{\sqrt{L}}$.

(b)
$$P = \int_{0}^{\frac{L}{8}} |\psi|^{2} dx = A^{2} \int_{0}^{\frac{L}{8}} \cos^{2}\left(\frac{2\pi x}{L}\right) dx = \left(\frac{4}{L}\right) \left(\frac{1}{2}\right) \int_{0}^{\frac{L}{8}} \left(1 + \cos\left(\frac{4\pi x}{L}\right) dx\right)$$
$$= \left(\frac{2}{L}\right) \left(\frac{L}{8}\right) + \left(\frac{2}{L}\right) \left(\frac{L}{4\pi}\right) \sin\left(\frac{4\pi x}{L}\right) \int_{0}^{\frac{L}{8}} = \frac{1}{4} + \frac{1}{2\pi} = 0.409$$

6-3 (a)
$$A \sin\left(\frac{2\pi x}{\lambda}\right) = A \sin\left(5 \times 10^{10} x\right) \text{ so } \left(\frac{2\pi}{\lambda}\right) = 5 \times 10^{10} \text{ m}^{-1},$$

$$\lambda = \frac{2\pi}{5 \times 10^{10}} = 1.26 \times 10^{-10} \text{ m}.$$

(b)
$$p = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34} \text{ Js}}{1.26 \times 10^{-10} \text{ m}} = 5.26 \times 10^{-24} \text{ kg m/s}$$

(c)
$$K = \frac{p^2}{2m} \quad m = 9.11 \times 10^{-31} \text{ kg}$$

$$K = \frac{\left(5.26 \times 10^{-24} \text{ kg m/s}\right)^2}{\left(2 \times 9.11 \times 10^{-31} \text{ kg}\right)} = 1.52 \times 10^{-17} \text{ J}$$

$$K = \frac{1.52 \times 10^{-17} \text{ J}}{1.6 \times 10^{-19} \text{ J/eV}} = 95 \text{ eV}$$

6-6

$$\psi(x) = A\cos kx + B\sin kx$$
$$\frac{\partial \psi}{\partial x} = -kA\sin kx + kB\cos kx$$

$$\frac{\partial^2 \psi}{\partial x^2} = -k^2 A \cos kx - k^2 B \sin kx$$

$$\left(\frac{-2m}{\hbar^2}\right)(E-U)\psi = \left(\frac{-2mE}{\hbar^2}\right)(A\cos kx + B\sin kx)$$

The Schrödinger equation is satisfied if $\frac{\partial^2 \psi}{\partial x^2} = \left(\frac{-2m}{\hbar^2}\right)(E-U)\psi$ or

$$-k^{2}\left(A\cos kx+B\sin kx\right)=\left(\frac{-2mE}{\hbar^{2}}\right)\left(A\cos kx+B\sin kx\right).$$

Therefore
$$E = \frac{\hbar^2 k^2}{2m}$$
.

6-9
$$E_n = \frac{n^2 h^2}{8mL^2}$$
, so $\Delta E = E_2 - E_1 = \frac{3h^2}{8mL^2}$
 $\Delta E = (3) \frac{(1240 \text{ eV nm/c})^2}{8(938.28 \times 10^6 \text{ eV/c}^2)(10^{-5} \text{ nm})^2} = 6.14 \text{ MeV}$

$$\lambda = \frac{hc}{\Delta E} = \frac{1240 \text{ eV nm}}{6.14 \times 10^6 \text{ eV}} = 2.02 \times 10^{-4} \text{ nm}$$

This is the gamma ray region of the electromagnetic spectrum.

6-10
$$E_n = \frac{n^2 h^2}{8mL^2}$$
$$\frac{h^2}{8mL^2} = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2}{8\left(9.11 \times 10^{-31} \text{ kg}\right)\left(10^{-10} \text{ m}\right)^2} = 6.03 \times 10^{-18} \text{ J} = 37.7 \text{ eV}$$

(a)
$$E_1 = 37.7 \text{ eV}$$

 $E_2 = 37.7 \times 2^2 = 151 \text{ eV}$
 $E_3 = 37.7 \times 3^2 = 339 \text{ eV}$
 $E_4 = 37.7 \times 4^2 = 603 \text{ eV}$

(b)
$$hf = \frac{hc}{\lambda} = E_{n_i} - E_{n_f}$$

$$\lambda = \frac{hc}{E_{n_i} - E_{n_f}} = \frac{1240 \text{ eV} \cdot \text{nm}}{E_{n_i} - E_{n_f}}$$
For $n_i = 4$, $n_f = 1$, $E_{n_i} - E_{n_f} = 603 \text{ eV} - 37.7 \text{ eV} = 565 \text{ eV}$, $\lambda = 2.19 \text{ nm}$

$$n_i = 4$$
, $n_f = 2$, $\lambda = 2.75 \text{ nm}$

$$n_i = 4$$
, $n_f = 3$, $\lambda = 4.70 \text{ nm}$

$$n_i = 3$$
, $n_f = 1$, $\lambda = 4.12 \text{ nm}$

$$n_i = 3$$
, $n_f = 2$, $\lambda = 6.59 \text{ nm}$

$$n_i = 2$$
, $n_f = 1$, $\lambda = 10.9 \text{ nm}$

6-12
$$\Delta E = \frac{hc}{\lambda} = \left(\frac{h^2}{8mL^2}\right) \left[2^2 - 1^2\right] \text{ and } L = \left[\frac{\left(3/8\right)h\lambda}{mc}\right]^{1/2} = 7.93 \times 10^{-10} \text{ m} = 7.93 \text{ Å}.$$

6-13 (a) Proton in a box of width $L = 0.200 \text{ nm} = 2 \times 10^{-10} \text{ m}$

$$E_1 = \frac{h^2}{8m_p L^2} = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right)^2}{8\left(1.67 \times 10^{-27} \text{ kg}\right)\left(2 \times 10^{-10} \text{ m}\right)^2} = 8.22 \times 10^{-22} \text{ J}$$
$$= \frac{8.22 \times 10^{-22} \text{ J}}{1.60 \times 10^{-19} \text{ J/eV}} = 5.13 \times 10^{-3} \text{ eV}$$

(b) Electron in the same box:

$$E_1 = \frac{h^2}{8m_{\rm e}L^2} = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right)^2}{8\left(9.11 \times 10^{-31} \text{ kg}\right)\left(2 \times 10^{-10} \text{ m}\right)^2} = 1.506 \times 10^{-18} \text{ J} = 9.40 \text{ eV} .$$

- (c) The electron has a much higher energy because it is much less massive.
- 6-16 (a) $\psi(x) = A \sin\left(\frac{\pi x}{L}\right)$, L = 3 Å. Normalization requires

$$1 = \int_{0}^{L} |\psi|^{2} dx = \int_{0}^{L} A^{2} \sin^{2} \left(\frac{\pi x}{L}\right) dx = \frac{LA^{2}}{2}$$

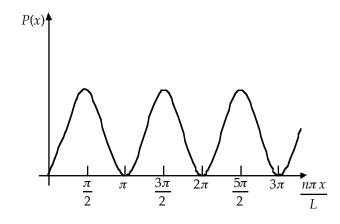
so
$$A = \left(\frac{2}{L}\right)^{1/2}$$

$$P = \int_{0}^{L/3} |\psi|^2 dx = \left(\frac{2}{L}\right) \int_{0}^{L/3} \sin^2\left(\frac{\pi x}{L}\right) dx = \frac{2}{\pi} \int_{0}^{\pi/3} \sin^2\phi d\phi = \frac{2}{\pi} \left[\frac{\pi}{6} - \frac{(3)^{1/2}}{8}\right] = 0.1955.$$

(b)
$$\psi = A \sin\left(\frac{100\pi x}{L}\right), A = \left(\frac{2}{L}\right)^{1/2}$$

$$P = \frac{2}{L} \int_{0}^{L/3} \sin^{2}\left(\frac{100\pi x}{L}\right) dx = \frac{2}{L} \left(\frac{L}{100\pi}\right)^{100\pi/3} \sin^{2}\phi d\phi = \frac{1}{50\pi} \left[\frac{100\pi}{6} - \frac{1}{4}\sin\left(\frac{200\pi}{3}\right)\right]$$
$$= \frac{1}{3} - \left[\frac{1}{200\pi}\right] \sin\left(\frac{2\pi}{3}\right) = \frac{1}{3} - \frac{\sqrt{3}}{400\pi} = 0.3319$$

- (c) Yes: For large quantum numbers the probability approaches $\frac{1}{3}$.
- 6-18 Since the wavefunction for a particle in a one-dimension box of width L is given by $\psi_n = A \sin\left(\frac{n\pi x}{L}\right)$ it follows that the probability density is $P(x) = |\psi_n|^2 = A^2 \sin^2\left(\frac{n\pi x}{L}\right)$, which is sketched below:



From this sketch we see that P(x) is a *maximum* when $\frac{n\pi x}{L} = \frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, ... = $\pi \left(m + \frac{1}{2}\right)$ or when

$$x = \frac{L}{n} \left(m + \frac{1}{2} \right)$$
 $m = 0, 1, 2, 3, ..., n$.

Likewise, P(x) is a minimum when $\frac{n\pi x}{L} = 0$, π , 2π , 3π , ... = $m\pi$ or when

$$x = \frac{Lm}{n}$$
 $m = 0, 1, 2, 3, ..., n$

- 6-29 (a) Normalization requires $1 = \int_{-\infty}^{\infty} |\psi|^2 dx = C^2 \int_{0}^{\infty} e^{-2x} \left(1 e^{-x}\right)^2 dx = C^2 \int_{0}^{\infty} \left(e^{-2x} 2e^{-3x} + e^{-4x}\right) dx.$ The integrals are elementary and give $1 = C^2 \left\{ \frac{1}{2} 2\left(\frac{1}{3}\right) + \frac{1}{4} \right\} = \frac{C^2}{12}.$ The proper units for C are those of $\left(\text{length} \right)^{-1/2}$ thus, normalization requires $C = (12)^{1/2}$ nm $^{-1/2}$.
 - (b) The most likely place for the electron is where the probability $|\psi|^2$ is largest. This is also where ψ itself is largest, and is found by setting the derivative $\frac{d\psi}{dx}$ equal zero:

$$0 = \frac{d\psi}{dx} = C\left\{-e^{-x} + 2e^{-2x}\right\} = Ce^{-x}\left\{2e^{-x} - 1\right\}.$$

The RHS vanishes when $x=\infty$ (a minimum), and when $2e^{-x}=1$, or $x=\ln 2$ nm. Thus, the most likely position is at $x_p=\ln 2$ nm = 0.693 nm.

(c) The average position is calculated from

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi|^2 dx = C^2 \int_{0}^{\infty} x e^{-2x} \left(1 - e^{-x}\right)^2 dx = C^2 \int_{0}^{\infty} x \left(e^{-2x} - 2e^{-3x} + e^{-4x}\right) dx.$$

The integrals are readily evaluated with the help of the formula $\int_{0}^{\infty} xe^{-ax} dx = \frac{1}{a^2}$ to get $(x) = C^2 \left\{ \frac{1}{4} - 2\left(\frac{1}{9}\right) + \frac{1}{16} \right\} = C^2 \left\{ \frac{13}{144} \right\}$. Substituting $C^2 = 12$ nm⁻¹ gives

$$\langle x \rangle = \frac{13}{12} \text{ nm} = 1.083 \text{ nm}.$$

We see that $\langle x \rangle$ is somewhat greater than the most probable position, since the probability density is skewed in such a way that values of x larger than x_p are weighted more heavily in the calculation of the average.

- 6-30 The possible particle positions within the box are weighted according to the probability density $|\psi|^2 = \frac{2}{L}\sin^2\left(\frac{n\pi x}{L}\right)$ The position is calculated as
 - $\langle x \rangle = \int_0^L x |\psi|^2 dx = \frac{2}{L} \int_0^L x \sin^2\left(\frac{n\pi x}{L}\right) dx$. Making the change of variable $\theta = \frac{nx}{L}$ (so that
 - $d\theta = \frac{\pi dx}{L}$) gives $\langle x \rangle = \frac{2L}{\pi^2} \int_0^{\pi} \theta \sin^2 n\theta \ d\theta$. Using the trigonometric identity
 - $2\sin^2\theta = 1 \cos 2\theta$, we get $\langle x \rangle = \frac{L}{\pi^2} \left\{ \int_0^{\pi} \theta \, d\theta \int_0^{\pi} \theta \cos 2n\theta \, d\theta \right\}$. An integration by parts

shows that the second integral vanishes, while the first integrates to $\frac{\pi^2}{2}$. Thus, $\langle x \rangle = \frac{L}{2}$, independent of n. For the computation of $\langle x^2 \rangle$, there is an extra factor of x in the integrand. After changing variables to $\theta = \frac{\pi x}{L}$ we get

- $\left\langle x^2 \right\rangle = \frac{L^2}{\pi^3} \left\{ \int_0^{\pi} \theta^2 d\theta \int_0^{\pi} \theta^2 \cos 2n\theta \ d\theta \right\}$. The first integral evaluates to $\frac{\pi^3}{3}$, the second may be integrated by parts twice to get
 - $\int_{0}^{\pi} \theta^{2} \cos 2n\theta \, d\theta = -\frac{1}{n} \int_{0}^{\pi} \theta \sin 2n\theta \, d\theta = \left(\frac{1}{2n^{2}}\right) \theta \cos 2n\theta \Big|_{0}^{\pi} = \frac{\pi}{2n^{2}}.$
- Then $\langle x^2 \rangle = \frac{L^2}{\pi^3} \left\{ \frac{\pi^3}{3} \frac{\pi}{2n^2} \right\} = \frac{L^2}{3} \frac{L^2}{2(n\pi)^2}$.
- 6-31 The symmetry of $|\psi(x)|^2$ about x = 0 can be exploited effectively in the calculation of average values. To find $\langle x \rangle$

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx$$

We notice that the integrand is antisymmetric about x = 0 due to the extra factor of x (an odd function). Thus, the contribution from the two half-axes x > 0 and x < 0 cancel exactly, leaving $\langle x \rangle = 0$. For the calculation of $\langle x^2 \rangle$, however, the integrand is symmetric and the half-axes contribute equally to the value of the integral, giving

$$\langle x \rangle = \int_{0}^{\infty} x^{2} |\psi|^{2} dx = 2C^{2} \int_{0}^{\infty} x^{2} e^{-2x/x_{0}} dx$$
.

Two integrations by parts show the value of the integral to be $2\left(\frac{x_0}{2}\right)^3$. Upon substituting

for
$$C^2$$
, we get $(x^2) = 2\left(\frac{1}{x_0}\right)(2)\left(\frac{x_0}{2}\right)^3 = \frac{x_0^2}{2}$ and $\Delta x = \left((x^2) - (x)^2\right)^{1/2} = \left(\frac{x_0^2}{2}\right)^{1/2} = \frac{x_0}{\sqrt{2}}$. In

calculating the probability for the interval $-\Delta x$ to $+\Delta x$ we appeal to symmetry once again to write

$$P = \int_{-\Delta x}^{+\Delta x} |\psi|^2 dx = 2C^2 \int_{0}^{\Delta x} e^{-2x/x} dx = -2C^2 \left(\frac{x_0}{2}\right) e^{-2x/x_0} \Big|_{0}^{\Delta x} = 1 - e^{-\sqrt{2}} = 0.757$$

or about 75.7% independent of x_0 .