Introduction to Stochastic SIR Model
Chiu-Yu Yang (Alex), Yi Yang

SIR model is used to model the infection of diseases. It is short for

Susceptible-Infected-Recovered. It is important to address that SIR

model does not work with all diseases. It has several basic assumptions:

1.

The total population is fixed. That is, the birth rate is equal to the

death rate;

. A person from the susceptible group cannot be immune to the

disease. Only the recovered persons are immune and they are

immune lifelong;

. New births belong to the susceptible group. That is, there is no

inherited immunity or mother-to-fetus transmission;

Gender, age and race do not affect this model;

. The members of the groups mix homogeneously.

Details of the model are as following: there is a susceptible
population of size S, an infective population of size | and a population
of recovered populations of size R. The evolution of the populations is

according to the rates
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where N(total population size) is fixed and equal to S+I+R. u is the
birth or death rate per individual, y is the recovery rate and g is the

average number of transmissions from an infected person per unit time.

We define the basic reproductive number R,

__B
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is the number of new infectives produced by one infective introduced in
a completely susceptible population.

The formulas of the model are expressed as

= HWN =) - BT (1)

dl _ SI o
dt—ﬁN (y +

R=N-I-S
The equations can be interpreted: the increase of the susceptible
population equals the new births minus the death from the susceptible
minus the new infected; the increase of the infected group is the new

infected minus the death and the recovered from the infected group.

If R,>1, the system has a unique nontrivial stable equilibrium



(Seqr leq) at

N N
Seq = 7 Ioq =7“(R0—1).

We introduce the dimensionless variables
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and rescale time t to Qt, where Q = /i—B(RO — 1). Then we can get an
0

approximate solution of the system
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where C1 and C2 are two constants yet to be determined and ¢* isa

constant much smaller than 1. Both u and v show exponentially decay
with time, which is not reasonable because disease will not extinct in
reality. To explain such phenomenon, we should pay attention to the
fact that the birth, death, infecting, recovery process are all stochastic.
Mathematically, they yield poisson processes with zero mean and
certain variances. That is, we need to rewrite the equations in stochastic

form:
SI
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where dz,(i=1,2,3) are poisson variables(stochastic terms). dz, is

corresponding to the birth and death process. dz, infecting process and

dz, recovery process and death process. Their variances are
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In order to develop the theory we need to replace the poisson

variables by Brownian variables d4W,, with the same means and
variances. Actually, for small dt and large N, wiener process(Brownian) is
a well approximation of poisson process. So the general SIR equations

are:
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We reform them to be:
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We consider an approximation for solving the stochastic model,

BRI RECTGA I ST

where A(T) and B(T) contain both the slow decay and stochastic part,

and assume that all the stochastic effect is absorbed into A(T) and B(T).

By substitution of (3) into (2), the system becomes

du = (—2b&?[Acost + Bsint] + b[—Asint + B cos t])dt + g,dW; —

b%g,dW,,

dv = [Acost + Bsint]dt + g,dW, — g,dW; (4)

Since A(T) and B(T) contain stochastic term, we could express them in
(i) = () e+ (anm) ®

which dN1, dN2 represent the stochastic form, and f1, f2 serve as the

drift term (deterministic term).

Combined with Ito’s formula,
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and ignoring the second derivative term because they are all equal to
zero, another expression for du and dv could be found by combining (3)
and (5):
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Here comes the core part of this method. We use multiscale analysis to



separate the first order (t) and the second order (T and stochastic term),
similar to perturbation theory. By comparing the coefficient of (3) and
(5), the drift coefficient is shown to be f1=-A, f2=-B which A and B here
are pure deterministic term. By introducing the covariance matrix, the

stochastic amplitude in (4) can now be written as
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The dwl and dw2 are independent wiener process term. We did not
show the exact derivation but just presenting the idea.
Equation (7) is exactly the Ornstein-Uhlenbeck type process. By changing

variablestoy = AeT, we have
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with solution
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The rule of changing variables from u to v (u,t) in Ito’s formula is

dv = aV+fav+1 Zazv dt + aVdW
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given that du = f(u, t)dt + g(u, t)dW.

Finally, after inserting (8) into (3), we got the general solution of u and v.



Power Spectral Density

The way to see the dynamics of S and | is to evaluate the average power:
Average power =< u?(t) >.
However, instead of directly viewing it, power spectral density (PSD),
defined as Fourier Transformation of the average power, would present
more details. Fig. 1 shows the PSD versus frequency. By transforming the
Gaussian-like PSD back, the average power will evolve sinusoidally at
centered frequency, which is also called coherence resonance. If the PSD
graph looks like fig. 2, then there is no resonance, and the average

power will evolve as exponentially decay, just like the deterministic

solution.
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Comparing the Infective process between deterministic and
stochastic solution, it matches to our expectation (Fig. 3). Red curve
represents the deterministic solution, which exponentially decays to
zero. Black curve shows the stochastic solution, which is sinusoidal
evolved.

y axis: Infective population

X axis: time(years)
fig.3
Conclusion
From the basic definition of SIR model, we got the deterministic solution,
which is a wave function term combined with exponential decay.
However, it seems not that reasonable. Normally, both susceptible and

infective population should not decay to zero with time going. Therefore,



we introduce the stochastic term together with the deterministic
differential equation. By using multiscale method combing with the
covariance matrix, we got the solution of both A(T) and B(T). We plug
both coefficients into equation (2) and Fourier transform it to get the
PSD graph, which shows a Gaussian-like curve. The Gaussian curve PSD
means that the original function would evolve as sustained oscillation,
which makes more sense. In this case, both the susceptible and infective
population will keep oscillating instead of decaying to zero, remaining a
dynamic equilibrium.
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