
CHAPTER 15:  Wave Motion 

 

Responses to Questions 

5. The speed of sound in air obeys the equation .v B   If the bulk modulus is approximately 

constant and the density of air decreases with temperature, then the speed of sound in air should 

increase with increasing temperature. 

6.  First, estimate the number of wave crests that pass a given point per second. This is the frequency 

of the wave. Then, estimate the distance between two successive crests, which is the wavelength. 

The product of the frequency and the wavelength is the speed of the wave. 

7.  The speed of sound is defined as v B  , where B is the bulk modulus and ρ is the density of 

the material. The bulk modulus of most solids is at least 106 times as great as the bulk modulus of 

air. This difference overcomes the larger density of most solids, and accounts for the greater speed 

of sound in most solids than in air. 

10.  Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, 

Eq. 15-16.   

18.  AM radio waves have a much longer wavelength than FM radio waves. How much waves bend, or 

diffract, around obstacles depends on the wavelength of the wave in comparison to the size of the 

obstacle. A hill is much larger than the wavelength of FM waves, and so there will be a “shadow” 

region behind the hill. However, the hill is not large compared to the wavelength of AM signals, so 

the AM radio waves will bend around the hill. 

Solutions to Problems 

 
 

3. The elastic and bulk moduli are taken from Table 12-1.  The densities are taken from Table 13-1. 

(a) For water: 
9 2

3 3

2.0 10 N m
1400m s

1.00 10 kg m
v B 


  


 

 (b) For granite: 
9 2

3 3

45 10 N m
4100 m s

2.7 10 kg m
v E 


  


 

 (c) For steel:  
9 2

3 3

200 10 N m
5100 m s

7.8 10 kg m
v E 


  


 

 



6. To find the time for a pulse to travel from one end of the cord to the other, the velocity of the pulse 

on the cord must be known.  For a cord under tension, we have Eq. 15-2, .
T

v F   
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8. The speed of the water wave is given by v B  , where B  is the bulk modulus of water, from 

Table 12-1, and   is the density of sea water, from Table 13-1.  The wave travels twice the depth of 

the ocean during the elapsed time. 

  
9 2

3

3 3
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vt t B
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
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

l
l  

 

11. (a) The shape will not change.  The wave will move 1.10 meters to the right in 1.00 seconds.  See  

the graph.  The parts of the string that are moving up or down are indicated. 
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 (b) At the instant shown, the string at point A will be moving down.  As the wave moves to the 

right, the string at point A will move down by 1 cm in the time it takes the “valley” between 1 

m and 2 m to move to the right by about 0.25 m. 

   
1cm

4cm s
0.25m 1.10m s

y
v

t

 
   


 

  This answer will vary depending on the values read from the graph. 

 

12. We assume that the wave will be transverse.  The speed is given by Eq. 15-2.  The tension in the 

wire is equal to the weight of the hanging mass.  The linear mass density is the volume mass density 

times the cross-sectional area of the wire.  The volume mass density is found in Table 13-1. 

  
   

   

2

ball ball

2
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v
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    

l
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15. From Eq. 15-7, if the speed, medium density, and frequency of the two waves are the same, then 

the intensity is proportional to the square of the amplitude. 

  
2 2

2 1 2 1 2 1 2 1
3    3 1.73I I E E A A A A       

 The more energetic wave has the larger amplitude. 

 

16. (a) Assume that the earthquake waves spread out spherically from the source.  Under those  

conditions, Eq. (15-8ab) applies, stating that intensity is inversely proportional to the square of 

the distance from the source of the wave. 



   
2 2

45km 15km
15km 45km 0.11I I    

 

 

 

 (b) The intensity is proportional to the square of the amplitude, and so the amplitude is inversely  

proportional to the distance from the source of the wave. 

   
45km 15km

15km 45km 0.33A A    

 

22. (a) The only difference is the direction of motion. 

   , 0.015sin 25 1200D x t x t   

 (b) The speed is found from the wave number and the angular frequency, Eq. 15-12. 

   
1200rad s

48m s
25rad m

v
k


    

 

24. The traveling wave is given by  0.22sin 5.6 34 .D x t   

(a) The wavelength is found from the coefficient of x. 

  1

1

2 2
5.6m     1.122 m 1.1m

5.6m

 







      

(b) The frequency is found from the coefficient of t. 

  
1

1 34s
34 2     5.411Hz 5.4 Hz

2
s f f






      

(c) The velocity is the ratio of the coefficients of t and x. 

  
1

1

2 34s
6.071m s 6.1m s

5.6m 2
v f









     

 Because both coefficients are positive, the velocity is in the negative x direction. 



(d) The amplitude is the coefficient of the sine function, and so is 0.22 m .  

(e) The particles on the cord move in simple harmonic motion with the same frequency as the  

wave.  From Chapter 14, 
max

2 .v D fD    

  
1

max

34s
2 2 0.22 m 7.5m s

2
v fD 





  
 
 
 

 

The minimum speed is when a particle is at a turning point of its motion, at which time the 

speed is 0. 

  
min

0v   

 

26. The displacement of a point on the cord is given by the wave,    , 0.12sin 3.0 15.0 .D x t x t    The 

velocity of a point on the cord is given by .
D

t




 

           1 1
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 
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28. (a) The wavelength is the speed divided by the frequency. 

   
345m s

0.658m
524 Hz

v

f
     

 (b) In general, the phase change in degrees due to a time difference is given by .
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t
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(c) In general, the phase change in degrees due to a position difference is given by  .
360

x



 



 

      
0.044 m

    360 360 24.1
360 0.658m

x x


 

  
        


 

 

29. The amplitude is 0.020 cm, the wavelength is 0.658 m, and the frequency is 524 Hz.  The 

displacement is at its most negative value at x = 0, t = 0, and so the wave can be represented by a 

cosine that is phase shifted by half of a cycle. 

  

   

 
 

       

1

1

, cos

2 524 Hz2 2
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345m s
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v
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





  
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 Other equivalent expressions include the following. 

  
       
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32. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D

x v t

 


 
 

 (a)  lnD A x vt   

   

2 2

2 2

2

2 2
  ;    ;    ;  

D D D Av D

x x t t

A A Av

x vt x vtx vt x vt

   
     

     
 

  This gives 
2 2

2 2 2

1
,

D D

x v t

 


 
 and so yes, the function is a solution. 

 (b)  
4

D x vt   

         
2 2

2 2

3 2 3 22
4   ;  12 4   ;  12  ;  

D D D D
v v

x x t t
x vt x vt x vt x vt

   
    

   
     



  This gives 
2 2

2 2 2

1
,

D D

x v t

 


 
 and so yes, the function is a solution. 

 

34. Find the various derivatives for the linear combination. 

  

     1 1 2 2 1 1 2 2

2 2 2

1 2 1 2

1 2 1 22 2 2

2 2 2

1 2 1 2

1 2 1 22 2 2

, , ,

  ;  

  ;  

D x t C D C D C f x t C f x t

D f f D f f
C C C C

x x x x x x

D f f D f f
C C C C

t t t t t t

   

     
   

     

     
   

     

    

 To satisfy the wave equation, we must have 
2 2

2 2 2

1
.

D D

x v t

 


 
  Use the fact that both 

1
f  and 

2
f  

satisfy the wave equation. 

  
2 2 2 2 2 2 2 2

1 2 1 2 1 2

1 2 1 2 1 22 2 2 2 2 2 2 2 2 2 2 2
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      
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     
     
     

 

 Thus we see that 
2 2

2 2 2

1
,

D D

x v t

 


 
 and so D satisfies the wave equation. 

 

37. (a) For the wave in the lighter cord,        -1 1
, 0.050m sin 7.5m 12.0s .D x t x t


     

   
 1

2 2
0.84 m

7.5mk

 



    

 (b) The tension is found from the velocity, using Eq. 15-2. 

    
 

 

2
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F
v F v

k


 






       

 (c) The tension and the frequency do not change from one section to the other. 

   
 
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1 2 1 1
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42. (a) The resultant wave is the algebraic sum of the two component waves. 

  

 

        

           

     

1 2

1 1

2 2

1 1

2 2

sin sin sin sin

2sin cos

2 sin 2 2 cos 2 cos sin
2 2

D D D A kx t A kx t A kx t A kx t

A kx t kx t kx t kx t
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 
   

           
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     
   
   
   

 

(b) The amplitude is the absolute value of the coefficient of the sine function, 2 cos
2

.A


  The 

wave is purely sinusoidal  because the dependence on x and t is sin
2

.kx t


 
 
 
 

   

 (c) If 0,2 ,4 , , 2n    L , then the amplitude is 

 
2

2 cos 2 cos 2 cos 2 1
2 2

n
A A A n A

 
      

2A  , which is constructive interference.  If  ,3 ,5 , , 2 1n     L , then the 

amplitude is 
 

 1
2

2 cos 2 cos 2 cos 0
2 2

2 1
A A A

n
n


  


   , which is destructive 

interference. 

 (d) If 
2


  , then the resultant wave is as follows. 

2 cos sin 2 cos sin 2 sin
2 2 4 4 4

D A kx t A kx t A kx t
    

          
         
         
         

 

This wave has an amplitude of 2A , is traveling in the positive x direction, and is shifted to 

the left by an eighth of a cycle.  This is “halfway” between the two original waves.  The 

displacement is 1
2

A  at the origin at t = 0. 

 

45. The oscillation corresponds to the fundamental.  The frequency of that oscillation is 

1

1 1 2
Hz.

1.5s 3
f

T
     The bridge, with both ends fixed, is similar to a vibrating string, and so 



1

2
Hz, 1,2,3 .

3
n

n
f nf n   K   The periods are the reciprocals of the frequency, and so 

1.5s
, 1,2,3 .

n
T n

n
  K  

 

48. Adjacent nodes are separated by a half-wavelength, as examination of Figure 15-26 will show. 

  
 

1
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96m s
    0.11m

2 2 445Hz

v v
x

f f
         

 

51. The speed of the wave is given by Eq. 15-2, 
T

.v F    The wavelength of the fundamental is 

1 .2  l   Thus the frequency of the fundamental is T
1

1

1
.

2

v
f

F

 


l
  Each harmonic is present in 

a vibrating string, and so T

1
2

,  1,2,3,
n

n F
f nf n


   K

l
. 

 

54. The standing wave is given by      2.4cm sin 0.60 cos 42 .D x t  

 (a)  The distance between nodes is half of a wavelength. 

1 1

2 2 1

2
5.236cm 5.2cm

0.60cm
d

k

 



      

(b) The component waves travel in opposite directions.  Each has the same frequency and speed, 

and each has half the amplitude of the standing wave. 

 
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1

1

2
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42s
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A f

v f d f



 




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 (c) The speed of a particle is given by .
D

t




 



  

 

              

              1
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                           92cm s

D
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 
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 


 





    

 

55. (a) The given wave is  1 4.2sin 0.84 47 2.1D x t   .  To produce a standing wave, we simply need  

to add a wave of the same characteristics but traveling in the opposite direction.  This is the 

appropriate wave. 

    2
4.2sin 0.84 47 2.1D x t    

 (b) The standing wave is the sum of the two component waves.  We use the trigonometric identity  

that    1 1

1 2 1 2 1 22 2
sin sin 2sin cos         . 
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       

1 2
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1

2

4.2sin 0.84 47 2.1 4.2sin 0.84 47 2.1

   4.2 2 sin 0.84 47 2.1 0.84 47 2.1

                cos 0.84 47 2.1 0.84 47 2.1

   8.4sin 0.84 2.1 cos 47 8.4sin 0.84 2.1 cos 47

D D D x t x t

x t x t

x t x t

x t x t

       

     

    

    

  

  We note that the origin is NOT a node. 

 

60. (a) The maximum swing is twice the amplitude of the standing wave.  Three loops is 1.5  

wavelengths, and the frequency is given. 
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 (b) Each component wave has the same wavelength, the same frequency, and half the amplitude of  

the standing wave. 



   
     

     

1

1

1

2

2.00cm sin 5.75m 750 rad s

2.00cm sin 5.75m 750 rad s

D x t

D x t





 

 

  

  

  

 

63. The standing wave is the sum of the two individual standing waves.  We use the trigonometric 

identities for the cosine of a difference and a sum. 

 1 2 1 2 1 2
cos cos cos sin sin         ;  1 2 1 2 1 2

cos cos cos sin sin         

  

        

 

1 2
cos cos cos cos

   cos cos sin sin cos cos sin sin

   2 cos cos

D D D A kx t A kx t A kx t kx t

A kx t kx t kx t kx t

A kx t

   

   



         

   



 

Thus the standing wave is 2 cos cos .D A kx t  The nodes occur where the position term forces 

2 cos cos 0D A kx t   for all time.  Thus  cos 0    2 1 , 0,1,2,
2

kx kx n n


      L .  Thus, 

since 1
2.0mk


 , we have  1

2
m, 0,1,2,

2
x n n


    L . 

 

65. The speed in the second medium can be found from the law of refraction, Eq. 15-19. 

   2 2 2

2 1

1 1 1

sin sin sin 31
    8.0km s 5.2 km s

sin sin sin52

v
v v

v

 

 


    



 
 
 

 

 

67. The angle of refraction can be found from the law of refraction, Eq. 15-19.  The relative velocities 

can be found from the relationship given in the problem. 

  

 

 

 

2 2 2

2

1 1 1

1

2

331 0.60 15sin 331 0.60 322
    sin sin 33 sin 33 0.5069

sin 331 0.60 331 0.60 25 346

sin 0.5069 30  2 sig. fig.

v T

v T









 
       

 

  

 

 

68. (a) Eq. 15-19 gives the relationship between the angles and the speed of sound in the two media.   

For total internal reflection (for no sound to enter the water), 
water

90    or 
water

sin 1  .  The 

air is the “incident” media.  Thus the incident angle is given by the following. 



   1 1 1air air air air i

air i water iM

water water water water r

sin
  ;  sin sin     sin sin

sin

v v v v

v v v v


   



  
     

     
     

    
 

 (b) From the angle of incidence, the distance is found.  See the 

diagram. 

 

1 1air

air M

water

air M

343m s
sin sin 13.8

1440 m s

tan     1.8m tan13.8 0.44 m
1.8m

v

v

x
x





 
   

    

 

  

1.8m

x

air M


