CHAPTER 20: Second Law of Thermodynamics

Responses to Questions
1 kg of liquid iron will have greater entropy, since it is less ordered than solid iron and its molecules

15.

16.

17.

20.

have more thermal motion. In addition, heat must be added to solid iron to melt it; the addition of
heat will increase the entropy of the iron.

The machine is clearly doing work to remove heat from some of the air in the room. The waste heat
is dumped back into the room, and the heat generated in the process of doing work is also dumped
into the room. The net result is the addition of heat into the room by the machine.

Some processes that would obey the first law of thermodynamics but not the second, if they
actually occurred, include: a cup of tea warming itself by gaining thermal energy from the cooler air
molecules around it, a ball sitting on a soccer field gathering energy from the grass and beginning
to roll, and a bow! of popcorn placed in the refrigerator and unpopping as it cools.

No. While you have reduced the entropy of the papers, you have increased your own entropy by
doing work, for which your muscles have consumed energy. The entropy of the universe has
increased as a result of your actions.

No. Even if the powdered milk is added very slowly, it cannot be re-extracted from the water
without very large investments of energy. This is not a reversible process.

Entropy is a state variable, so the change in entropy for the system will be the same for the two
different irreversible processes that take the system from state a to state b. However, the change
in entropy for the environment will not necessarily be the same. The total change in entropy
(system plus environment) will be positive for irreversible processes, but the amount may be
different for different irreversible processes.



Solutions to Problems

In solving these problems, the authors did not always follow the rules of significant figures rigidly. We
tended to take quoted temperatures as correct to the number of digits shown, especially where other
values might indicate that.

32. Heat energy is taken away from the water, so the change in entropy will be negative. The heat
transfer is the mass of the steam times the latent heat of vaporization.

Q mL, (0.25kg)(22.6x10°J/kg)
AS=Z= = |-15009/K
T T (273+100)K

33. Energy has been made “unavailable” in the frictional stopping of the sliding box. We take that
“lost” kinetic energy as the heat term of the entropy calculation.

AS =Q/T =+mv?/T = 1(75kg)(4.0m/s)’ /293K =

Since this is a decrease in “availability,” the entropy of the universe has increased.

35. Because the temperature change is small, we can approximate any entropy integrals by

AS = Q/Tavg . There are three terms of entropy to consider. First, there is a loss of entropy from

the water for the freezing process, AS,. Second, there is a loss of entropy from that newly-formed

ice as it cools to

-10°C, AS,. That process has an “average” temperature of —=5°C. Finally, there is a gain of entropy
by the “great deal of ice,” AS,, as the heat lost from the original mass of water in steps 1 and 2

goes into that great deal of ice. Since it is a large quantity of ice, we assume that its temperature
does not change during the processes.
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AS = AS, +AS, + AS, = —1.2198 x10° J/K — 7.8358 x10* J/K +1.3460 x 10° J/K

=4.784x10*J/K ~|5x10°J/K

The same amount of heat that leaves the high temperature heat source enters the low
temperature body of water. The temperatures of the heat source and body of water are constant,

so the entropy is calculated without integration.
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39. Because the process happens at a constant temperature, we have AS = Q/T. The heat flow can be

found from the first law of thermodynamics, the work for expansion at a constant temperature,

and the ideal gas equation
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42.

44,

45.

Since the process is at a constant volume, dQ =nC,dT . For a diatomic gas in the temperature

range of this problem, C, =2R.

T 273+ 25) K
1 ( )

dQ fnC,dT T (273+55)K
AS=|—=|——=5nRIn2=5(2.0mol)(8.314J/mol In——=14.0J/K
2 - [IET s nn T 20ma) o143/ moie)

Entropy is a state variable, and so the entropy difference between two states is the same for any
path. Since we are told that states a and b have the same temperature, we may find the entropy
change by calculating the change in entropy for an isothermal process connecting the same two
states. We also use the first law of thermodynamics.

AE, =nC,AT=0=Q-W — Q=W =nRTIn(V,/V,)

dQ Q nRT In(V,V,)
e nRIn(v,/V,)

As=|

(a) The figure shows two processes that start at the same state. The |

top process is adiabatic, and the bottom process is isothermic. We |
see from the figure that at a volume of V/2, the pressure is greater

for the process. We also prove it analytically.
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Since y >1, we see that (P The ratio is
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d
(b) For the adiabatic process: No heat is transferred to or from the gas, soAS .. = I?Q = @

For the isothermal process: AE =0 - Q W

V
— 2
isothermal — nRT In
isothermal V

int isothermal —
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dQ. 1 AQ. nRT In(V.
ASisothermal = I@ = ?J. insothermaI = Qlil_OIhermal = T( Z/Vl)

R In(V,V,) = RIn(2) - CrRInZ

(c) Since each process is reversible, the energy change of the universe is 0, and so

AS, onings = ~AS,em- FOr the adiabatic process, AS_| .. = @ For the isothermal process,

ASsurroundings = nR In 2 .

46. (a)The equilibrium temperature is found using calorimetry, from Chapter 19. The heat lost by
the water is equal to the heat gained by the aluminum.

My, 6Ch0 (THZO -T ) =My Ch (Tf _TAI) -
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48. (a)The gases do not interact since they are ideal, and so each gas expands to twice its volume

with no change in temperature. Even though the actual process is not reversible, the entropy change

can be calculated for a reversible process that has the same initial and final states. This is discussed in
Example 20-7.



V
AS, =AS, = nRInV—2 =nRIn2

1

AS, = AS,, +AS, =2nRIn2=2(1.00mol)(8.314J/molgK)In2 =

(b) Because the containers are insulated, no heat is transferred to or from the environment. Thus

AS —de

surroundings

(c) Let us assume that the argon container is twice the size of the nitrogen container. Then the final

nitrogen volume is 3 times the original volume, and the final argon volume is 1.5 times the
original volume.

V. V.
AS, =nRIn| 2| =nRIn3 ; AS, =nRIn| 2| =nRInl5
’ Vl 1
N Ar

2

AS, =AS, +AS, =nRIn3+nRIN1.5=nRIn4.5=(1.00mol)(8.314]/molgK)In4.5

- [257K

50. We assume that the process is reversible, so that the entropy change is given by Eq. 20-8. The heat
transfer is given by dQ =nC,dT.
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69. All of the processes are either constant pressure or constant volume, and so the heat input and
output can be calculated with specific heats at constant pressure or constant volume. This tells us
that heat is input when the temperature increases, and heat is exhausted when the temperature

decreases. The lowest temperature will be the temperature at point b. We use the ideal gas law to
find the temperatures.
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72. We have a monatomic gas, so y = % Also the pressure, volume, and temperature for state a are
known. We use the ideal gas law, the adiabatic relationship, and the first law of thermodynamics.

Use the ideal gas equation to relate states a and b. Use the

(a)

adiabatic relationship to relate states a and c.

PV, PV,
= -
Tb Ta
V. T 22.4L \[ 273K
P=P—=2-t—-(1.00atm)| —— || —— |=0.400atm
= T~ ooam) 224 | 29K o i

b "a
PV, =RV —
v Y 224LY"
P=P (\7) = (1.00atm)(Tj =0.2172atm ~ |0.217 atm

c

(b) Use the ideal gas equation to calculate the temperature at c.



PV, PV PV 0.2172atm -
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(c) Process ab: AE;, =nC AT = @

ab

Q,, =W,, =nRT |nz—b = (1.00mol)(8.314 J/molgK ) (273K ) In 2.5

a

= 2079.7J ~[2080J
as, =S 2097y

T 273K
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Process bc: W, = |§| ;
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Process ca: Q. =[0] ; AS, =[0] (adiabatic) ;

148K
273K
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|nt int |nt
ab

W 2080J 1560J -
Qinput 20801J

(d) e=

Take the energy transfer to use as the initial kinetic energy of the cars, because this energy
becomes “unusable” after the collision — it is transferred to the environment.

1m/s
o Q 2(%mvf) ) (1100 kg){(?Skm/h)(&6 an/h
T (15+273)K

) - K




78. Since two of the processes are adiabatic, no heat transfer occurs in those processes. Thus the heat
transfer must occur along the isobaric processes.

P
b c
Adiabatic
expansion
—
Adiabatic
compression
a d

Qy =Q, =nC, (Tc _Tb) ; Q =Q, =nC, (Td _Ta)

ezl_&zl_ nC, (Td _Ta) —1- (Td _Ta)

QH nCP (Tc _Tb) (Tc _Tb)

Use the ideal gas relationship, which says that PV =nRT.

(PdVd_PaVaJ
L \MR_nR)_, (PV,-PV,)

ezl_(Td_Ta)z _1_
(Tc _Tb) (PCVC _ vabj (Pcvc - vab)
nR  nR
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1y
P
Because process ab is adiabatic, we have PV, =RV — V =V, {—bJ . Because process cd is

a

1y
P
adiabatic, we have PV =PV/ — V, =V, (—bj . Substitute these into the efficiency

a

expression.






