University of California at San Diego — Department of Physics — TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014
Worksheet 3 —  Solutions

Announcements
e The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014 /physics130b/ .

Please check it regularly! It contains relevant course information!

e Greetings everyone! This week we’re going to learn about spin, rotations, representa-
tions, and all that jazz.

Problems

Suppose we are studying a system with a rotational symmetry. So we need understand how
to represent this symmetry on our Hilbert space of states. This involves creating matrices
which do all the things we expect.

1. Do a Barrel Roll

Recall that in 3-dimensional space' we can derive the following rotation matrices from

geometry:
1 0 0 cosf) 0 sinf cosf) —sinf 0
R.,=10 cosf —sinf R, = 0 1 0 R,=|sinf cosf O
0 sinf cos6 —sinf 0 cosf 0 0 1

(1)

where R; is a rotation about the i-th axis by an angle . Consider a rotation with an
infinitesimal 0 = §6.

(a) Express each rotation in 1 as R;(0 = §0) = 1 — i(d6)X; for some matrices X.
These are the generators of rotations as we’ll see in a moment.?

Use small angle approximation cosf ~ 1 and sinf ~ 6

!Euclidean. Over R. Don’t get cheeky.
2Note that the factor of i is conventional.


http://physics.ucsd.edu/students/courses/fall2014/physics130b/

Spoilers. The form of X; is simply:
0 0
—i X2 = O

0
Xl == O
0 0 —i

. O O

(b) Show explicitly that each X; is Hermitian: XT = X
Obvious

(c) T claim that the X; of 2 satisfy the following algebra®
(X, X;j] = €% X, (3)

Convince yourself of this by checking a few examples.
0 00 0 —1 0
X1X2 = -1 0 0 and X2X1 = 0 0 0
0 00 0 0 0
0 10
This implies [X;, X3] = | —1 0 0] =iX3 and so on.
0 00
Given a hermitian matrix X one can construct a unitary matrix U = e~#X® which
‘evolves’ a state by an amount a. For example the Hamiltonian H is hermitian
and leads to the ’time-evolution’ operator U = e 1,

In this way H generates time evolution. Can you guess where this is going?

(d) Consider the unitary matrices given by U; = e~ % for each X; in 2. Show, using
Taylor’s theorem, that U; = R; ; they are the rotation matrices of 1.
Let’s do this for X, the rest follow very similarly.

00 O
Uy =e X0 = for A= [0 0 —1]. Now let’s Taylor expand:
01 0
efh =3 A =143 | 24 where now we need to note the following facts:
0 0 0
A2=10 -1 0 |=-B A*=-A A'*'=B A°= Aandsoon.
0 0 -1

This allows us to split the infinite sum into evens and odds and then pull out our
A and B matrices.

L. _ n—1 n
e =1+ Zwven gnar Zmodd mA 4 Zn,even (D20"p Zn,odd (=D"Z 6" 4

n! n! n! n!

=1+ (cosf —1)B +sinfA =R,

2. What s Spin?

The fact there are spin—% particles is one of the most deeply quantum features of nature.

3This is known as a Lie algebra



We can think of the spin of an electron as an additional degree of freedom. This is
represented quantum mechanically is a two dimensional Hilbert space Hy spanned by

two vectors {| 1), | J)}

Now, how can we represent rotations on this space?

Consider the following matrices:

101 1 (0 —i 1(1 0
Sl_§<1 0) S2_§(z‘ 0) 53—5(0 —1> (4)

These, up to that factor of %, are known as the Pauli matrices.

(a) Show that S; are hermitian. Show explicitly that the following algebra is satisfied:
[S;, S;] = €% Sy, (5)

This is the same algebra as 3, between the generators of rotations!* Together
these imply we are constructing something like angular momentum.

Just do it.
Now let’s construct the analog of rotation matrices for these objects.

(b) Define U; = e~ and write a simple matrix expression for it.
Hint: Use the fact o = 1 where o; is a Pauli matrix.
e~i08i — o—i50i — llcosg —io; sing
(¢) Now consider U;(6 = 27), what has happened?
Ui(0 =27) = llcosm — io;sinm = —1

We have gone around a complete rotation and picked up a minus sign!

4Fancy math point, this is the statement SO(3) and SU(2) have the same Lie algebra.



