
University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014
Worksheet 4 – Solutions

Announcements

• The 130B web site is:

http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week we’re going to discover why bra-ket notation is useful
and do perturbation theory for a spin.

Problems

1. Don’t Give In

Suppose you’re walking down the street and a man approaches you with well-prepared
quantum state of the form:

ψ(θ, φ) = 2

√
15

16π
cos θ sin θ cosφ (1)

He then asks you to predict average value of various angular momentum quantities.
Snickering, he offers only one piece of advice:

Y2,±1(θ, φ) ≡ ∓
√

15

8π
cos θ sin θe±iφ (2)

Can you figure out the answers to these questions without doing any integrals?

It will be helpful to split ψ as the following:

ψ(θ, φ) = 1√
2
(Y2,−1 − Y2,1) =⇒ |ψ〉 = 1√

2
(|2,−1〉 − |2, 1〉)

(a) Calculate 〈Lz〉 for the state 1. If you need Lz = −i∂φ
〈Lz〉 = 0 from several points of view.

Most intuitively note that 〈Lz〉 =
∫
ψ∗(−i∂φ)ψ which since ψ is real 〈Lz〉 ∝ i

which just isn’t physical so the whole thing must vanish.
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We can also do an explicit check with the form of |ψ〉 using Lz|`,m〉 = m|`,m〉
〈Lz〉 = 〈ψ|Lz|ψ〉 = 1

2
(〈2,−1| − 〈2, 1|)(−|2, 1〉 − |2,−1〉) = 1

2
(1− 1) = 0

where in the above I’ve used orthogonality. You could also do the integral but I
wouldn’t.

(b) Calculate 〈L2〉 again for 1. If you need L2 = −∇2 restricted to the 2-sphere.

Here it’s easiest to use the form of |ψ〉 and the fact L2|`,m〉 = `(`+ 1)|`,m〉
〈L2〉 = 1

2
(〈2,−1| − 〈2, 1|)(−2(2 + 1)|2, 1〉+ 2(2 + 1)|2,−1〉 = 1

2
(6 + 6) = 6

You can also do the integral. I’ve attached a Mathematica notebook where this
is done and confirms my result.

2. Sanity Check

Consider a spin-1
2

particle in a magnetic field ~B = {Bx, 0, Bz}
Generically the Hamiltonian to describe such a situation is:

Ĥ = −µB ~B · ~σ (3)

where µB is the Bohr magneton and ~σ = {σx, σy, σz} is a vector of Pauli matrices.

(a) Suppose Bx = 0, find the eigenstates and energies associated with 3

E↑,↓ = ∓µBBz and for {| ↑〉, | ↓〉} respectively

(b) Now suppose Bz � Bx 6= 0 and compute the first and second order corrections
to the energy using perturbation theory.

E
(1)
↑ = 〈↑ |(−µBBxσx)| ↑〉 = 0 and similar for | ↓〉 where we use σx| ↑〉 = | ↓〉

The second order shifts are more interesting:

E
(2)
↑ =

∑
k 6=↑

|〈k|(−µBBxσx)|↑〉|2

E
(0)
↑ −E

(0)
k

= (µBBx)
2 |〈↓|σx|↑〉|2

E
(0)
↑ −E

(0)
↓

= −µBB
2
x

2Bz

and similarly E
(2)
↓ = −E(2)

↑
Putting it all together the energy up to second order is:

E↑,↓ = ∓µBBz(1 + 1
2
(Bx

Bz
)2)

(c) Now it turns out 3 is exactly solvable. Compute the energies of the exact eigen-
states by direct diagonalization. Show by second order Taylor expansion this
agrees with the above.

Ĥ = −µB
(
Bz Bx

Bx −Bz

)
=

(
E↑ 0
0 E↓

)
where E↑,↓ = ∓µB

√
B2
x +B2

z = ∓µBBz

√
1 + (Bx

Bz
)2

The Taylor expansion of
√

1 + ε2 ≈ 1 + 1
2
ε2 which validates the above.
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