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Chapter 6

Elastic Collisions

6.1 Center of Mass Frame

A collision or ‘scattering event’ is said to be elastic if it results in no change in the internal state of any of
the particles involved. Thus, no internal energy is liberated or captured in an elastic process.

Consider the elastic scattering of two particles. Recall the relation between laboratory coordinates

{r1, r2} and the CM and relative coordinates {R, r}:

R =
m1r1 +m2r2
m1 +m2

r = r1 − r2 (6.1)

r1 = R+
m2

m1 +m2
r r2 = R− m1

m1 +m2
r (6.2)

If external forces are negligible, the CM momentum P = MṘ is constant, and therefore the frame of
reference whose origin is tied to the CM position is an inertial frame of reference. In this frame,

vCM

1 =
m2 v

m1 +m2

, vCM

2 = − m1 v

m1 +m2

, (6.3)

where v = v1 − v2 = vCM

1 − vCM

2 is the relative velocity, which is the same in both L and CM frames.
Note that the CM momenta satisfy

pCM

1 = m1v
CM

1 = µv

pCM

2 = m2v
CM

2 = −µv ,
(6.4)

where µ = m1m2/(m1 +m2) is the reduced mass. Thus, pCM

1 + pCM

2 = 0 and the total momentum in the
CM frame is zero. We may then write

pCM

1 ≡ p0n̂ , pCM

2 ≡ −p0n̂ ⇒ ECM =
p20
2m1

+
p20
2m2

=
p20
2µ

. (6.5)
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Figure 6.1: The scattering of two hard spheres of radii a and b. The scattering angle is χ.

The energy is evaluated when the particles are asymptotically far from each other, in which case the
potential energy is assumed to be negligible. After the collision, energy and momentum conservation
require

p′

1
CM ≡ p0n̂

′ , p′

2
CM ≡ −p0n̂′ ⇒ E′CM

= ECM =
p20
2µ

. (6.6)

The angle between n and n′ is the scattering angle χ:

n · n′ ≡ cosχ . (6.7)

The value of χ depends on the details of the scattering process, i.e. on the interaction potential U(r). As
an example, consider the scattering of two hard spheres, depicted in fig. 6.1. The potential is

U(r) =

{

∞ if r ≤ a+ b

0 if r > a+ b .
(6.8)

Clearly the scattering angle is χ = π−2φ0, where φ0 is the angle between the initial momentum of either
sphere and a line containing their two centers at the moment of contact.

There is a simple geometric interpretation of these results, depicted in fig. 6.2. We have

p1 = m1V + p0n̂ p′

1 = m1V + p0n̂
′ (6.9)

p2 = m2V − p0n̂ p′

2 = m2V − p0n̂
′ . (6.10)

So draw a circle of radius p0 whose center is the origin. The vectors p0n̂ and p0n̂
′ must both lie along

this circle. We define the angle ψ between V and n:

V̂ · n = cosψ . (6.11)

It is now an exercise in geometry, using the law of cosines, to determine everything of interest in terms



6.1. CENTER OF MASS FRAME 3

Figure 6.2: Scattering of two particles of massesm1 and m2. The scattering angle χ is the angle between
n̂ and n̂′.

of the quantities V , v, ψ, and χ. For example, the momenta are

p1 =

√

m2
1 V

2 + µ2v2 + 2m1µV v cosψ

p′1 =

√

m2
1 V

2 + µ2v2 + 2m1µV v cos(χ− ψ)

p2 =

√

m2
2 V

2 + µ2v2 − 2m2µV v cosψ

p′2 =

√

m2
2 V

2 + µ2v2 − 2m2µV v cos(χ− ψ) ,

(6.12)

and the scattering angles are

θ1 = tan−1

(

µv sinψ

µv cosψ +m1V

)

+ tan−1

(

µv sin(χ− ψ)

µv cos(χ− ψ) +m1V

)

θ2 = tan−1

(

µv sinψ

µv cosψ −m2V

)

+ tan−1

(

µv sin(χ− ψ)

µv cos(χ− ψ)−m2V

)

.

(6.13)

If particle 2, say, is initially at rest, the situation is somewhat simpler. In this case, V = m1V /(m1 +m2)

and m2V = µv, which means the point B lies on the circle in fig. 6.3 (m1 6= m2) and fig. 6.4 (m1 = m2).
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Figure 6.3: Scattering when particle 2 is initially at rest.

Let ϑ1,2 be the angles between the directions of motion after the collision and the direction V of impact.
The scattering angle χ is the angle through which particle 1 turns in the CM frame. Clearly

tan ϑ1 =
sinχ

m1

m2
+ cosχ

, ϑ2 =
1
2 (π − χ) . (6.14)

We can also find the speeds v′1 and v′2 in terms of v and χ, from

p′1
2
= p20 +

(

m1

m2
p0
)2 − 2 m1

m2
p20 cos(π − χ) (6.15)

and
p22 = 2 p20 (1− cosχ) . (6.16)

These equations yield

v′1 =

√

m2
1 +m2

2 + 2m1m2 cosχ

m1 +m2
v , v′2 =

2m1v

m1 +m2
sin(12χ) . (6.17)

The angle ϑmax from fig. 6.3(b) is given by sinϑmax = m2

m1
. Note that whenm1 = m2 we have ϑ1+ϑ2 = π.

A sketch of the orbits in the cases of both repulsive and attractive scattering, in both the laboratory and
CM frames, in shown in fig. 6.5.

Figure 6.4: Scattering of identical mass particles when particle 2 is initially at rest.
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Figure 6.5: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and CM (C,D) frames, assum-
ing particle 2 starts from rest in the lab frame. (From Barger and Olsson.)

6.2 Central Force Scattering

Consider a single particle of mass µ movng in a central potential U(r), or a two body central force
problem in which µ is the reduced mass. Recall that

dr

dt
=
dφ

dt
· dr
dφ

=
ℓ

µr2
· dr
dφ

, (6.18)

and therefore

E = 1
2µṙ

2 +
ℓ2

2µr2
+ U(r)

=
ℓ2

2µr4

(

dr

dφ

)2

+
ℓ2

2µr2
+ U(r) .

(6.19)

Solving for dr
dφ , we obtain

dr

dφ
= ±

√

2µr4

ℓ2
(

E − U(r)
)

− r2 , (6.20)

Consulting fig. 6.6, we have that

φ0 =
ℓ√
2µ

∞
∫

rp

dr

r2
√

E − Ueff(r)
, (6.21)



6 CHAPTER 6. ELASTIC COLLISIONS

Figure 6.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact
parameter is b, and χ is the scattering angle. φ0 is the angle through which the relative coordinate moves
between periapsis and infinity.

where rp is the radial distance at periapsis, and where

Ueff(r) =
ℓ2

2µr2
+ U(r) (6.22)

is the effective potential, as before. From fig. 6.6, we conclude that the scattering angle is

χ =
∣

∣π − 2φ0
∣

∣ . (6.23)

It is convenient to define the impact parameter b as the distance of the asymptotic trajectory from a parallel
line containing the force center. The geometry is shown again in fig. 6.6. Note that the energy and
angular momentum, which are conserved, can be evaluated at infinity using the impact parameter:

E = 1
2µv

2
∞

, ℓ = µv
∞
b . (6.24)

Substituting for ℓ(b), we have

φ0(E, b) =

∞
∫

rp

dr

r2
b

√

1− b2

r2
− U(r)

E

, (6.25)

In physical applications, we are often interested in the deflection of a beam of incident particles by a
scattering center. We define the differential scattering cross section dσ by

dσ =
# of particles scattered into solid angle dΩ per unit time

incident flux
. (6.26)

Now for particles of a given energy E there is a unique relationship between the scattering angle χ and
the impact parameter b, as we have just derived in eqn. 6.25. The differential solid angle is given by
dΩ = 2π sinχdχ, hence

dσ

dΩ
=

b

sinχ

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

=

∣

∣

∣

∣

d (12b
2)

d cos χ

∣

∣

∣

∣

. (6.27)
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Figure 6.7: Geometry of hard sphere scattering.

Note that dσ
dΩ has dimensions of area. The integral of dσ

dΩ over all solid angle is the total scattering cross
section,

σT = 2π

π
∫

0

dχ sinχ
dσ

dΩ
. (6.28)

6.2.1 Hard sphere scattering

Consider a point particle scattering off a hard sphere of radius a, or two hard spheres of radii a1 and

a2 scattering off each other, with a ≡ a1 + a2. From the geometry of fig. 6.7, we have b = a sinφ0 and

φ0 =
1
2(π − χ), so

b2 = a2 sin2
(

1
2π − 1

2χ) =
1
2a

2 (1 + cosχ) . (6.29)

We therefore have
dσ

dΩ
=
d (12b

2)

d cos χ
= 1

4 a
2 (6.30)

and σT = πa2. The total scattering cross section is simply the area of a sphere of radius a projected onto
a plane perpendicular to the incident flux.

6.2.2 Rutherford scattering

Consider scattering by the Kepler potential U(r) = −k
r . We assume that the orbits are unbound, i.e. they

are Keplerian hyperbolae with E > 0, described by the equation

r(φ) =
a (ε2 − 1)

±1 + ε cosφ
⇒ cosφ0 = ± 1

ε
. (6.31)

Recall that the eccentricity is given by

ε2 = 1 +
2Eℓ2

µk2
= 1 +

(

µbv∞
k

)2

. (6.32)
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We then have

(

µbv∞
k

)2

= ε2 − 1

= sec2φ0 − 1 = tan2φ0 = ctn2
(

1
2χ
)

.

(6.33)

Therefore

b(χ) =
k

µv2
∞

ctn
(

1
2χ
)

(6.34)

We finally obtain

dσ

dΩ
=
d (12b

2)

d cos χ
=

1

2

(

k

µv2
∞

)2 d ctn2
(

1
2χ
)

d cosχ

=
1

2

(

k

µv2
∞

)2 d

d cosχ

(

1 + cosχ

1− cosχ

)

=

(

k

2µv2
∞

)2

csc4
(

1
2χ
)

,

(6.35)

which is the same as
dσ

dΩ
=

(

k

4E

)2

csc4
(

1
2χ
)

. (6.36)

Since dσ
dΩ ∝ χ−4 as χ → 0, the total cross section σT diverges! This is a consequence of the long-ranged

nature of the Kepler/Coulomb potential. In electron-atom scattering, the Coulomb potential of the
nucleus is screened by the electrons of the atom, and the 1/r behavior is cut off at large distances.

6.2.3 Transformation to laboratory coordinates

We previously derived the relation

tan ϑ =
sinχ

γ + cosχ
, (6.37)

where ϑ ≡ ϑ1 is the scattering angle for particle 1 in the laboratory frame, and γ = m1

m2
is the ratio of

the masses. We now derive the differential scattering cross section in the laboratory frame. To do so, we
note that particle conservation requires

(

dσ

dΩ

)

L

· 2π sinϑ dϑ =

(

dσ

dΩ

)

CM

· 2π sinχdχ , (6.38)

which says
(

dσ

dΩ

)

L

=

(

dσ

dΩ

)

CM

· d cosχ

d cos ϑ
. (6.39)

From

cos ϑ =
1√

1 + tan2ϑ
=

γ + cosχ
√

1 + γ2 + 2γ cosχ
, (6.40)
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we derive
d cos ϑ

d cosχ
=

1 + γ cosχ
(

1 + γ2 + 2γ cosχ
)3/2

(6.41)

and, accordingly,
(

dσ

dΩ

)

L

=

(

1 + γ2 + 2γ cosχ
)3/2

1 + γ cosχ
·
(

dσ

dΩ

)

CM

. (6.42)
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