
Chapter 4

Interaction with External
Sources

4.1 Classical Fields and Green’s Functions

We start our discussion of sources with classical (non-quantized) fields. Consider

L = 1

2

(@µ�(x))2 − 1

2

m2�(x)2 + J(x)�(x)

Here J(x) is a non-dynamical field, the source. The equation of motion for the
dynamical field (�(x)) is

(@2 +m2)�(x) = J(x) . (4.1)

The terminology comes from the more familiar case in electromagnetism. The
non-homogeneous Maxwell equations,

�∇ ⋅ �E = ⇢, �∇× �B − @
0

�E = �J

have as sources of the electric and magnetic fields the charge and current densities,
⇢ and �J , respectively. We can go a little further in pushing the analogy. In terms
of the electric and vector potentials, A

0

and �A, respectively, the fields are

�E = −@
0

�A − �∇A
0

, �B = �∇× �A

so that Gauss’s law becomes

−@
0

�∇ ⋅ �A −∇2A
0

= ⇢

In Lorentz gauge, �∇ ⋅ �A + @
0

A
0

= 0 this takes the form

@2A
0

= ⇢ .
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This is exactly for the form of (4.1), for a massless field with the identification A
0

for � and ⇢ for J . In Lorentz gauge the equations satisfied by the vector potential
are again of this form,

@2 �A = �J .

The four vector Jµ = (⇢, J i) serves as source of the four-vector potential Aµ. Writ-
ing

@2Aµ = Jµ .

is reassuringly covariant under Lorentz transformations, as it should be since this
is where relativity was discovered! Each of the four components of Aµ satisfies the
massless KG equation with source.

Consider turning on and o↵ a localized source. The source is “on,” that is
non-vanishing, only for −T < t < T . Before J is turned on � is evolving as a free
KG field (meaning free of sources or interactions), so we can think of the initial
conditions as giving �(x) = �

in

(x) for t < −T , with �
in

(x) a solution of the free
KG equation. We similarly have that for t > T �(x) = �

out

(x) where �
out

(x) is a
solution of the free KG equation. Both �

in

(x) and �
out

(x) are solutions of the KG
equations for all t but they agree with � only for t < −T and t > T , respectively.
Our task is to find �

out

(x) given �
in

(x) (and of course the source J(x)).
Solve (4.1) using Green functions:

�(x) = �
hom

(x) +� d4yG(x − y)J(y) (4.2)

where the Green function satisfies

(@2 +m2)G(x) = �(4)(x) (4.3)

and �
hom

(x) is a solution of the associated homogeneous equation, which is the
KG equation,

(@2 +m2)�
hom

(x) = 0 .
We can use the freedom in �

hom

(x) to satisfy boundary conditions. We can deter-
mine the Green function by Fourier transform,

G(x) = �
d4k

(2⇡)4 e
ik⋅xG̃(k) �(4)(x) = � d4k

(2⇡)4 e
ik⋅x

Then

(@2 +m2)�
d4k

(2⇡)4 e
ik⋅xG̃(k) = � d4k

(2⇡)4 e
ik⋅x(−k2 +m2)G̃(k) = �

d4k

(2⇡)4 e
ik⋅x

so that

G̃(k) = − 1

k2 −m2

.



58 CHAPTER 4. INTERACTION WITH EXTERNAL SOURCES

So preliminarily take

G(x) = −�
d4k

(2⇡)4
eik⋅x

k2 −m2

However, note this is ill-defined since the integrand diverges at k2 = m2. The

integral over k0 diverges at k0 = ±
�
�k2 +m2, or k0 = ±E�k for short:

� dk0
eik

0t

(k0 −E�k)(k0 +E�k) .
This integral can be thought of as an integral over a complex variable z along a
contour on the real axis, Re(z) = k0, from −∞ to ∞. Then the points z = ±E�k
are locations of simple poles of the integrand, and we can define the integral by
deforming the contour to go either above or below these poles. For example we
can take the following contour:

k0 = Re(z)

Im(z)

×
E�k×

−E�k
Regardless of which deformation of the contour we choose, the contour can be closed
with a semicircle of infinite radius centered at the origin on the upper half-plane if
t > 0 and in the lower half-plane if t < 0:

k0 = Re(z)

Im(z)

×
E�k×

−E�k

t > 0

k0 = Re(z)

Im(z)

×
E�k×

−E�k

t < 0
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because he integral along the big semicircle vanishes as the radius of the circle is
taken infinitely large. For the choice of contour in this figure no poles are enclosed
for t > 0 so the integral vanishes. This defined the advanced Green’s function,
G

adv

(x) = 0 for t > 0. Alternatively we can “displace” the poles by an infinitesimal
amount −i✏, with ✏ > 0, so they lie just below the real axis,

k0 = Re(z)

Im(z)

×
E�k − i✏×

−E�k − i✏
Then we have

G
adv

(x) = −�
d4k

(2⇡)4 e
ik⋅x 1

(k0 + i✏)2 − �k 2 −m2

Similarly, the retarded Green’s function is

G
ret

(x) = −�
d4k

(2⇡)4 e
ik⋅x 1

(k0 − i✏)2 − �k 2 −m2

with the contour bellow the two poles. It has G
ret

(x) = 0 for t < 0. For later use it
is convenient to write

G
ret

(x) = −✓(x0)�
d3k

(2⇡)4 e
−i�k ⋅�x �2⇡i 1

2E�k �e
iE�

k

t − e−iE�k t��
= −i✓(x0)� (dk) (eik⋅x − e−ik⋅x) (4.4)

G
adv

(x) = ✓(−x0)�
d3k

(2⇡)4 e
−i�k ⋅�x �2⇡i 1

2E�k �e
iE�

k

t − e−iE�k t��
= i✓(−x0)� (dk) (eik⋅x − e−ik⋅x) (4.5)

We also note that one may choose a contour that goes above one pole and below
the other. For example, going below −E�k and above +E�k we have

GF (x) = −�
d4k

(2⇡)4 e
ik⋅x 1

(k0 −E�k + i✏)(k0 +E�k − i✏)
= −�

d4k

(2⇡)4 e
ik⋅x 1

(k2 −m2 + i✏)

= i �✓(x0)� (dk) e−ik⋅x + ✓(−x0)� (dk) eik⋅x�
(4.6)
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In the solution (4.2), for x0 < −T the integral over y0 only has contributions
from x0 − y0 < 0, and for x0 > T it has contributions only from x0 − y0 > 0. So we
have

�(x) = �
in

(x) +� d4yG
ret

(x − y)J(y)

= �
out

(x) +� d4yG
adv

(x − y)J(y)

Hence we can write

�
out

(x) = �
in

(x) +� d4y �G
ret

(x − y) −G
adv

(x − y)�J(y)

= �
in

(x) +� d4yG(−)(x − y)J(y) (4.7)

G(−) can be obtained from the di↵erence of (4.4) and (4.5). But more directly we
note that

×× − ××

is the same as

×× + ××

The straight segments cancel and we are left with

××

This gives

G(−)(x) = −� d3k

(2⇡)4 e
−i�k ⋅�x �2⇡i 1

2E�k �e
iE�

k

t − e−iE�k t��
= −i� (dk)�eiE�k t−i�k ⋅�x − e−iE�k t−i�k ⋅�x�
= −i�

d4k

(2⇡)3 ✓(k
0)�(k2 −m2) �eik⋅x − e−ik⋅x�

= −i�
d4k

(2⇡)3 "(k
0)�(k2 −m2)eik⋅x

where

"(k0) =
�������

+1 k0 > 0
−1 k0 < 0
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You may have noticed that this looks a lot like the function�+(x) = [�(+)(x),�(−)(0)].
In fact, computing the commutator of free fields at arbitrary times,

[�(x),�(y)] = � (dk)(dk′)[↵�k e−ik⋅x + ↵†�k eik⋅x,↵�k ′e−ik′⋅y + ↵†�k ′eik′⋅y]
= � (dk)�eik⋅(y−x) − e−ik⋅(y−x)�
= iG(−)(y − x) = −iG(−)(x − y)

4.2 Quantum Fields

We now consider equation (4.1) for the KG field with a source in the case that
the field is an operator on the Hilbert space F . The source J(x) is a a c-number,
a classical source, and still take it to be localized in space-time. Suppose the
system is in some state initially, well before the source is turned on. Let’s take the
vacuum state for definiteness, although any other state would be just as good. As
the system evolves, the source is turned on and then o↵, and we end up with the
system in some final state. Now, in the classical case if we start from nothing and
turn the source on and then o↵ radiation is produced, emitted out from the region
of the localized source. In the quantum system we therefore expect we will get a
final state with any number of particles emitted from the localized source region.

Then �(x) = �
in

(x) is the statement that for t < −T � is the same operator
as a solution to the free KG equation. Likewise for � = �

out

for t > T . Does this
mean �

out

= �
in

? Surely not, it is not true in the classical case. Since � satisfies
the equal time commutation relations, i[@t�(x),�(y)] = �(3)(�x − �y ), etc, so do
�
out

and �
in

. Since the latter solve the free KG equation, they have expansions in
creation and annihilation operators, and the same Hilbert space. More precisely,
we can construct a Fock space F

in

out of ↵†
in

, and a space F
out

out of ↵†
out

. These
spaces are just Hilbert spaces of the free KG equation, and therefore they are
isomorphic, F

in

≈ F
out

≈ F
KG

. So there is some linear, invertible operator S ∶
F
KG

→ F
KG

, so that � �
out

= S−1� �
in

. Since the states are normalized, S must
preserve normalization, so S is unitary, S†S = SS† = 1. The operator S is called
the S-matrix.

Let’s understand the meaning of � �
out

= S†� �
in

. The state of the system
initially (far past) is � �

in

. It evolves into a state � �
out

= S†� �
in

at late times,
well after the source is turned o↵. We can expand it in a basis of the Fock space,
the states ��k

1

, . . . , �kn� for n = 0,1,2, . . . In particular, if the initial state is the
vacuum, then the expansion of S†�0� in the Fock space basis tells us the probability
amplitude for emitting any number of particles. More generally

out

��� �
in

=
in

���S� �
in
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is the probability amplitude for starting in the state � � and ending in the state
���. Note that the left hand side is not to be taken literally as an inner product
in the same Hilbert space of free particles (else it would vanish except when the
initial and final states are physically identical, i.e., when nothing happens).

Now, S†�
in

(x)S is an operator acting on out states that satisfies the KG equa-
tion. Similarly, if ⇡

in

(x) = @t�in(x), S†⇡
in

(x)S acts on out states. Moreover, the
commutator [S†�

in

(x)S,S†⇡
in

(y)S = S†[�
in

(x),⇡
in

(y)]S = [�
in

(x),⇡
in

(y)] since
the commutator is a c-number and S†S = 1, and similarly for the other commutators
of S†�

in

(x)S and S†⇡
in

(x)S. This means that up to a canonical transformation,

�
out

(x) = S†�
in

(x)S .

Since we are free to choose the out fields in the class of canonical equivalent fields,
we take the above relation to be our choice.

There is a simple way to determine S. We will present this now, but the
method works only for the case of an external source and cannot be generalized
to the case of interacting fields. So after presenting this method we will present a
more powerful technique that can be generalized. From Eq. (4.7) we have

S†�
in

(x)S = �
in

(x) +� d4yG(−)(x − y)J(y)
= �

in

(x) + i� d4y [�
in

(x),�
in

(y)J(y)] .

Recall

eABe−A = B + [A,B] + 1

2

[A, [A,B]] +�
= B + [A,B] if [A, [A,B]] = 0.

It follows that

S = exp �i� d4y �
in

(y)J(y)� (4.8)

It is convenient to normal-order S. Since [�(+)(x),�(−)(y)] is a c-number we can
use

eAeB = eA+B+ 1
2
[A,B]

which is valid provided [A,B] commutes with bothA andB. So using i ∫ d4x�(−)(x)J(x)
and i ∫ d4x�(+)(x)J(x) for A and B,

S = ei ∫ d4x�(−)(x)J(x)ei ∫ d4x�(+)(x)J(x)e 1
2 ∫ d4xd4y [�(−)(x),�(+)(y)]J(x)J(y)
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From (2.10),

�+(x2 − x1) ≡ [�̂(+)(x1), �̂(−)(x2)]
= � (dk) e−ik⋅(x2−x1)
= �

d4k

(2⇡)4 ✓(k
0)�(k2 −m2)e−ik⋅(x2−x1)

and introducing the Fourier transform of the source,

J(x) = �
d4k

(2⇡)4 e
ik⋅xJ̃(k)

we have

� d4xd4y [�(−)
in

(x),�(+)
in

(y)]J(x)J(y)

= −�
3

�
i=1

d4ki
(2⇡)4 ✓(k

0

1

)�(k2
1

−m2)J̃(k
2

)J̃(k
3

)� d4x� d4y eik2⋅xeik3⋅yeik1⋅(y−x)
= −�

d4k

(2⇡)4 ✓(k
0)�(k2 −m2)J̃(k)J̃(−k) = −� (dk)�J̃(k)�2 ,

where we have used J∗(x) = J(x) ⇒ J̃(−k) = J̃∗(k), and it is understood that
k0 = E�k . Hence,

S = ei ∫ d4x�(−)(x)J(x)ei ∫ d4x�(+)(x)J(x)e− 1
2 ∫ (dk)�J̃(k)�2 .

As an example of an application, we can compute the probability of finding par-
ticles in the final state if we start form no particles initially (emission probability).
Start from probability of persistence of the vacuum,

�
out

�0�0�
in

�2 = �
in

�0�S�0�
in

�2 = exp�−� (dk)�J̃(k)�2� .

Next compute the probability that one particle is produced with momentum �k :
�
out

��k �0�
in

�2 = �
in

��k �S�0�
in

�2 = �
in

�0�↵�kS�0�in�2 .
where “in” in ↵�k is implicit. To proceed we use

[↵�k ,�(−)(x)] = � (dk′)[↵�k ,↵†�k ′]eik′⋅x = eik⋅x (with k0 = E�k )
so that

e−i ∫ �(−)J↵�k ei ∫ �(−)J = ↵�k − i� [�(−),↵�k ]J = ↵�k + i� d4xeik⋅xJ(x) = ↵�k + iJ̃(−k) .
Hence

�
out

��k �0�
in

�2 = �J̃(k)�2 exp�−� (dk)�J̃(k)�2� .
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4.2.1 Phase Space

Suppose we want to find the probability of finding a single particle as t → ∞
regardless of its momentum, that is, in any state. We need to sum over all final
states consisting of a single particle, once each. Since we have a continuum of states
we have to integrate over all �k with some measure, ∫ dµ(�k). Clearly dµ(�k) must
involve d3k, possibly weighted by a function f(�k). Presumably this function is
rotationally invariant, f = f(��k �). But we suspect also dµ(�k) is Lorentz invariant,
so dµ(�k) ∝ (dk), that is, it equals the invariant measure up to a constant. Let’s
figure this out by counting. Note that how we normalize states matters.

First we determine this via a shortcut, and later we repeat the calculation via
a more physical approach (and obtain, of course the same result). We want

�
n

�
out

�n�0�
in

�2 =�
n

in

�0�n�
out out

�n�0�
in

=
out

�0� ��
n

�n�
out out

�n�
out

� �0�
in

,

where the sum is restricted over some states. The operator

�
n

�n�
out out

�n�

is a projection operator onto the space of “some states,” the ones we want to sum
in the final state. We have already discussed this projection operator for the case
of one particle states when ��k � is relativistically normalized. It is

� (dk)��k ���k � .

So we have

1-particle emission probability = � (dk)�J̃(k)�2 exp�−� (dk)�J̃(k)�2� .

Now we repeat the calculation by counting states. It is easier to count discrete
sets of states. We can do so by placing the system in a box of volume LxLyLz.

Take, say, periodic boundary conditions. Then instead of ∫ (dk)(↵�k ei�k ⋅�x +h.c.), we
have a Fourier sum, ∑�k (a�k ei�k ⋅�x + h.c.). Here a�k are creation operators with some
normalization we will have to sort out. For periodic boundary conditions we must
have kxLx = 2⇡nx, kyLy = 2⇡ny, kzLz = 2⇡nz, with ni integers. We label the one

particle states by these, ��n� = a†�k �0�, where �k = 2⇡ �nx

L
x

, ny

L
y

, nz

L
z

�. The probability

of finding � � in state ��n� is ���n � ��2 if both � � and ��n� are normalized to unity.
(Note that this means [a�k , a†�k ′] = �nx

n′
x

�n
y

n′
y

�n
z

n′
z

). The probability of finding � �
in a 1-particle state is then ∑�n ���n � ��2.

Let’s be more specific. What is the probability of finding � � in a 1-particle
state with momentum in a box (kx, kx + �kx) × (ky, ky + �ky) × (kz, kz + �kz)?
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There are �nx�ny�nz = L
x

L
y

L
z(2⇡)3 �kx�ky�kz state in the box. For large volume

the spacing between values of �k becomes small, so in the limit of large volume
�kx → dkx, etc, and the number of particles in the momentum box is

LxLyLz

(2⇡)3 �kx�ky�kz → V
d3k

(2⇡)3

where V = LxLyLz is the volume fo the box. As we switch from discrete to contin-
uum labels for our states we must be careful with their normalization condition.
Since on the space of 1-particle states we have

��n ��n���n � = 1 ⇒ ��n ��n���n ��n ′� = ��n ′�
then in the limit, denoting by ��k � the continuum normalized states,

��n
V�3k

(2⇡)3 ��n���n ��n
′� = ��n ′�→ � d3k��k ���k ��k ′� = ��k ′�

⇒ V

(2⇡)3 �nx

n′
x

�n
y

n′
y

�n
z

n′
z

→ �(3)(�k − �k ′) .
Putting these elements together, the probability of finding � � in a 1-particle state
is

��n ���n � ��2 → � d3k���k � ��2 .

Finally, if we want to change the normalization of states so that ��k ′��k � = N�k �(3)(�k −
�k ′) then the probability of finding � � in a 1-particle state is

�
d3k

N�k ���k � ��
2 .

For relativistic normalization of states, N�k = (2⇡)32E�k and the probability is

� (dk)���k � ��2 .

This is precisely our earlier result. Denoting the emission probability for n particles
in the presence of a localized source J(x) by pn, we have

p
0

= e−⇠, p
1

= ⇠e−xi, where ⇠ = � (dk)�J̃(�k)�2 . (4.9)
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4.2.2 Poisson

We can now go on to compute pn for arbitrary n. Start with n = 2, that is, emission
of two particles.

e−i ∫ �(−)J↵�k↵�k ′ei ∫ �(−)J = e−i ∫ �(−)J↵�k ei ∫ �(−)Je−i ∫ �(−)J↵�k ′ei ∫ �(−)J

= (↵�k + iJ̃(−k))(↵�k ′ + iJ̃(−k′)) (4.10)

so that

out

��k �k ′�0�
in

= −J̃(−k)J̃(−k′)e− 1
2
⇠ .

To get the emission probability we must sum over all distinguishable 2-particle
states. Since ��k �k ′� = ��k ′�k � we must not double count. When we integrate over a
box in momentum space, we count twice the state ��k �k ′� if we sum over k

1

and k
2

with values k
1

= k, k
2

= k′ and k
1

= k′, k
2

= k:

kx

k′x
= 1

2

×

kx

k′x

Hence
p
2

= 1

2

⇠2e−⇠ .
The generalization is straightforward:

pn =
1

n!
⇠n exp(−⇠) .

This is a Poisson distribution! Note that ∑n pn = 1, that is, there is certainty of
finding anything (that is, either no or some particles). The mean of the distribution
is ⇠ = ∫ (dk)�J̃(�k)�2.

4.3 Evolution Operator

We now introduce a more general formalism to derive the same results, but that
will be more useful when we consider interacting quantum fields. We want to
construct an operator U(t) that gives the connection between the field � and the
“in” field �

in

:
�(�x, t) = U−1(t)�

in

(�x, t)U(t) . (4.11)

Since we are assuming �→ �
in

as t→ −∞, we must have

U(t)→ 1 as t→ −∞ . (4.12)
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The S matrix is then
S = lim

t→∞U(t) .

The time evolution of � and �
in

are given by

@�

@t
(�x, t) = i[H(t),�(�x, t)] @�

in

@t
(�x, t) = i[H

0in

(t),�
in

(�x, t)] (4.13)

Here H =H
0

+H ′, where H
0

is the free Hamiltonian and H ′ describes interactions.
In the present case,

H
0

= � d3x �1
2

⇡2 + 1

2

(�∇�)2 + 1

2

m2�2� H ′(t) = � d3xJ(�x, t)�(�x, t) .

Also the subscript “in” means the argument has “in” fields. So H = H(�,⇡, J)
with H

0

=H
0

(�,⇡) while H
0in

=H
0in

(�
in

,⇡
in

). From Eq. (4.11) we have

U−1(t)H(�(t),⇡(t), J(t))U(t)
=H(U−1(t)�(t)U(t), U−1(t)⇡(t)U(t), U−1(t)J(t)U(t))

=H(�
in

(t),⇡
in

(t), J(t)) (4.14)

and

@�
in

@t
(�x, t) = @

@t
�U�(�x, t)U−1(t)�

= dU

dt
�U−1 +U�dU−1

dt
+Ui[H(t),�(�x, t)]U−1

= dU

dt
U−1�

in

− �
in

dU

dt
U−1 + i[H

in

(t),�
in

(�x, t)]

= i[−idU
dt

U−1 +H
in

(t),�
in

(�x, t)]

Comparing with Eq. (4.13) this is the commutator with H
0in

so we must have

−idU
dt

U−1 +H
in

(t) =H
0in

(t)

or
dU

dt
= −i(H

in

−H
0in

)U = −iH ′
in

U (4.15)

The solution to this equation with the boundary condition (4.12) gives the S matrix,
S = U(∞). Note that the equation contains only “in” fields, which we know how
to handle.

We can solve (4.15) by iteration. Integrating (4.15) form −∞ to t we have

U(t) − 1 = −i�
t

−∞ dt′H ′
in

(t′)U(t′) .
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Now use this again, repeatedly,

U(t) = 1 − i�
t

−∞ dt′H ′
in

(t′) �1 − i� t′

−∞ dt′′H ′
in

(t′′)U(t′′)�
= 1 − i�

t

−∞ dt
1

H ′
in

(t
1

) + (−i)2�
t

−∞ dt
1�

t1

−∞ dt
2

H ′
in

(t
1

)H ′
in

(t
2

)U(t
2

)

= � = 1 +
∞
�
n=1(−i)n�

t

−∞ dt
1�

t1

−∞ dt
2

��
t
n−1

−∞ dtnH
′
in

(t
1

)H ′
in

(t
2

)�H ′
in

(tn) .

Note that the product H ′
in

(t
1

)H ′
in

(t
2

)�H ′
in

(tn) is time-ordered, that is, the Hamil-
tonians appear ordered by t ≥ t

1

≥ t
2

� ≥ tn. This is the main result of this section.
We can write the result more compactly. Note that

�
t

−∞ dt
1�

t1

−∞ dt
2

H ′
in

(t
1

)H ′
in

(t
2

) = �
t

−∞ dt
2�

t2

−∞ dt
1

H ′
in

(t
2

)H ′
in

(t
1

)

The two integrals cover the whole t
1

vs t
2

plane, as can be seen from the followin
figures in which the shaded regions correspond to the region of integration of teh
first and second integrals, respectively:

t
1

t
2

t
1

t
2

For any two time dependent operators, A(t) and B(t), we define the time-ordered
product

T (A(t
1

)B(t
2

)) = ✓(t
1

−t
2

)A(t
1

)B(t
2

)+✓(t
2

−t
1

)B(t
2

)A(t
1

) =
�������

A(t
1

)B(t
2

) t
1

> t
2

B(t
2

)A(t
1

) t
2

> t
1

and similarly when there are more than two operators in the product. Then

�
t

−∞ dt
1�

t1

−∞ dt
2

H ′
in

(t
1

)H ′
in

(t
2

) = 1

2 �
t

−∞ dt
1�

t

−∞ dt
2

T �H ′
in

(t
1

)H ′
in

(t
2

)� .

For the term with n integrals there are n! orderings of t
1

, . . . , tn so we obtain

U(t) = 1 +
∞
�
n=1
(−i)n
n! �

t

−∞ dt�
t

−∞ dt
2

��
t

−∞ dtn T (H ′
in

(t
1

)H ′
in

(t
2

)�H ′
in

(tn)) . (4.16)

or, comparing with ez = ∑∞n=0 1

n!z
n we write

U(t) = T �exp�−i�
t

−∞ dt′H ′
in

(t′)�� .
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You should keep in mind that the meaning of this expression is the explicit expan-
sion in (4.16). Finally, taking t→∞,

S = T �exp�−i�
∞
−∞ dtH ′

in

(t)�� = T �exp�−i� d4xH′
in

��

or, using L′ = −H′,
S = T �exp�i� d4xL′

in

�� .

Let’s use this general result for the specific example we have been discussing,
and compare with previous results. Use L′

in

= J(x)�
in

(x). Then

S = T �exp�i� d4xJ(x)�
in

(x)�� .

But we had obtained

S = e− 1
2
⇠ ∶exp�i� d4xJ(x)�

in

(x)�∶ (4.17)

with ⇠ = 1

2

∫ (dk)�J̃(k)�2, as in (4.9). Are these two expression for S the same? To
show they are we need some additional machinery, some relation between T-ordered
and normal-ordered products.

4.4 Wick’s Theorem

In order to answer the question, what is the di↵erence between T-ordered and
normal-ordered products, we consider

T (�(x
1

)�(x
2

)) − ∶�(x
1

)�(x
2

)∶

Here and below � stands for an “in” field, that is, a free field satisfying the KG
equation. For notational conciseness we write �i for �(x1, etc. Letting � = �(+) +
�(−) and taking x0

1

> x0
2

the di↵erence is

(�(+)
1

+�(−)
1

)(�(+)
2

+�(−)
2

)−(�(+)
1

�(+)
2

+�(−)
1

�(+)
2

+�(−)
2

�(+)
1

+�(−)
1

+�(−)
2

) = [�(+)
1

,�(−)
2

]

This is a c-number (equals �+(x2 − x
1

)). Taling the expectation value in the
vacuum we obtain, restoring full notation momentarily,

T (�(x
1

)�(x
2

)) = ∶�(x
1

)�(x
2

)∶+�0�T (�(x
1

)�(x
2

))�0� .

Clearly this holds for the more general case of several fields,

T (�n(x1)�m(x2)) =∶ ∶�n(x1)�m(x2)∶+�0�T (�n(x1)�m(x2))�0� .
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Consider next the case of three fields, T (�
1

�
2

�
3

). Without loss of generality
take x0

1

≥ x0
2

≥ x0
3

:

T (�
1

�
2

�
3

) = �
1

�
2

�
3

= �
1

(∶�
2

�
3

∶+�0�T (�
2

�
3

)�0�)

Now, �
1

∶�
2

�
3

∶ = (�(+)
1

+ �(−)
1

) ∶�
2

�
3

∶. We need to move �(+)
1

to the right of all of
the �(−) operators:

�(+)
1

∶�
2

�
3

∶ = ∶�
2

�
3

∶�(+)
1

+ [�(+)
1

,�(−)
2

] ∶�
3

∶+[�(+)
1

,�(−)
3

] ∶�
2

∶

where we have used the fact that [�(+)
1

,�(−)n ] is a c-number. In fact, it equals
�0�T (�

1

�n)�0�. So we have

T (�
1

�
2

�
3

) = ∶�
1

�
2

�
3

∶+ ∶�
1

∶�0�T (�
2

�
3

)�0� + ∶�
2

∶�0�T (�
1

�
3

)�0� + ∶�
3

∶�0�T (�
1

�
2

)�0� .
Of course, ∶�∶ = �, but the notation will more easily generalize below.

More notation, rewrite the above as

T (�
1

�
2

�
3

) = ∶�
1

�
2

�
3

∶+ ∶�
1

�
2

�
3

∶+ ∶�
1

�
2

�
3

∶+ ∶�
1

�
2

�
3

∶ .
where

�n�m = �0�T (�n�m)�0�
is called a contraction.

Wick’s theorem states that

T (�
1

��n) = ∶�1��n∶+ �
pairs(i,j)
∶�

1

��i��j��n∶

+ �
2-pairs(i,j),(k,l)

∶�
1

��i��j��k��l��n∶+�

+
���������

∶�
1

�
2

�
3

�
4

��n−1�n∶+all pairings n = even

∶�
1

�
2

�
3

�
4

��n−2�n−1�n∶+all pairings n = odd
(4.18)

In words, the right hand side is the sum over all possible contractions in the normal
ordered product ∶�

1

��n∶ (including the term with no contractions). The proof is
by induction. We have already demonstrated this for n = 2,3. Let W (�

1

, . . . ,�n)
stand for the right hand side of (4.18), and assume the theorem is valid for n − 1
fields. Then assuming x0

1

≥ x0
2

≥ � ≥ x0n,
T (�

1

��n) = �1T (�1��n)
= �

1

W (�
2

, . . . ,�n)
= (�(+)

1

+ �(−)
1

)W (�
2

, . . . ,�n)
= �(−)

1

W (�
2

, . . . ,�n) +W (�2, . . . ,�n)�(+)
1

+ [�(+)
1

,W (�
2

, . . . ,�n)]
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The first two terms are normal ordered and contain all contractions that do not
involve �

1

. The last term involves the contractions of �
1

with every field in every
term in W (�

2

, . . . ,�n), therefore all possible contractions. Hence the right hand
side contains all possible contractions, which is W (�

1

, . . . ,�n).

4.4.1 Combinatorics

Let’s go back to our computation of S. We’d like to use Wick’s theorem to re-
late T [exp(i ∫ d4x�in(x)J(x))] to ∶exp(i ∫ d4x�in(x)J(x))∶, and for this we need
a little combinatorics. To make the notation more compact we will continue
dropping the “in” label on the “in” fields for the rest of this section. Now,
T [exp(i ∫ d4x�in(x)J(x))] is a sum of terms of the form

in

n! �
n

�
i=1 d4xi J1�JnT (�1��n) =

in

n! �
n

�
i=1 d4xi J1�JnW (�1, . . . ,�n) (4.19)

Consider the term on the right hand side with one contraction,

1

n! �
n

�
i=1 d4xi J1�Jn �pairs(i,j)

∶�
1

��i��j��n∶

= N
pairs

n! �
n−2
�
i=1 d4xi J1�Jn−2 ∶�1��n−2∶� d4xd4x′JJ ′��′

where N
pairs

is the number of contractions in the sum, which is the same as the
number of pairs (i, j) in the list 1, . . . , n. That is, the number of ways of choosing
two elements of a list of n objects:

N
pairs

= �n
2
� = n!

2!(n − 2)!

Let
⇣ = � d4xd4yJ(x)J(y)�0�T (�(x)�(y))�0� . (4.20)

Then

1 pairing terms = −⇣
2

in−2
(n − 2)! �

n−2
�
i=1 d4xi J1�Jn−2 ∶�1��n−2∶ .

We want to repeat this calculation for the rest of the terms on the right hand
side of (4.19). For this we need to count the number of terms for a given number of

contractions. Now, k contractions involve 2k fields. Now, there are � n
2k
� ways of

picking 2k fields out of n, and we need to determine how many distinct contractions
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one can make among them. We can figure this out by inspecting a few simple cases.
For k = 1

12 → one contraction

and for k = 2

1234 1234 1234 → 3 contractions.

Instead of continuing in this explicit way, we analyze the k = 3 case using inductive
reasoning:

12 × (k = 2) 13 × (k = 2) � 16 × (k = 2) → 5 × 3 contractions.

By induction the arbitrary k case has (2k − 1)!! pairings:

�(2k − 1)-pairings:1j� × �(k − 1)-case: (2k − 3)!!� = (2k − 1)!!

So the terms with k contractions give

1

n!

n!

(n − 2k)!(2k)!(2k − 1)!!
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������

1

(n − 2k)!
1

2kk!

in−2k � n−2k
�
i=1 d4xiJ1�Jn−2k ∶�1��n−2k∶�i2� d4xd4x′ JJ ′��′�k

����������������������������������������������������������������������������������������������������������������������������������������������������������
(−1)k⇣k

= (−⇣�2)
k

k!

im

m! �
m

�
i=1 d4xi J1�Jm ∶�1��m∶ with m = n − 2k.

Aha! We recognize this as a term in an exponential expansion. Considering
all the terms in he expansion of T [exp(i ∫ d4x�in(x)J(x))], the coe�cient of
im

m!

∫ ∏m
i=1 d4xi J1�Jm ∶�1��m∶ (fixed m) is ∑∞k=0 1

k!(−⇣�2)
k = exp(−1

2

⇣), and is in-
dependent of m, so it factors out. We are left with

e−⇣�2 ∞�
m=0

im

m! �
m

�
i=1 d4xi J1�Jm ∶�1��m∶ = e−⇣�2 ∶exp�i� d4xJ(x)�(x)�∶

That is

S = T �exp�i� d4x�
in

(x)J(x)�� = e−⇣�2 ∶exp�i� d4xJ(x)�(x)�∶

This will equal our previous expression for S in (4.17) if ⇣ = ⇠. To answer this we
need to know more about the T-ordered product in the definition of ⇣ in (4.20).
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4.5 Scalar Field Propagator

Let
�F (x, y) ≡ �0�T (�(x)�(y))�0�

where �(x) is a real, scalar, free field satisfying the Klein-Gordon equation. This is
the quantity we need for the computation fo ⇣, but it is also important for several
other reasons, so we spend some time investigating it.

First of all, i�F (x, y) is a Green’s function for the Klein-Gordon equation; see
(4.3). To verify this claim compute directly. Taking @µ to be the derivative with
respect to xµ keeping yµ fixed and using (@2 +m2)�(x) = 0 we have

(@2 +m2)�F (x, y) = (@2 +m2) �✓(x0 − y0)�0��(x)�(y)�0� + ✓(y0 − x0)�0��(y)�(x)�0��

= @2

@x02
✓(x0 − y0)�0��(x)�(y)�0� + @2

@x02
✓(y0 − x0)�0��(y)�(x)�0�

+ 2 @

@x0
✓(x0 − y0)�0�@�(x)

@x0
�(y)�0� + 2 @

@x0
✓(y0 − x0)�0��(y)@�(x)

@x0
�0�

Now using d✓(x)�dx = �(x) and @
0

�(x) = ⇡(x) the last line above is

2�(x0 − y0)�0�[⇡(x),�(y)]�0� = −2i�(4)(x − y)
The line above that gives

@

@x0
�(x0 − y0)�0�[�(x),�(y)]�0� = −�(x0 − y0)�0�[⇡(x),�(y)]�0� = i�(4)(x − y)

Combining these we have

(@2 +m2)�F (x, y) = −i�(4)(x − y)
As we saw in Sec. 4.1 Green functions are not unique, since one can always add solu-
tions to the homogenous Klein-Gordon equation to obtain a new Green’s function.
We must have

i�F (x, y) = −i�
d4k

(2⇡)4 e
ik⋅(x−y) 1

k2 −m2

with some prescription for the contour of integration. Note that �F (x, y) =�F (x−
y) depends only on the di↵erence x−y, which is as expected from homogeneity pof
space-time.

Recall that [�(+)(x),�(−)(y)] = �0�T�(x)�(y)�0� for x0 > y0. More generally

�0�T�(x)�(y)�0� = ✓(x0 − y0)[�(+)(x),�(−)(y)] + ✓(y0 − x0)[�(+)(y),�(−)(x)]
Recall also that

[�(+)(x),�(−)(y)] = � (dk)e−iE�k (x0−y0)+i�k ⋅(�x−�y)
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Without loss of generality and to simplify notation we set yµ = 0. We have

�0�T�(x)�(0)�0� = ✓(x0)� (dk)e−iE�kx0+i�k ⋅�x + ✓(−x0)� (dk)eiE�kx0−i�k ⋅�x
Comparing with Eq. (4.6) we see this is precisely −iGF (x), which was obtained by
taking a contour that goes below −E�k and above E�k ,

k0 = Re(z)

Im(z)

×
E�k − i✏

×
−E�k + i✏

So we have

�0�T�(x)�(y)�0� = �
d4k

(2⇡)4 e
−ik⋅(x−y) i

k2 −m2 + i✏ (4.21)

This will be of much use later. We will refer to this as the two-point function of
the KG field, and the Fourier transform, 1�(k2 −m2 + i✏), as the KG propagator.

We can finally return to the question of relating ⇣ to ⇠:

⇣ = � d4xd4y J(x)J(y) �0�T�(x)�(y)�0�

= � d4xd4y�
d4k

1

(2⇡)4
d4k

2

(2⇡)4 e
ik1⋅xeik2⋅yJ̃(k

1

)J̃(k
2

)�
d4p

(2⇡)4 e
−ip⋅(x−y) i

p2 −m2 + i✏

= �
d4p

(2⇡)4 J̃(p)J̃(−p)
i

p2 −m2 + i✏

Perform the integral over p0, assuming J̃(p)J̃(−p) = �J̃(p)�2 vanishes as �p0� → ∞,
which is justified by our assumption that the source is localized in space-time.
Closing the contour on the upper half of the complex p0 plane we pick the pole at
−E�k so that

⇣ = 2⇡i�
d3p

(2⇡)4 �J̃(p)�
2

i

−2E�k = � (dk)�J̃(p)�
2 = ⇠ .


