
Chapter 6

Fields that are not scalars

6.1 Generalities

So far we have concentrated our studies on fields that transform very simply under
Lorentz transformations. Brief review: we want �(x) to correspond to �0(x0) when
x0 = ⇤x. For a scalar field “correspond to” means they are equal, �0(x0) = �(x).
Tha is,

�0(x) = �(⇤�1x) .

Less trivial is the case of a vector field, Aµ(x). We can obtain it from tak-
ing a derivative on the scalar field which gives, @µ�0(x) = @⌫�(⇤�1x)(⇤�1)⌫µ =
⇤µ

⌫@⌫�(⇤�1x). This holds for any vector so

A0µ(x0) = ⇤µ
⌫A

⌫(x) or A0µ(x) = ⇤µ
⌫A

⌫(⇤�1x) .

We can generalize this to other tensors easily, by considering tensor products of
vectors, e.g.,

B0µ⌫�(x) = ⇤µ
⇢⇤

⌫
�⇤

�
�B

⇢��(⇤�1x)

In general, a collection of fields  ↵, ↵ = 1, . . . , n transforms as

 0
↵(x) = D↵�(⇤) �(⇤

�1x) , (6.1)

where D↵� is an n ⇥ n matrix function of ⇤. If  0
↵(x

0) = D↵�(⇤1

) �(x) with
x0 = ⇤

1

x and  00
↵(x) = D↵�(⇤2

)D��(⇤1

) �(⇤
�1

1

⇤�1

2

x). This should equal the
transformation with x00 = ⇤

2

⇤
1

x,  00
↵(x) = D↵�(⇤2

⇤
1

) �((⇤2

⇤
1

)�1x). This im-
poses a requirement on the functions D(⇤) that they furnish a representation of
the Lorentz group:

D(⇤
2

)D(⇤
1

) = D(⇤
2

⇤
1

) (6.2)
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It su�ces to understand the irreducible representations. Brief review/introduction.
If D is a representation, so is SDS�1 for any invertible matrix S. If we can find
an S such that SDS�1 is block diagonal for all ⇤,

0

BBB@

D(1) 0 · · · 0
0 D(2) · · · 0

0 0
. . . 0

0 0 · · · D(N)

1

CCCA

then we say D is reducible (to be more precise, the case that D(1) is the only
block in the block diagonal matrix should be excluded). Else, it is irreducible.
If D is reducible it (or, rather, SDS�1 for some S) can be written as the direct
sum of irreducible representations D(i), i = 1, . . . , N , and we write this as D =
D(1)�D(2)�· · ·�D(N). The point is that one can form any reducible representation
from knowledge of the possible irreducible ones. So we need only determine the
fields that correspond to irreducible representations,

 0(1)(x) = D(1)(⇤) (1)(⇤�1x), . . . , 0(N)(x) = D(N)(⇤) (1)(⇤�1x) ,

and the whole collection transforms as a reducible representation

0

BBB@

 0(1)(x)
 0(2)(x)

...
 0(N)(x)

1

CCCA
=

0

BBB@

D(1) 0 · · · 0
0 D(2) · · · 0

0 0
. . . 0

0 0 · · · D(N)

1

CCCA

0

BBB@

 (1)(⇤�1x)
 (2)(⇤�1x)

...
 (N)(⇤�1x)

1

CCCA

An example: a pair of scalars, �
1

, �
2

, a vector, Aµ, and a tensor, Tµ⌫ , with the
transformations given above.

If D acts on d dimensional vectors we say the dimension of D is d, dim(D) = d.
(Aside: The representations may be double valued. You have seen this in QM.

A spin-1
2

wave-function,  =

✓
 
1

 
2

◆
transforms, under rotations by an angle ✓ about

the n̂ axis, by  ! ei
1
2 ✓n̂·~� . That is D(R) = ei

1
2 ✓n̂·~� is a 2-dim representation of

the rotation R by an angle ✓ about the n̂ axis. But R is the same for ✓ = 0 and
✓ = 2⇡, and ei⇡n̂·~� = �1.)

If D(⇤) is a representation, so is D⇤(⇤). Proof: take the complex conjugate
of D(⇤

1

)D(⇤
2

) = D(⇤
1

⇤
2

). Clearly, dim(D⇤) = dim(D). D⇤ may or may not be
equivalent to D.

If D(1) and D(2) are representations, so is the tensor product, D(1) ⌦ D(2).
The tensor product is defined as always: if D(1) acts on  (1), D(2) on  (2), then
D(1)⌦D(2) acts on  (1)⌦ (2) according to (D(1)⌦D(2))( (1)⌦ (2)) = (D(1) (1))⌦
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(D(2) (2)). If d = dim(D) and d0 = dim(D0) then dim(D � D0) = d + d0 and
dim(D⌦D0) = dd0. Generally, D⌦D0 is reducible, D⌦D0 = D(1)�D(2)�· · ·�D(N),
with d

1

+ d
2

+ · · · + dN = dd0. An example is a two index tensor. It can
be obtained from the tensor product of two vectors, Cµ⌫ = AµB⌫ , and is a
reducible representation: under Lorentz transformations the trace ⌘µ⌫Cµ⌫ , the
anti-symmetric part, C [µ⌫] = 1

2

(Cµ⌫ � C⌫µ), and the symmetric traceless part,

C{µ⌫} � 1

4

⌘µ⌫⌘��C�� = 1

2

(Cµ⌫ + C⌫µ) � 1

4

⌘µ⌫⌘��C�� do not mix into each other.
Moreover, one can show that the 6-dimensional antisymmetric 2-index tensor is
itself the direct sum of two 3-dimensional irreducible representations, satisfying
Cµ⌫
± = ±1

2

✏µ⌫��C��± (these are said to be self-dual and anti-self-dual, respectively).
The 4 ⇥ 4 = 16-dimensional tensor product of two 4-vectors splits into four irre-
ducible representations of dimension 1, 3, 3, and 9, as we have just seen. With a
slight abuse of notation, this is 4⌦ 4 = 1� 3� 30 � 9.

Here is the point. We can build up every irreducible representation (and from
them every reducible representation, hence every representation) by starting from
some small basic representations, and taking their tensor products repeatedly:
these tensor products are direct sums of new irreducible representation, and the
more basic representations we tensor-product the higher the dimension of the new
irreducible representations we will find.

It turns out, as we will show below, the representations of the Lorentz groups are
labeled by two half-integers, (s

+

, s�) and have dimension (2s
+

+1)(2s�+1). This
is because the Lorentz group (or rather, its algebra) is isomorphic to two copies of
spin, SU(2)⇥SU(2), and as you know from particle QM the representations of spin
are classified by half integer s = 0, 1

2

, 1, . . . and have dimension 2s+ 1 = 1, 2, 3, . . .
correspondingly. For example, (0, 0) is a 1-dimensional representation, the scalar,
(1
2

, 1
2

) is a 4-dimensional representation, corresponding to vectors, Aµ. For the
tensor product of two vectors, we need first, from QM, that 1

2

⌦ 1

2

= 0 � 1. So
(1
2

, 1
2

)⌦(1
2

, 1
2

) = (0, 0)�(1, 0)�(0, 1)�(1, 1). The two 3-dimensional representations
associated with the antisymmetric tensor correspond to (1, 0) and (0, 1) and the
9-dimensional symmetric traceless tensor is (1, 1).

6.2 Spinors

Back to Lorentz group and physics. Question: other than scalars and tensors, what
other representations of the Lorentz group do we have? Answer: spinors and their
tensor products. Let �µ = (�0,�i), where

�0 =

✓
1 0
0 1

◆
, �1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
.
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Let

P = pµ�
µ =

✓
p0 � p3 �p1 + ip2

�p1 � ip2 p0 + p3

◆
.

Then det(P ) = p2 = ⌘µ⌫pµp⌫ . Then for any unimodular 2 ⇥ 2 matrix fM we have

det(fM †PfM) = det(P ). Since any hermitian matrix can be expanded in terms of

�µ with real coe�cients and P 0 = fM †PfM is hermitian (if P is), then P 0 = p0µ�µ

with p02 = p2. That is, fM = fM(⇤) induces a Lorentz transformation.

Now fM(⇤) does not satisfy the representation defining equation (6.2). If p00 =
⇤
2

p0 and p0 = ⇤
1

p then P 00 = fM †(⇤
2

)P 0fM(⇤
2

) = fM †(⇤
2

)fM †(⇤
1

)PfM(⇤
1

)fM(⇤
2

)

and this should correspond to p00 = ⇤
2

⇤
1

p or P 00 = fM †(⇤
2

⇤
1

)PfM(⇤
2

⇤
1

). Com-
paring we see that,

fM(⇤
1

)fM(⇤
2

) = fM(⇤
2

⇤
1

) .

Defining M(⇤) = fM(⇤�1) we obtain a representation,

M(⇤
2

)M(⇤
1

) = fM(⇤�1

2

)fM(⇤�1

1

) = fM(⇤�1

1

⇤�1

2

) = fM((⇤
2

⇤
1

)�1) = M(⇤
2

⇤
1

) .

So M(⇤) gives a 2-dimensional representation of ⇤. It acts on 2-dimensional
spinors (vectors in a 2-dimensional space):

 0
↵ = M↵�(⇤) �

If P 0 = fM †PfM with P 0 = p0⌫�⌫ = ⇤⌫µpµ�⌫ then equating this to M †PM for
arbitrary pµ we must have

fM(⇤)†�µfM(⇤) = ⇤⌫
µ�⌫ = (⇤�1)µ⌫�

⌫ (6.3)

or
M(⇤)†�µM(⇤) = ⇤µ

⌫�
⌫ (6.4)

As we have seen, the complex conjugate, M⇤(⇤), must also be a representation.
It satisfies,

MT�µ⇤M⇤ = ⇤µ
⌫�

⌫⇤

or sandwiching with �2 —a similarity transformation— and defining �̄µ = �2�µ⇤�2 =
(�0,��i), and M = �2M⇤�2:

M
†
�̄µM = ⇤µ

⌫ �̄
⌫

So there must be a 2-dimensional representation of the Lorentz group, of 2-
component vectors, or spinors, that transform according to

 0
↵(x) = M↵�(⇤) �(⇤

�1x)
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and also a complex conjugate representation that acts on other 2-component vec-
tors, also called a spinors, that transform according to

�0
↵(x) = M↵�(⇤)��(⇤

�1x) .

It is convenient to arrange the spinors into 2-component column vectors, and write

 0 = M(⇤) and �0 = M(⇤)�

Note that
 0†�µ 0 =  †M †�µM = ⇤µ

⌫  
†�⌫ .

and
�0†�µ�0 = �†M †

�µM� = ⇤µ
⌫ �

†�⌫� .

In making tensors out of these it is convenient to distinguish the indices in  and
�, so we write  ↵ and �↵̇ (still with ↵ = 1, 2 and ↵̇ = 1, 2).

We can construct a scalar out of two spinors,  
1

and  
2

:

 0T
1

�2 0
2

=  T
1

MT�2M 
2

=  T
1

�2 
2

(6.5)

The last step follows from

(MT�2M)↵� = �i✏��M↵�M��

= �i✏↵� det(M)

= �2↵�

Similarly, �̄T
1

�2�̄
2

is a scalar. Note that  †
1

 
2

is not a scalar sinceM is not generally
unitary. Note also that  T�2 = 0, so we cannot make a scalar out of a single  .

Form Eq. (6.4) we can verify that

M = exp
�
� i

2

~↵ · ~�
�
= cos(1

2

↵)� i↵̂ · ~� sin(1
2

↵) (6.6)

is a representation of ⇤ = R = a rotation by angle ↵ about an axis in the ↵̂ = ~↵/↵
direction, and

M = exp
⇣
1

2

~� · ~�
⌘
= cosh(1

2

�) + �̂ · ~� sinh(1
2

�)

is a representation of a boost by velocity �, that is, a representation of

⇤ =

✓
� ��
�� �

◆

where � = 1/
p
1� �2, ~� is along the x axis, and the last two rows and columns

of ⇤ have been omitted. By complex conjugating it follows that

M = exp
�
� i

2

~↵ · ~�
�

(6.7)
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is a representation of the same rotation R (a rotation by angle ↵ about ↵̂), and

M = exp
⇣
�1

2

~� · ~�
⌘

is a representation of a boost by velocity ~� .

6.3 A Lagrangian for Spinors

We want to construct a Lagrangian density for spinors. We put the general con-
straints:

(i) Constructed from  and  † and their first derivatives @µ and @µ †.

(ii) Real, L⇤ = L (or for quantum fields, hermitian, L† = L).

(iii) Lorentz invariant (at least up to total derivatives)

(iv) At most quadratic in the fields.

The last condition is not generally necessary. We impose it for simplicity. Higher
orders in the fields will correspond to interactions.

From (iv) we need to construct L from bilinears  † ⌦  and  ⌦  . We know
we can form a vector out of these, but not a scalar. Now,

@µ (⇤
�1x) = @µ((⇤

�1)⌫�x
�)(@⌫ )(⇤

�1x) = (⇤�1)⌫µ(@⌫ )(⇤
�1x) ,

so that

 0†�µ@µ 0 =  †M †�µM(⇤�1)⌫µ@⌫ =  †⇤µ
��

�M(⇤�1)⌫µ@⌫ =  †�µ@µ .

Both  †�µ@µ and @µ †�µ transform as scalars so they are candidates for an
invariant Lagrangian. But the sum is a total derivative, @µ( †�µ ) so it is irrelevant
(it does not contribute to the equations of motion). So we take the di↵erence,

1

2

 †�µ
 !
@µ = 1

2

⇣
 †�µ@µ � @µ †�µ 

⌘

as a possible term in the Lagrangian. It’s complex conjugate is

1

2

( †�µ
 !
@µ )

⇤ = 1

2

�
 T�µ⇤@µ � @µ T�µ⇤ ⇤�

= 1

2

⇣
@µ 

†�µ† �  †�µ†@µ 
⌘

= �1

2

 †�µ
 !
@µ 
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If we take L = A1

2

 †�µ
 !
@µ then for L⇤ = L we must have A = ±i|A|. Redefining

 ! 1p
|A| we have a candidate Lagrangian density

L = ±1

2
 †�µ i

 !
@µ 

We will see below how to choose properly between the two signs. Note that if we
relax assumption (iv) we could add other terms, e.g., ( †�µ )( †�µ ).

Equations of motion: recall, with a complex field we can take variations with
respect to  and  † separately, as if they were independent variables. Now in the
action integral it is convenient to integrate by parts, so that

Z
d4xL = ±

Z
d4x

1

2
 †�µ i

 !
@µ = ±

Z
d4x †�µ i@µ 

Then, trivially,
�L
� † = 0 ) �µ@µ = 0 .

This is
(�0@

0

+ �i@i) = 0 ) @
0

 = ��i@i = �~� · ~r 

so that
@2
0

 = �@
0

~� · ~r = �~� · ~r@
0

 = (~� · ~r)2 = r2 

This is precisely the KG equation with m = 0

@2 = (@2
0

�r2) = 0 .

Each component of  satisfies the massless KG equation.
We can construct a Lagrangian for fields in the complex conjugate representa-

tion, �. An analogous argument gives us

L = ±�†�µ i@µ�

with equation of motion
�µ@µ� = 0

This again gives @2� = 0 but now with @
0

� = ~� · ~r� (note the sign di↵erence).

Plane wave expansion. Since these are complex fields we have di↵erent coe�-
cients for the positive and negative energy components:

 ↵ =

Z
(dk)

h
e�ik·xB~k ,↵ + eik·xD~k ,↵

i
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where B~k ,↵ and D~k ,↵
are two component operator valued objects. Since @2 = 0

we must have k2 = E2

~k
� ~k 2 = 0, that is, k0 = E~k = |~k | as we should for

massless particles. But the equation of motion is first order in derivatives. Using
@µe⌥ik·x = ⌥ikµe⌥ik·x we have

Z
(dk)

h
e�ik·xkµ�µB~k � ei·xkµ�µD~k

i
= 0

That is, we need

✓
k0 � k3 �k1 + ik2

�k1 � ik2 k0 � k3

◆ 
B~k ,1
B~k ,2

!
= 0

(k0 � k3)B~k ,1 = �(�k
1 + ik2)B~k ,2

(�k1 � ik2)B~k ,1 = �(k
0 + k3)B~k ,2

and similarly for D~k ,↵
. Let

u~k = N~k

✓
k1 � ik2

k0 � k3

◆
.

N~k
is a normalization factor. We could choose it to have, for example, u†~ku~k = 1,

but we will wait to choose it conveniently later. Note that since k2 = 0 we can also
write this as

u~k = N~k

k0 � k3

k1 � ik2

✓
k0 + k3

k1 + ik2

◆
= N 0

~k

✓
k0 + k3

k1 + ik2

◆
.

For the plane wave-expansion of � we need to solve kµ�µv~k = 0. But this is

just like the equation for u~k only replacing �~k for ~k . So v~k = u�~k up to a phase.
Since there is only one solution to the matrix equation, we rewrite our plane wave
expansion as

 =

Z
(dk)

h
e�ik·x�~ku~k + eik·x�†~ku~k

i

where now the operators �~k and �~k are one-component objects. So other than the
spinor coe�cient u~k this expansion looks very much like the one for complex scalar
fields.

6.3.1 Hamiltonian; Fermi-Dirac Statistics

Let’s compute the Hamiltonian. This should allow us to fix the sign in the La-
grangian density since we want a Hamiltonian that is bounded from below. From
the density

H =
@L

@(@t )
@t � L = ⌥i †~� · ~r 
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we obtain the Hamiltonian in terms of creation/annihilation operators,

H = ⌥
Z
(dk)(dk0)u†~k 0~� ·~ku~k

h
(2⇡)3�(~k 0 � ~k )(�~k 0�

†
~k
� �†~k 0�~k ) + (2⇡)3�(~k 0 + ~k )(�†~k 0�

†
~k
� �~k 0�~k )

i

Now use, kµ�µu~k = 0 or

~k · ~�u~k = E~ku~k with E~k = |~k |,

and adopt the normalization
u†~ku~k = 2E~k .

Moreover, from the explicit form of u~k we have

u†~ku�~k = 0

Putting these together we have

H = ⌥
Z
(dk)E~k

⇣
��†~k�~k + �~k

�†~k

⌘

If we take, as we have done before,

[�~k
,�†~k 0 ] = (2⇡)32E~k �

(3)(~k � ~k 0) = [�~k
, �†~k 0 ] (6.8)

then

H = ⌥
Z
(dk)E~k

⇣
��†~k�~k + �†~k �~k

⌘

plus an infinite constant that we throw away (normal ordering). We were hoping
to fix the sign, but instead we encounter a disaster! If we choose the � sign in the
definition of L the �†~k�~k has a spectrum unbounded from below while if we choose

the + sign the �†~k �~k term is unbounded form below.

But if instead of (6.8) we choose anti-commutation relations,

{�~k ,�
†
~k 0} = (2⇡)32E~k �

(3)(~k � ~k 0) = {�~k , �
†
~k 0} (6.9)

where {A,B} ⌘ AB +BA, then up to an infinite constant

H = ±
Z
(dk)E~k

⇣
�†~k�~k + �†~k �~k

⌘

This is bounded from below only if we take the + sign in L, unbounded form below
otherwise. This fixes the sign,

L =  † i�µ@µ ,
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and furthermore tells us that the fields anti-commute,

{ †(x), (y)}|x0
=y0 = �(3)(~x � ~y )

The Fock space consists of particles �†~k |0i and antiparticles, �†~k |0i. Two particle

states satisfy |~k
1

,~k
2

i = �†~k 1
�†~k 2

|0i = ��†~k 2
�†~k 1

|0i = �|~k
2

,~k
1

i, so the wave function

is anti-symmetric; so are �†~k 1
�†~k 2

|0i and �†~k 1
�†~k 2

|0i. We have discovered Fermi-Dirac

statistics! Moreover, we were forced into it by consistency of the theory. This
spin-statistics connection is a theorem in QFT, rather than an ad-hoc rule as in
particle QM.

A note on the normalization of u~k . It seems that we chose it as 2E~k to give
the Hamiltonian as the sum of E~k times the number of modes. Actually, we

should fix the normalization to give { †(x), (y)}|x0
=y0 = i�(3)(~x � ~y ) given that

creation/annihilation operators satisfy (6.9). It is a simple exercise to check that
this is the case:

{ †
↵(x), �(y)}|x0

=y0 =

Z
(dk)ei

~k ·~k
h
u⇤~k↵u~k� + v⇤~k↵v~k�

i

where we have used v~k = u�~k . We can now check by direct computation that

u~k
u†~k + v~k

v†~k = 2E~k
1 (6.10)

giving the desired result. The relation (6.10) is in fact a completeness relation,

X |nihn|
hn|ni = 1 is

u~k
u†~k + v~k

v†~k
2E~k

= 1

Helicity(⌘).

Helicity of a state is defined as the angular momentum along the direction of
motion. Take a particle moving along the z-axis, k1 = k2 = 0, k3 = ±k0. Then if
the particle moves in the z direction, k3 = k0

u(+) /
✓
1
0

◆
,

while if it moves in the negative z-direction, k3 = �k0,

u(�) /
✓
0
1

◆
.
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For a rotation by ↵ about the z-axis, Eq. (6.6) gives

M

✓
1
0

◆
= e�i↵/2

✓
1
0

◆
and M

✓
0
1

◆
= ei↵/2

✓
0
1

◆
,

so that u(±) are eigenvectors of M with eigenvalues e⌥i↵/2. But

M = e�i↵J3

so u(+) is an eigenvector of ⌘ = k̂ · ~J = J3 with eigenvalue, or helicity, ⌘ = 1

2

while

u(�) has ⌘ = k̂ · J = �J3 so again ⌘ = 1

2

.
(Aside: In general

Jµ⌫ = Lµ⌫ + Sµ⌫ =

Z
d3x [xµT 0⌫ � x⌫T 0µ � i⇡J µ⌫�]

where �0(x) = (1� i
2

!µ⌫J µ⌫)�(x�!x) and ⇡ is the canonical momentum conjugate
to �. For the complex case one must sum over ⇡ and ⇡†. For spinors we only have
⇡ = @L/@(@t ) =  † i�0 = i †, since ⇡† = @L/@(@t †) = 0. So for spinors,
Sµ⌫ =

R
d3x †Mµ⌫ . If U = exp(� i

2

!µ⌫J µ⌫), then infinitesimally U�(x)U † =
(1 � i

2

!µ⌫J µ⌫)�(x � !x). For a rotation about the z-axis by angle ✓ take !
12

=
�!

21

= ✓, so that U = exp(�i✓J3). This can be verified from UA�(0)U † =
(⌘�� + !��)A�(0):

A01 = A1 + !12A
2

= A1 � !12A2 = A1 � ✓A2

A02 = A2 + !21A
1

= A2 � !21A1 = A2 + ✓A1 .

The factor of 2 in the definition of the spin part, Sµ⌫ , is correct. This can be
checked with the vector representation, for which (J µ⌫)�� = �i(�µ��⌫���⌫��

µ
�). End

aside).
To determine the helicity of 1-particle states annihilated and created by  , it

is convenient to project these states into or out of the vacuum. Consider then a
transformation U(R) by a rotation R by angle ↵ about the z-directions and a state
with momentum ~k = kẑ:

h0|U(R) (0)U †(R)|kẑi = h0|M(R) (0)|kẑi

The right hand side picks up only the contribution in the plane wave expansion
from the annihilation operator with momentum ~k = kẑ, so the matrix M acts
on this spinor giving a factor of exp(�i↵/2). On the left hand side we have
h0| (0)(U †(R)|kẑi). Since R does not change ~k = kẑ, the state can change at most
by an overall phase. Comparing we read o↵ the phase, U †(R)|kẑi = exp(�i↵/2)|kẑi
or U(R)|kẑi = exp(i↵/2)|kẑi. But U(R) = exp(�i↵J3) = exp(�i↵⌘), so the state
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annihilated by  has ⌘ = �1

2

. Similarly, hkẑ|U(R) (0)U †(R)|0i = hkẑ|M (0)|0i =
exp(�i↵/2)hkẑ| (0)|0i, gives U(R)|kẑi = exp(�i↵/2)|kẑi. So  creates states
with ⌘ = 1

2

.
For � we use the expansion basis of spinors v~k . Since these are obtained from

u~k by ~k ! �~k , we expect they have ⌘ = �1

2

. It is trivial to verify this: from

Eq. (6.7) for a rotation M = M so the computation is as above, except now for

~k along thez-axis we get v(+) /
✓
0
1

◆
and similarly for ~k pointing in the negative

z-direction we have v(�) /
✓
1
0

◆
, both of which give positive helicity.

To summarize:  annihilates states with ⌘ = �1

2

and creates states with ⌘ = 1

2

;
� annihilates states with ⌘ = 1

2

and creates states with ⌘ = �1

2

.

6.3.2 Weyl vs Majorana

We stated earlier (see Eq. (6.5) and comment below) that the Lagrangian for spinors
does not admit a mass term. (�2)↵� ↵ � = 0 because the antisymmetric matrix
(i�2)↵� = ✏↵� is traced with the symmetric one  ↵ � . But now that we have
discovered that consistent quantization requires that spinors anti-commute we must
revise this assertion: for anti-commuting fields  ↵ � is anti-symmetric!

Consider then
L =  † i�µ@µ � (m T ✏ + h.c.) (6.11)

where ✏ = i�2. Comments:

(i) Two component massless spinors are called Weyl spinors. Massive ones are
called Majorana spinors.

(ii) The Lagrangian for the Majorana spinor, Eq. (6.11), has no U(1) symmetry,
 ! ei↵ . The Weyl case does; additional interactions with other fields may
or may not respect the symmetry. For example, if we have also a complex
scalar � an interaction term in the Lagrangian g� T ✏ +g⇤�⇤ †✏ ⇤ respects
the symmetry, but if instead we have a real scalar, then g� T ✏ + g⇤� †✏ ⇤

does not. Neither Weyl nor Majorana spinors can describe the electron: one
because it does not have a mass the other because it does not carry charge.

(iii) The phase of the mass term is completely arbitrary. Since the kinetic term
is invariant under  ! ei↵ we can always make a redefinition of the field  
that changes the coe�cient of the mass term by a phase m! e2i↵m: we are
free to choose m real and positive.

(iv) Helicity .... To be filled in later. But main points (a) same computation
as before, but (b) frame dependent since massive particle can be boosted to
reverse direction of motion without changing spin
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6.4 The Dirac Field

We need a description of massive spinors that carry charge, like the electron. We
accomplish this by a using two spinors,  and �, both with the same charge, that
is, both transforming the same way under a U(1) transformation,  ! ei↵ and
�! ei↵�. Then under a Lorentz transformation

�† ! �†M †
M = �† 

The last step follows from

(M
†
M)↵� = �✏↵�M��✏��M��

and since det(M) = 1, ✏��M��M�� = ✏�� so we are left with �✏↵�✏�� = �↵� . So
chi† is both Lorentz and U(1) invariant.

Hence we take

L =  †�µ i@µ + �†�µ i@µ��m(�† +  †�)

Equations of Motion:

�µ i@µ = m� and �µ i@µ� = m .

Before we solve these, note that using one in the other we have

�µ i@µ(�
⌫ i@⌫ ) = m2 

Since @µ@⌫ is symmetric in µ$ ⌫, we can replace �µ�⌫ ! 1

2

{�µ,�⌫} = ⌘µ⌫ , where
the last step follows from the explicit form of �µ and �⌫ . Hence the right hand
side of the equation above is i2⌘µ⌫@µ@⌫ = �@2 and we have

(@2 +m2) = 0 .

Each component of  satisfies the KG equation. Similarly

(@2 +m2)� = 0 .

6.4.1 Dirac Spinor

It is convenient to combine the two 2-component spinors into a 4-component Dirac
filed:

 =

✓
 
�

◆

Let

�0 =

✓
0 1
1 0

◆
.
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This is a 4⇥ 4 matrix in 2⇥ 2 block notation. Let also

�0�µ =

✓
�µ 0
0 �µ

◆
i.e. �µ =

✓
0 �µ

�µ 0

◆
and �i =

✓
0 ��i
�i 0

◆

Then
L =  †�0�µ i@µ �m †�0 

or introducing the shorthand  ⌘  †�0,

L =  �µ i@µ �m =  (�µ i@µ �m) =  (i/@ �m) .

We have introduced the slash notation: for any vector aµ define /a = aµ�µ.
The equation of motion is the famous Dirac equation,

(i/@ �m) = 0

Now
{�µ, �⌫} = 2⌘µ⌫

so that (i/@)(i/@) = �@µ@⌫�µ�⌫ = �@2 and

(@2 +m2) = 0

which is the statement that all components of  satisfy the KG equation, as it
should since the components of  and � do.

Plane-wave expansion: we use ↵ = 1, . . . , 4 for the index of  ,

 ↵(x) =

Z
(dk)

2X

s=1

h
�~k ,su

(s)
↵ (~k )e�ik·x + �†~k ,sv

(s)
↵ eik·x

i

where k2 = m2 and the Dirac spinors satisfy

(/k �m)u(s)(~k ) = 0 and (/k +m)v(s)(~k ) = 0 .

To solve these notice that k2 = m2 gives (/k�m)(/k+m) = 0 and (/k+m)(/k�m) = 0.
So take u(~k ) = (/k+m)u

0

for some u
0

such that (/k+m)u
0

6= 0. Noice that we have
anticipated that there are two independent solutions to each of these equations.
For example, if ~k = 0, k0 = m then

/k +m = m(�0 + 1) = m

✓
1 1
1 1

◆

so

u(1) =
p
2m

0

BB@

1
0
1
0

1

CCA , u(2) =
p
2m

0

BB@

0
1
0
1

1

CCA
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where we have used a normalization that will give u(~k )†u(~k ) = 2E~k , as will be
needed for simple anti-commutation relations for �~k ,s and �~k ,s.

It will be useful to introduce for any 4⇥ 4 matrix � the conjugate

� = �0�†�0

Then �µ = �0�µ†�0 = �µ (since �0† = �0 and �i† = ��i and the anti-commutation
relations that give (�0)2 = 1 and �0�i = ��i�0). Then

(/k �m)u = 0 ) u(/k �m) = 0 ,

and likewise v(/k +m) = 0.
It is easy to show that

u(s)(k)u(s
0
)(k) = 2m�ss

0
= �v(s)(k)v(s0)(k)

and
X

s

u(s)(k)u(s)(k) = m+ /k �
X

s

v(s)(k)v(s)(k) = m� /k (6.12)

Moreover,
u(s)(k)�µu(s)(k) = 2kµ

In particular u(s)(k)�0u(s)(k) = u(s)†(k)u(s)(k) = 2E is not a scalar.
With these normalizations,

{ †(x), (y)}|x0
=y0 = 1�(3)(~x � ~y )

and

H =
X

s

Z
(dk)E~k

⇣
�†~k ,s�~k ,s + �†~k ,s�~k ,s

⌘

up to an infinite constant, removed by normal-ordering.

6.4.2 Dirac vs Weyl representations

We can always make a redefinition of the Dirac field  ! S by a unitary matrix
S. Then we change �µ ! S†�µS. This allows us to choose a di↵erent, convenient
basis of Dirac gamma matrices. For example we take

S =
1p
2

✓
1 1
�1 1

◆

In this DIrac representation we have

�0 =

✓
1 0
0 �1

◆
, �0 =

✓
0 ��i
�i 0

◆
.
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The basis we had before is called the Weyl representation:

�0 =

✓
0 1
1 0

◆
, �0 =

✓
0 ��i
�i 0

◆
.

In any basis,
�0† = �0, �i† = ��i, {�µ, �⌫} = 2⌘µ⌫

and

Tr /a = 0 (6.13)

Tr /a/b = 4a · b (6.14)

Tr /a
1

· · · /a
2n+1

= 0 (6.15)

Tr /a/b/c/d = 4(a · bc · d+ a · db · c� a · cb · d) (6.16)

6.4.3 Wick’s Theorem, T-product, Perturbation theory

Take x0
1

> x0
2

,  =  (+) +  (�), with  (+) and  (�)† annihilation operators. Then

 (x
1

) †(x
2

) = ( (+)

1

+  (�)

1

)( (+)†
2

+  (�)†
2

)

=  (+)

1

 (�)†
2

+ { (+)

1

, (+)†
2

}�  (+)†
2

 (+)

1

+  (�)

1

 (+)†
2

+  (�)

1

 (�)†
2

= : (x
1

) †(x
2

): +c-number (6.17)

with the understanding that in the normal ordering we pick up a minus sign any
time we move an operator through another. So we define the T -ordered product
for two anti-commuting fields A(x) and B(y) as

T (A(x)B(y)) = ✓(x0 � y0)A(x)B(y)� ✓(y0 � x0)B(y)A(x) .

Then the c-number is h0|T (x
1

) †(x
2

)|0i =  (x
1

) †(x
2

) and Wick’s theorem is
just as before with the caveat that we must include minus signs for anti-commutations.
For example,

h0|T  (x
1

) (x
2

) †(x
3

) †(x
4

)|0i

=  (x
1

) †(x
4

) (x
2

) †(x
3

)�  (x
1

) †(x
3

) (x
2

) †(x
4

) (6.18)

The basic quantity we will need to compute amplitudes and for our Feynman
rules is the two point function:

h0|T  ↵(x) �(y)|0i =
Z

d4k

(2⇡)4
e�ik·(x�y)i

(/k +m)↵�
k2 �m2 + i✏
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Note this is not symmetric under k ! �k. You can verify this by writing explicitly
the plane-wave expansion of the Dirac field (if you try this you will need to use
(6.12)).

To understand Feynman rules we work in a specific context. Let  be a Dirac
spinor of mass m and � a real scalar of mass M , and take

L =  (i/@ �m) + 1

2

(@µ�)
2 � 1

2

M2�2 � g�  

The last term is called a Yukawa interaction and the coe�cient g a Yukawa coupling
constant. Then, as before, Green functions are

G(n,m,l)(x
1

, . . . , xn, y1, . . . , ym, z
1

, . . . , zl) = h0|T
�
 (x

1

) · · · (xn) (y1) · · · (ym)�(z
1

) · · ·�(zl)
�
|0i

and in perturbation theory this equals

h0|T
⇣
 
in

(x
1

) · · ·�
in

(zl)e�i
R
d4xg�in(x) in(x) in(x)

⌘
|0i

h0|T
⇣
e�i

R
d4xg�in(x) in(x) in(x)

⌘
|0i

This can be expanded using Wick’s theorem as above. But note that [�, ] = 0 =
[�, †] so there is no sign change when moving  or  † through �.

For example, the simplest non-trivial Green function is G(1,1,1), which to lowest
order in an expansion in g is

G(1,1,1)
↵� (x, y, z) = �ig

Z
d4wh0|T 

in↵(x) 
†
in�(y)�in(z)�in(w) in�(w) in�(w)|0i

= �ig
Z

d4w(�1)2 
in↵(x) in�(w) in�(w) 

in�(y)�in(z)�in(w)

and the rest as before. In particularG({x}) =
R Q

d4kei
P

k·x(2⇡)4�(4)(
P

k) eG({k}):

G(1,1,1) = �ig
Z

d4w

Z
d4k

(2⇡)4
e�ik·(x�w)

i(/k +m)↵�
k2 �m2 + i✏

⇥
Z

d4p

(2⇡)4
e�ip·(w�y) i(/p+m)��

p2 �m2 + i✏

Z
d4q

(2⇡)4
eiq·(z�w)

i

q2 �M2 + i✏

= �ig
Z

d4k

(2⇡)4

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4
e�ik·x+ip·y�iq·z(2⇡)4�(4)(k � p+ q)

⇥ i2
[(/k +m)(/k +m)]↵�

(k2 �m2 + i✏)(p2 �m2 + i✏)

i

q2 �M2 + i✏

so that
eG(1,1,1)(�k, p,�q) = �ig i

/k �m

i

/p�m

i

q2 �M2
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where we have omitted the i✏ and used

1
/k �m

=
/k +m

k2 �m2

.

We can represent this graphically as follows:

�
k

↵ =

✓
i

/k �m+ i✏

◆

↵�

q
=

i

q2 �M2 + i✏

and for the vertex

↵ � = �ig�↵� .

So the computation above is

�
pk

↵

q = p� k

=

✓
i

/k �m+ i✏

◆

↵�

(�ig���)
✓

i

/p�m+ i✏

◆

��

i

q2 �M2 + i✏

Here is an example relevant to � ! � scattering (or rather scattering of the
quanta of these fields). To lowest order in an expansion in the coupling constant,
the contributions to eG(1,1,2) are

k0
�

k + p
↵

k

p0 p

= (�ig)2
"

i

/k0 �m

i

(/k + /p)�m

i

/k �m

#

�↵

i

p2 �M2

i

p02 �M2

and

k0
�

k � p0
↵

k

p0 p

= (�ig)2
"

i

/k0 �m

i

(/k � /p0)�m

i

/k �m

#

�↵

i

p2 �M2

i

p02 �M2
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6.4.4 LSZ-reduction for spinros, stated

The LSZ reduction formula for spinors is exactly as for scalars, except

(i) Amputate with i/@ �m rather than @2 +m2

(ii) An “in” 1-particle state |~k , si
in

gives u(s)↵ (~k ), where ↵ is contracted with the
corresponding index in the Green’s function. This comes from

 (+)

↵ |~k , si
in

=

Z
(dk0)

X

s0

e�ik0·xu(s
0
)

↵ (~k 0)�~k 0,s0 |~k , siin .

And, similarly, u(s)(~k ) for
out

h~k , s|, v(s)(~k ) for antiparticle |~k , si
in

, and v(s)(~k )
for antipartilce

out

h~k , s|.

(iii) Possibly (�1)p for some p, from anti-commuting states.

Example: in the sample Yukawa theory above, from the computation of eG(1,1,2),
we can obtain the amplitude for the scattering of a spin-0 particle with a spin-1

2

particle:

out

h~k 0, s0; ~p 0|~k , s; ~pi
in

=
k, s k + p k0, s0

p p0

+
k, s k � p0 k0, s0

p p0

= �ig2u(s0)(~k 0)

"
1

(/k + /p)�m
+

1

(/k � /p0)�m

#
u(s)(~k )

Note the convention here: while time ir ordered later to earlier as we read left to
right in

out

h~k 0, s0; ~p 0|~k , s; ~pi
in

, the Feynman diagram for the amplitude is ordered
earlier to later (in to out) as we read left to right. But the expression for the
amplitude is ordered, in this case, in the opposite sense: the Dirac spinor for the
out state is on the left while the one for the in state is on the right. Generally
a line representing a spinor that eneters the diagram from the left and has an
arrow pointing right represents an in-particle, while if the arrow is pointing left it
represent an in-antiparticle. A line exiting on the right represents an out-particle
if the arrow is pointing right, and an out-antiparticle if pointing left. Here is an
example of antiparticle scattering o↵ the scalar:

s

�k � p

s0

k k0

p p0

+
s

�k + p0
s0

k k0

p p0

= �ig2v(s)(~k )
"

1

(�/k � /p)�m
+

1

(�/k + /p0)�m

#
v(s

0
)(~k 0)
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Note that while the particle and antiparticle scattering amplitudes of the scalar
appear superficially di↵erent, they are the same (up to a sign) once /ku(~k ) = mu(~k )
and /kv(~k ) = �mv(~k ) are used.

Here is an example which involves both u and v spinors: scalar-scalar scattering
into particle -antiparticle pair (of fermions):

s0
k � p

s

k0

k

p0

p

= �ig2u(s)(~k )
"

1

(/k � /p)�m

#
v(s

0
)(~k 0)

And, finally, here is an example with a sign from anti-commuting external states,
two particles in the initial state scattering into two particles:

2 4

1 3

+

2 3

1 4

= �ig2


u
3

u
1

u
4

u
2

(k
1

� k
3

)2 �M2

� u
4

u
1

u
3

u
2

(k
1

� k
4

)2 �M2

�

Here we used the compact notation u
1

= u(s1)(~k
1

), etc. The relative sign between
the two terms is a reflection of Dirac statistics of the external states.

6.5 Generators

Let’s study the generators of the Lorentz group in the representation of Weyl
spinors:

M = 1� i

2
!µ⌫Mµ⌫

corresponding to ⇤µ⌫ = ⌘µ⌫ + !µ⌫ with !µ⌫ = �!⌫µ infinitesimal. So Mµ⌫ are six
2⇥2 matrices that we want to characterize. First we note that det(M) = 1 implies
Tr(Mµ⌫) = 0. Next, determine Mµ⌫ , using the known transformation properties
of vectors. On one hand

M †PM = ((⇤�1)µ
⌫p⌫)�

µ

= p⌫�µ(⌘µ⌫ � !µ⌫)

and on the other

M †PM = (1 + i
2

!µ⌫M†µ⌫)p���(1� i
2

!�⇢M�⇢)

= pµ�
µ + i

2

!µ⌫p�(M†µ⌫�� � ��Mµ⌫) .
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Equating,

i
2

!µ⌫p�(M†µ⌫�� � ��Mµ⌫) = �p⌫�µ!µ⌫ = �!µ⌫p�⌘
�⌫�µ

and since this must hold for arbitrary !µ⌫ and p� we have

M†µ⌫�� � ��Mµ⌫ = �i(⌘�µ�⌫ � ⌘�⌫�µ), .

The solution to this is straightforward:

M0i = �Mi0 = i
2

�i, Mij = �Mji = 1

2

✏ijk�k,

(Aside: to determine this, expand Mµ⌫ in the basis of �µ. Since TrMµ⌫ = 0
we have Mµ⌫ = (aµ⌫j + ibµ⌫j )�j and M†µ⌫ = (aµ⌫j � ibµ⌫j )�j . This gives

aµ⌫j [�j ,��]� ibµ⌫j {�j ,��} = �i(⌘�µ�⌫ � ⌘�⌫�µ) .

Setting � = 0 gives an equation for the bj ’s:

2bµ⌫j �j = �(�⌫0�µ � �µ0�⌫)

and taking µ = 0 and ⌫ = k we have 2b0kj �
j = �k from which b0kj = �bk0j = 1

2

�kj
follows. Similarly we obtain bikj = 0. For the a0s set � = i. Then

aµ⌫j 2i✏jik�k � ibµ⌫j 2�ij = �i(⌘iµ�⌫ � ⌘i⌫�µ)

Then setting µ = 0 gives a0⌫j = 0 and setting µ = l and ⌫ = m gives almj = 1

2

✏lmj .)
Let

Jk = 1

2

✏kijMij = 1

2

�k, and Ki = M0i = i
2

�i .

Note that J i† = J i while Ki† = �Ki. These satisfy,

[J i, J j ] = i✏ijkJk, [J i,Kj ] = i✏ijkKk, [Ki,Kj ] = �i✏ijkJk .

Defining
J i
± ⌘ 1

2

(J i ± iKi)

we have
[J i

+

, J j
+

] = i✏ijkJk
+

, [J i
�, J

j
�] = i✏ijkJk

�, [J i
+

, J j
�] = 0 .

You recognize these are two mutually commuting copies of (the algebra of) SO(3) ⇠
SU(2). You know this from the rotation group in QM: for spinors, ~S = 1

2

~� , and
[Si, Sj ] = i✏ijkSk, while for vectors (Li)jk = �i✏ijk, with [Li, Lj ] = i✏ijkLk. The
irreducible representations of SU(2) are ` = 0, 1

2

, 1, 3
2

, . . . of dimension 2` + 1 =
1, 2, 3, 4, . . .. You recognize ` = 0 as a scalar, ` = 1

2

a spinor, ` = 1 a vector, etc.
Comments:
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(i) For any representation D(⇤) we have infinitesimal generators. If ⇤µ⌫ =
⌘µ⌫ + !µ⌫ then D(⇤)↵� = �↵� � i

2

!µ⌫J µ⌫ . The six matrices J µ⌫ satisfy the
same commutation relations as Mµ⌫ , they are fixed by the multiplication
“table” of the Lorentz group, which itself follows form requiring D(⇤) be a
representation, Eq. (6.2).

(ii) The defining representation is the 4-dim representation acting on vectors,
pµ, like ⇤ itself. That is, D(⇤)µ⌫p⌫ = ⇤µ

⌫p⌫ ) � i
2

!��(J ��)µ⌫p⌫ = !µ⌫p⌫ ,
from which we read o↵, for the 4-dimensional (defining) representation of the
Lorentz group: (J ��)µ⌫ = �i(��µ��⌫ ���µ��⌫ ). We can compute easily the same

commutation relations satisfied by the J �� and of course they are the same
as those satisfied by M��.

(iii) The commutation relations for J i and Ki derived above may seem ambiguous
since they were found from comparing with Pauli matrices but both J i andKi

are given in terms of Pauli matrices. For example, [Ki,Kj ] = �i✏ijk 1

2

�k was
written as �i✏ijkJk rather than �✏ijkKk. There is a simple argument why
[K,K] = �K is excluded. Under parityMij ! (�1)2Mij , M0i ! (�1)M0i.
Hence J i ! J i and Ki ! �Ki. This gives, [J, J ] ⇠ J but not K, [J,K] ⇠ K
but not J and [K,K] ⇠ J but not K.

(iv) We would not have faced this ambiguity (nor would we have had to use the
parity argument to sort it out) had we studied the commutation relations for
arbitrary representations.

6.5.1 All the representations of the Lorentz Group

Since the same commutation relations must hold for any representation we use that
to construct them. We build on our knowledge of the representations of SU(2).

For J i
+

the irreducible representations are classified by s
+

= 0, 1
2

, 1, . . .. The
(2s

+

+1)⇥(2s
+

+1) matrices are labeled J i
s+ . For J

i� the irreducible representations

are classified by s� = 0, 1
2

, 1, . . .. The (2s�+1)⇥(2s�+1) matrices are labeled J i
s� .

Moreover, since the representation matrices of the generators of the Lorentz group,
J i
+

and J i�, satisfy [J i
+

, J i�] = 0, they are tensor products, J i
+

= J i
s+ ⌦ 1s� , where

1s� is the (2s� + 1) ⇥ (2s� + 1) identity, matrix, and, similarly, J i� = 1s+ ⌦ J i
s� .

The irreducible representation are labeled by (s
+

, s�) and have generators J i =
J i
+

+ J i� = J i
s+ ⌦ 1s� + 1s+ ⌦ J i

s� and similarly for Ki. They have dimension
(2s

+

+ 1)(2s� + 1).
For example, (0, 0) is a representation of dimension 1, a scalar.
(1
2

, 0) and (0, 1
2

) have dimension 2. They are spinors. They are two di↵erent
spinor representations. Consider (1

2

, 0):

J i
s+ = 1

2

�i, J i
s� = 0, ) ~J = ~J

+

+ ~J � = 1

2

~� ⌦ 1, ~K = 1

i (
~J
+

� ~J �) = � i
2

~� ⌦ 1
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Similarly, for (0, 1
2

)

J i
s+ = 0, J i

s� = 1

2

�i, ) ~J = ~J
+

+ ~J � = 1⌦ 1

2

~� , ~K = 1

i (
~J
+

� ~J �) = 1⌦ i
2

~�

But this is where we started from. From  0 = M we obtained ~J = 1

2

~� and
~K = i

2

~� so this is the (0, 1
2

) representation. So what is (1
2

, 0)? We already know
that M is a representation. Look more closely:

M = e�i~✓ ·( 12~� )�i~� ·( i

2~� ) = e�i~↵ ·( 12~� ) with ~↵ = ~✓ + i~� , (↵i 2 C).

The representation we are looking for should have group elements

e�i~✓ ·( 12~� )�i~� ·(� i

2~� ) = e�i~↵⇤·( 12~� )

while
M⇤ = e�i~✓ ·(� 1

2~�
⇤
)+i~� ·(� i

2~�
⇤
) = e�i~↵⇤·(� 1

2~�
⇤
) .

This is close. In fact, it is what we want up to a similarity transformation: using
�2~� ⇤�2 = �~� we have

M = �2M⇤�2 = e�i~↵⇤·( 12~� ) .

That is, M⇤ is in the equivalence class of (1
2

, 0).
Generalize: note that since M = 1�i!µ⌫Mµ⌫ we have M⇤ = 1�i!µ⌫(�Mµ⌫⇤).

The matrices �Mµ⌫⇤ satisfy the same commutation relations as the Mµ⌫ . More
genrally, if [T a, T b] = ifabcT c then [�T a⇤,�T b⇤] = ifabc⇤(�T c⇤), so �T a⇤ satisfy
the same commutation relations as T a if fabc are real. In our case (J i±) the fabc

are ✏ijk. Since for SU(2) the only irreducible representation of dimension 2s+1 is
generated by ~J s it must be that S(� ~J ⇤

s)S
�1 = ~J s for some invertible matrix S.

Now
D(⇤) = e�i~↵ · ~J +�i~↵⇤· ~J�

so that
SD⇤(⇤)S�1 = e�i~↵⇤· ~J +�i~↵ · ~J�

The role of J
+

and J� has been exchanged. To be more precise, the matrix S that
acts on the tensor product exchanges the + and � sectors. We therefore have,

(s
+

, s�)⇤ ⇠ (s�, s+)

Note that for s
+

= s� the complex conjugate representation is similar to itself.
This is a real representation and the vectors on which it acts can be taken to have
real components. For example, let’s investigate the (1

2

, 1
2

) representation. It is 2⇥2
dimensional. It smells like a 4-vector. Let’s show it is. It is an object with indices
↵̇↵ as in V↵̇↵, with

V 0
↵̇↵ = M ↵̇ ˙�M↵�V ˙��



6.5. GENERATORS 129

This transforms like �↵̇ ↵. We have already seen that this 4-component object can
be arranged into a 4-vector; more specifically  †�µ is a 4-vector and the relation
between  † = �†�2, so consider V µ = V↵̇↵(�2�µ)↵̇↵. Then

V 0µ = M ↵̇ ˙�M↵�V ˙��(�
2�µ)↵̇↵

= (M
T
�2�µM)

˙��V ˙��

= (�2M †�µM)
˙��V ˙��

= ⇤µ
⌫(�

2�⌫)
˙��V ˙��

= ⇤µ
⌫V

⌫

More generally, X↵1···↵s+ ↵̇1···↵s�
with all ↵ indices symmetrized and all ↵̇ indices

symmetrized is in the (s
+

, s�) representation.


