Physics 215A: Particles and Fields, Fall 2014 Department of Physics, UCSD Benjamin Grinstein

Assignment 2 October 22 (Due November 3)

- 1. Coherent states. Consider the Klein-Gordon theory in 3+1 dimensions.
 - (i) Show that the state

$$\left|f\right\rangle \equiv N \exp\left[\int (dk) f(\vec{k}) \alpha^{\dagger}_{\vec{k}}\right] \left|0\right\rangle$$

where $f(\vec{k})$ is some arbitrary function of \vec{k} and N is a normalization constant (that depends on the choice of $f(\vec{k})$), is an eigenvector of the positive frequency (annihilation) part of the Klein-Gordon field, that is, of $\hat{\phi}^{(+)}(\vec{x}) = \int (dk)e^{i\vec{k}\cdot\vec{x}}\alpha_{\vec{k}}$, and determine the eigenvalue. *Hint: First show that* $\alpha_{\vec{k}}|f\rangle = f(\vec{k})|f\rangle$.

- (ii) Determine the normalization constant, *N*, so that $|| |f \rangle || = 1$.
- (iii) Compute the expectation values of \hat{H} , $\hat{\vec{p}}$ and \hat{N} in the state $|f\rangle$. How does $\langle f|\hat{H}|f\rangle$ compare with the energy of the classical field $\phi(x) = \int (dk) f(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$, and why?
- (iv) Show that coherent states stay coherent under time evolution. In particular that $|f_t\rangle \equiv \exp(-iHt)|f\rangle$ is a coherent state with $f_t(\vec{k}) = \exp(-iE_{\vec{k}}t)f(\vec{k})$.

The relativistic invariant measure is $(dk) = d^3k/(2\pi)^3 2E_{\vec{k}}$ and the creation/annihilation operators are normalized relativistically, $[\alpha_{\vec{k}}, \alpha_{\vec{l}'}^{\dagger}] = (2\pi)^3 2E_{\vec{k}}\delta^{(3)}(\vec{k} - \vec{k}')$.

2. The retarded Green function for the Klein-Gordon equation (in 3+1 dimensions) is given by

$$G_{\rm ret}(x) = -\int \frac{d^4k}{(2\pi)^4} \frac{e^{-ik\cdot x}}{(k^0 + i\epsilon)^2 - \vec{k}^2 - m^2}$$

where the limit $\epsilon \rightarrow 0+$ at the end of the calculation is understood.

- (i) Show $G_{\text{ret}}(x) = 0$ for $x^2 < 0$, that is, $G_{\text{ret}}(x)$ vanishes outside the light cone of the origin.
- (ii) Show by explicit calculation, that for m = 0 the explicit form of the Green function is

$$G_{\rm ret} = \frac{1}{2\pi} \theta(x^0) \delta(x^2).$$

(iii) Compare this with the function $\Delta_+(x)$ introduced in class,

$$\Delta_+(x) = \int (dk) \, e^{-ik \cdot x} \, .$$

Compute it for m = 0.

- (iv) Consider the commutator $[\phi(x), \phi(0)]$. Show by explicit computation that it vanishes for space-like separation, $x^2 < 0$.
- 3. Define the smeared field

$$\phi_f(\vec{x},t) = \int d^3 y f(\vec{x}-\vec{y})\phi(\vec{y},t) \, dt$$

Calculate the vacuum expectation value $\langle 0|\phi_f(\vec{x},t)^2|0\rangle$. Do this for generic f and then explicitly for a Gaussian,

$$f(\vec{x}) = \frac{1}{(2\pi b^2)^{\frac{3}{2}}} e^{-\vec{x}^2/2b^2},$$

in the limit of vanishing mass.