7.16 Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielectric.
The dielectric is characterized by a tensor €;;, but if coordinate axes are chosen as
the principle axes, the components of displacement along these axes are related to the
electric-field components by D; = ¢, F; (i = 1,2, 3), where ¢; are the eigenvalues of the
matrix €;;.

a) Show that plane waves with frequency w and wave vector k must satisfy
kx (kx E)+ pow?D =0

This is in fact the general Maxwell wave equation, and does not depend on the
details of the dielectric tensor. This may be derived from the curl equations,
using V — ik and 8 /0t — —iw. In a source-free region, the Ampere-Maxwell and
Faraday laws give

ik x H=—iwD,  ikxE—iwB=0
Taking ik cross Faraday’s law, and using B = ,uoﬁ gives
ik x (ik x E) — ipow(ik x H) =0

It is then straightforward to substitute in Ampere’s law in the second term to
arrive at

—

kx (kx E)+ pow?D =0



b)

Show that for a given wave vector k = kn there are two distinct modes of propa-
gation with different phase velocities v = w/k that satisfy the Fresnel equation
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where v; = 1/,/poé€; is called a principal velocity, and n; is the component of 7
along the ith principal axis.

Letting k= kn, and using the BAC-CAB rule, we find

By working with the principle axes, this equation may be entirely written in terms
of E. Introducing the real symmetric matrices

Aij =ning — 65, Wij = bijuoe; = 8i5/v;
we arrive at a generalized eigenvalue problem
AE=—0®WE o (A4+v*W)E =0 (8)

The velocities of propagation are then the eigenvalues of this problem, and may
be obtained by solving the secular equation
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Other than a trivial solution, v = 0 (which does not correspond to a propagating
mode), we find two velocities, v, and vy, corresponding to the two roots of the
quadratic equation for v? in the square brackets. In fact, taking the equation

in brackets and dividing out by the product II;(v? — v?) immediately gives the

Fresnel equation
2
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Show that ﬁa . ﬁb = 0, where ﬁa, l_jb are the displacements associated with the
two modes of propagation.



Here we may use standard linear algebra techniques related to the orthogonality
of eigenvectors. Considering first the generalized eigenvalue problem (8), we take
distinct eigenvalues v, and v,. Then the corresponding eigenvectors satisfy the

equations . .
(A +v2W)E, =0, (A +vEW)E, =0

Left-multiplying the first equation by E, and the second by E, gives
EyAE, + v Ey,WE, =0,  E,AE,+vE,WE, =0

Since A and W are symmetric (real Hermitian), we may transpose the first
equation and subtract it from the second. The result is

(v — v )E,WE, =0

which implies EQWEb = 0, since v, # vy (in the case that v, = vy, we may instead
Gram-Schmidt orthogonalize to make the eigenvectors orthogonal). Finally, since
W is g times the dielectric matrix 3 = diag(ey, €2, €3), and since D= EE, we
may equivalently rewrite this orthogonality (with respect to the ‘measure’ or
‘metric’ W) as

Ea-DbZO or Eb-ﬁazo

However, we can in fact learn more than this. Since the matrix A =n®n — I is

not arbitrary, it satisfies the (almost) projection condition A2 = —A. As a result
Da . _Db - Eaz Eb - —2an Eb - mEGA Eb - —Q—HEQAEI)
Ho HoUaVy HoVa by
But since AEb = —vaEb, we obtain
Da'Db:2—2EaWEb: ZEa~Db:O
HoVa HoVq

(Note, however, that in general E, - Ej # 0.)



8.5 A waveguide is constructed so that the cross section of the guide forms a right triangle
with sides of length a, a, v/2a, as shown. The medium inside has i, = €, = 1.

a) Assuming infinite conductivity for the walls, determine the possible modes of
propagation and their cutoff frequencies.

In general, to solve a problem like this, we need to consider the Dirichlet or Neu-
mann problem for a boundary without any ‘standard’ (ie rectangular or circular)
symmetry. In particular, this means there is no natural coordinate system to use
for the two-dimensional Helmholtz equation [VZ + +2]¢) = 0 that both allows for
separation of variables and respects the symmetry of the boundary surface (which
would allow a simple specification of the boundary data). A general problem of
this form (with no simple boundary symmetry) is quite unpleasant to solve.

In this case, however, we can think of the triangle as ‘half’ of a square.
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In particular, the key step to this problem is to note that the triangle may be ob-
tained from the square by imposing reflection symmetry along the x = y diagonal.
This symmetry is a Zs reflection on the coordinates of the form

Zy: x—Y, y—2a
Eigenfunctions 1 (z,y) can then be classified as either Zs-even or Zs-odd

ZZ : w(xay) - iw(y7$)

The odd functions vanish along the diagonal, so they automatically satisfy Dirich-
let conditions ¢ (z = y) = 0 on the diagonal. Similarly, the even functions have
vanishing normal derivative on the diagonal and hence automatically satisfy Neu-
mann conditions. We will use this fact to construct TM and TE modes for the
triangle.



We begin with the TM modes. Using rectangular coordinates, it is natural to
write solutions of the Helmholtz equation [0 + 9 4+ 7?1 = 0 as 3 ~ ei(kezthyy)
where k2 + k;i = ~2. This means we may expand the eigenfuctions in terms of
sines and cosines. For TM modes satisfying the Dirichlet condition g = 0, we
start with eigenfunctions on the square
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sin —=
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1 ~ sin

which automatically satisfy the boundary conditions on the four walls of the

square. This gives
T
Ymn = —Vm? +n?

so the cutoff frequencies are
s e
= ———vVm?2+n2=—vm2+n? (1)
a

In order to satisfy the Dirichlet condition on the diagonal, we take the Zs-odd
combination
mrr | nmy . nmwr . mmy

S1In —— — SIn —— S1n
a a a a

(TM) Ymn = sin

It is simple to verify that ¢(z,0) = ¥ (a,y) = ¥ (z,x) = 0, so that all boundary
conditions on the triangle are indeed satisfied. The cutoff frequencies are given
by (1). Note here that the Zy projection removes the m = n modes and also
antisymmetrizes m with n. As a result, the integer labels m and n may be taken
to satisfy the condition m > n > 0.

The analysis for TE modes is similar. However, for Neumann conditions, we take

cosine combinations as well as a Zs-even eigenfunction. This gives

mnx nmy nmwx mmy
COS —— + cOSs —— COS
a a

(TE) Wimn = COS "

with identical cutoff frequencies as in (1). This time, however, the labels m and
n may be taken to satisfy m > n > 0 (except m = n = 0 is not allowed).

For the lowest modes of each type calculate the attenuation constant, assuming
that the walls have large, but finite, conductivity. Compare the result with that
for a square guide of side a made from the same material.

The attenuation coefficients are determined by power and power loss. We begin
with TM modes. For the power, we need to compute

/ 1Y) da = / [sin ky,2 sin kpy — sin k2 sin ky, y| ® da (2)
A A



It is perhaps easiest to compute this by integrating over the square and then
dividing by two for the triangle. This is because the integration separates into x
and y integrals, and we may use orthogonality

/ sin k;x sinkjz de = %&-J (Where k;j = ‘7—7T>
0

This gives
2
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The factor of 1/2 is for the triangle, while the factor of 2 is because two non-
vanishing terms arise when squaring the integrand in (2). (Recall that m # n for
TM modes.) This gives an expression for the power
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where A = a?/2 is the area of the triangle. Calculating the power loss involves
integrating a normal derivative
i

We break this into three parts: along y = 0, along z = @ and along the diagonal
x = y. Along the y = 0 wall, we have n = g and
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As a result
“oult  m\Za, o o w,
/0 3y dx_(5> 5( +n)—%(m +n*) (3)

A similar calculation, or use of symmetry, will result in an identical expression

for the integral along the x = a wall. For the diagonal, we use 7 = == (& — §) to
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This gives
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Combining this diagonal with (3) for the sides, we obtain

1

where C' = a + a + v/2a is the circumference of the triangle. This gives a TM
mode power loss of
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The attenuation coefficient is thus

g Ldp 1 el W\ e

e 2P dz o0\ p w? 2A
so that the geometrical factor &,,, = 1 is trivial. Note that the energy loss
calculation along the diagonal of the triangle gives the same result as along the
square edges. As a result, the geometrical factor &,,, = 1 is independent of

whether the waveguide is square or right triangular. This is why the triangular
TM result is identical to the square TM result, at least up to the ratios C'/A =
2(2 4+ v/2)/a =~ 6.83/a for the triangle and C'/A = 4/a for the square.

The power loss for the TE modes is somewhat harder to deal with because of the
possibility of special cases. Consider

1) = cos kp,x cos k,y + cos k,x cos ky,y (4)
where m >n > 0. If n =0, we end up with
W = coskyx + cos kpy (m > 0)

In this case

1 [ @ 1
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while the perimeter integrals are
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with the above integrals gives an attenuation coefficient
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where C' = (2 +v/2)a and A = a?/2. Here the geometrical factors are

1++2
= —F, Mmo
242

For the rectangular waveguide, one has instead

Emo =1 (m>n=0)

a 1 2b

L Ty T

1 when b — a

This is different because the power loss calculation is no longer universal, giving
different coefficients along the diagonal as along the square edges. The remaining
TE cases to consider are modes (4) where m = n > 0 and m > n > 0. Here we
simply state the results. For m = n > 0 we have

Y = coS kypx cos kY

(we have removed an unimportant factor of two) so that

ThlS gives
émm - ’ mm — 1 m=n>0

On the other hand, for the general case m > n > 0 we find
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which yields
Emn =1, Nmn = 1 (m >mn>0)

In all cases, 1, = 1, which is the same for the triangle or the square waveg-
uide. For &,,,, the factor is essentially a geometric combination of contributions



along the perimeter of either 1 or 1/2 depending on the particular mode and its
degeneracies.



